Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioorg Chem ; 131: 106340, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36586301

RESUMO

7ß-Hydroxysteroid dehydrogenases (7ß-HSDHs) have attracted increasing attention due to their crucial roles in the biosynthesis of ursodeoxycholic acid (UDCA). However, most published 7ß-HSDHs are strictly NADPH-dependent oxidoreductases with poor activity and low productivity. Compared with NADPH, NADH is more stable and cheaper, making it the more popular cofactor for industrial applications of dehydrogenases. Herein, by using a sequence and structure-guided genome mining approach based on the structural information of conserved cofactor-binding motifs, we uncovered a novel NADH-dependent 7ß-HSDH (Cle7ß-HSDH). The Cle7ß-HSDH was overexpressed, purified, and characterized. It exhibited high specific activity (9.6 U/mg), good pH stability and thermostability, significant methanol tolerance, and showed excellent catalytic efficiencies (kcat/Km) towards 7-oxo-lithocholic acid (7-oxo-LCA) and NADH (70.8 mM-1s-1 and 31.8 mM-1s-1, respectively). Molecular docking and mutational analyses revealed that Asp42 could play a considerable role in NADH binding and recognition. Coupling with a glucose dehydrogenase for NADH regeneration, up to 20 mM 7-oxo-LCA could be completely transformed to UDCA within 90 min by Cle7ß-HSDH. This study provides an efficient approach for mining promising enzymes from genomic databases for cost-effective biotechnological applications.


Assuntos
Hidroxiesteroide Desidrogenases , NAD , Ácido Ursodesoxicólico , Hidroxiesteroide Desidrogenases/química , Hidroxiesteroide Desidrogenases/metabolismo , Simulação de Acoplamento Molecular , NAD/química , NADP/química , Ácido Ursodesoxicólico/biossíntese
2.
Bioorg Chem ; 136: 106533, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37084587

RESUMO

Penicillin G acylase (PGA) is a key biocatalyst for the enzymatic production of ß-lactam antibiotics, which can not only catalyze the synthesis of ß-lactam antibiotics but also catalyze the hydrolysis of the products to prepare semi-synthetic antibiotic intermediates. However, the high hydrolysis and low synthesis activities of natural PGAs severely hinder their industrial application. In this study, a combinatorial directed evolution strategy was employed to obtain new PGAs with outstanding performances. The best mutant ßF24G/ßW154G was obtained from the PGA of Achromobacter sp., which exhibited approximately a 129.62-fold and a 52.55-fold increase in specific activity and synthesis/hydrolysis ratio, respectively, compared to the wild-type AsPGA. Thereafter, this mutant was used to synthesize amoxicillin, cefadroxil, and ampicillin; all conversions > 99% were accomplished in 90-135 min with almost no secondary hydrolysis byproducts produced in the reaction. Molecular dynamics simulation and substrate pocket calculation revealed that substitution of the smallest glycine residue at ßF24 and ßW154 expanded the binding pocket, thereby facilitating the entry and release of substrates and products. Therefore, this novel mutant is a promising catalyst for the large-scale production of ß-lactam antibiotics.


Assuntos
Achromobacter , Penicilina Amidase , Penicilina Amidase/metabolismo , Achromobacter/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Ampicilina/metabolismo , Amoxicilina/metabolismo , Monobactamas
3.
Ecotoxicol Environ Saf ; 257: 114958, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37116453

RESUMO

Cadmium (Cd) accumulation in crops causes potential risks to human health. Microbial extracellular polymeric substances (EPS) are a complex mixture of biopolymers that can bind various heavy metals. The present work examined the alleviating effects of EPS on Cd toxicity in rice and its detoxification mechanism. The 100 µM Cd stress hampered the overall plant growth and development, damaged the ultrastructures of both leaf and root cells, and caused severe lipid peroxidation in rice plants. However, applying EPS at a concentration of 100 mg/L during Cd stress resulted in increased biomass, reduced Cd accumulation and transport, and minimized the oxidative damage. EPS application also enhanced Cd retention in the shoot cell walls and root vacuoles, and actively altered the expression of genes involved in cell wall formation, antioxidant defense systems, transcription factors, and hormone metabolism. These findings provide new insights into EPS-mediated mitigation of Cd stress in plants and help us to develop strategies to improve crop yield in Cd-contaminated soils in the future.


Assuntos
Oryza , Poluentes do Solo , Humanos , Cádmio/metabolismo , Oryza/metabolismo , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Antioxidantes/metabolismo , Estresse Oxidativo/genética , Poluentes do Solo/análise , Raízes de Plantas/metabolismo
4.
Anal Biochem ; 650: 114724, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35577007

RESUMO

High-potential iron-sulfur proteins (HiPIPs) from extremely acidophilic chemolithotrophic non-photosynthetic Acidithiobacillus commonly play a crucial role in ferrous or sulfurous biooxidation. Acidithiobacillus exhibit important industrial applications for bioleaching valuable metals from sulfide ores. In this study, two HiPIP genes from thermophilic Acidithiobacillus caldus SM-1 were cloned and successfully expressed, and their proteins were purified. The proteins displayed a brownish color with an optical absorbance peak at approximately 385 nm and an electronic paramagnetic resonance (EPR) g value of approximately 2.01, which confirmed that the iron-sulfur cluster was correctly inserted into the active site when the proteins were generated in E. coli. The proteins were more thermostable than HiPIPs from mesophilic Acidithiobacillus. The direct electron transfer (DET) between HiPIPs and electrode was achieved by the 2-mercaptopyrimidine (MP) surface-modified gold electrodes; the redox potentials of the HiPIP1 and HiPIP2 measured by cyclic voltammetry were approximately 304.5 mV and 400.5 mV, respectively. The electron transfer rate constant was estimated to be 0.75 s-1 and 0.66 s-1, respectively. The MP/Au electrode and Au electrode showed consistent differences in heterogeneous electron transfer rates and electron transfer resistances. Bioinformatics and molecular simulations further explained the direct electron transfer between the proteins and surface-modified electrode.


Assuntos
Acidithiobacillus , Proteínas Ferro-Enxofre , Acidithiobacillus/química , Acidithiobacillus/genética , Acidithiobacillus/metabolismo , Eletroquímica , Escherichia coli/genética , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/genética , Enxofre/metabolismo
5.
Environ Res ; 205: 112467, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34863983

RESUMO

Water pollution is a global issue that has drastically increased in recent years due to rapid industrial development. Different technologies have been designed for the removal of pollutants from wastewater. However, most of these techniques are expensive, generate new waste, and focus solely on metal removal instead of metal recovery. In this study, novel facultative exoelectrogenic strains designated Castellaniella sp. A5, Castellaniella sp. B3, and Castellaniella sp. A3 were isolated from a microbial fuel cell (MFC). These isolates were utilized as pure and mixed culture inoculums in a bioelectrochemical system (BES) to produce bioelectricity and treat simulated industrial wastewater. A single-chamber MFC inoculated with the mixed culture attained the highest electricity generation (i.e., 320 mW/m2 power density and 3.19 A/m2 current density), chemical oxygen demand removal efficiency (91.15 ± 0.05%), and coulombic efficiency (54.81 ± 4.18%). In addition, the BES containing biofilms of the mixed culture achieved the highest Cu, Cr, and Cd removal efficiencies of 99.89 ± 0.07%, 99.59 ± 0.53%, and 99.91 ± 0.04%, respectively. The Cr6+ and Cu2+ in the simulated industrial wastewater were recovered via microbial electrochemical reduction as Cr3+ and Cu0, respectively. However, Cd2+ precipitated as Cd (OH)2 or CdCO3 on the surface of the cathodes. These results suggest that a mixed culture inoculum of Castellaniella sp. A5, Castellaniella sp. B3, and Castellaniella sp. A3 has great potential as a biocatalyst in BES for heavy metals recovery from industrial wastewater.


Assuntos
Fontes de Energia Bioelétrica , Metais Pesados , Eletricidade , Eletrodos , Águas Residuárias
6.
Bioprocess Biosyst Eng ; 45(5): 877-890, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35166901

RESUMO

Low electricity generation efficiency is one of the key issues that must be addressed for the practical application of microbial fuel cells (MFCs). Modification of microbial electrode materials is an effective method to enhance electron transfer. In this study, magnetite (Fe3O4) nanoparticles synthesized by co-precipitation were added to anode chambers in different doses to explore its effect on the performance of MFCs. The maximum power density of the MFCs doped with 4.5 g/L Fe3O4 (391.11 ± 9.4 mW/m2) was significantly increased compared to that of the undoped MFCs (255.15 ± 24.8 mW/m2). The COD removal efficiency of the MFCs increased from 85.8 ± 2.8% to 95.0 ± 2.1%. Electrochemical impedance spectroscopy and cyclic voltammetry tests revealed that the addition of Fe3O4 nanoparticles enhanced the biocatalytic activity of the anode. High-throughput sequencing results indicated that 4.5 g/L Fe3O4 modified anodes enriched the exoelectrogen Geobacter (31.5%), while control MFCs had less Geobacter (17.4%). Magnetite is widely distributed worldwide, which provides an inexpensive means to improve the electrochemical performance of MFCs.


Assuntos
Fontes de Energia Bioelétrica , Nanopartículas , Eletricidade , Eletrodos , Óxido Ferroso-Férrico
7.
Int J Phytoremediation ; 24(7): 704-720, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34461783

RESUMO

To solve the problem of harvesting microalgae during heavy metal adsorption, six different carriers were selected in this study to compare the adsorption behavior of microalgae after immobilization. The results of the scanning electron microscope (SEM) and adsorption showed chitosan as a carrier showed the best immobilization effect and adsorption advantages after immobilizing microalgae. The optimal immobilized carrier-chitosan was obtained under the following conditions of chitosan: acetic acid (2:40), microalgae concentration (108 cells mL-1), and immobilization time (18 h). The optimal adsorption conditions were as follows: temperature: 30 °C, pH: 7.0, adsorption dose: 1.5 g L-1, initial ion concentration: 40 mg L-1. The adsorption capacity of metal ions can reach 37.1 mg g-1 Cr(VI), 25.98 mg g-1 Cu(II), 25.06 mg g-1 Pb(II), and 24.62 mg g-1 Cd(II), respectively. The desorption efficiency in 0.5 mol L-1 NaOH desorption solution reached 90.01%. After five adsorption-desorption cycles, excluding chitosan (∼70%), the adsorption efficiency of other adsorbents decreased with an increase in the recycling times. Chitosan was a suitable carrier for the immobilization of Synechocystis sp. PCC6803. Fourier transform infrared spectroscopy and Raman spectra analysis showed that groups belonging to the microalgae were detected after the microalgae in different carriers, indicating that the microalgae were immobilized with the carriers. At the same time, the energy spectrum changed before and after adsorption indicated the specific functional groups of microalgae played an important role in the adsorption process. The kinetic and isothermal model data showed that the adsorption process was mainly chemical adsorption and homogeneous monolayer adsorption. Moreover, X-ray diffraction showed the interlayer peak strength decreased significantly, indicating that the interlayer structure was stretched after Cr(VI) ion exchange. X-ray photoelectron spectroscopy analysis showed that the Cr adsorption process involves the reduction of Cr(VI) to Cr(III).


The application of immobilization technology in various aspects of microalgae has attracted the attention of researchers. At present, the research report mainly focuses on the parameter optimization of microalgae immobilized by the carrier, but there are few reports on the comparison of different carriers for microalgae immobilization and the study on the adsorption mechanism of heavy metals by the optimal carrier for microalgae immobilization. In this study, six different carriers were selected to compare the effects of microalgae immobilization, and the optimal carrier was obtained. To further explore the optimal synthesis parameters of the suitable carrier, the optimal adsorption parameters for heavy metals, desorption efficiency, and recycling effect, explore the adsorption mechanism, and provide a feasible basis and theoretical guidance for the extensive application of microalgae immobilization technology in the industry.


Assuntos
Quitosana , Microalgas , Poluentes Químicos da Água , Adsorção , Biodegradação Ambiental , Quitosana/química , Cromo/química , Concentração de Íons de Hidrogênio , Íons , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/química
8.
J Environ Manage ; 303: 114144, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34839958

RESUMO

The purpose of this study was to find an economical and effective amendment for improving composting performance and product quality, as well as to analyze the microbial community succession in the whole phase of composting. Therefore, the effect of reusable amendment bamboo sphere on composting performance and microbial community succession during food waste composting was investigated. The results showed that 6% bamboo sphere treatment had the highest degree of polymerization (3.7) and humification index (0.18). Compared with control, 6% bamboo sphere amendment increased total nitrogen (TN), phosphorus (TP) and potassium (TK) contents by 13.61%, 19% and 17.42%, respectively. Furthermore, bamboo sphere enhanced bacterial-fungal diversity and improved microbial community composition by enhancing the relative abundance of thermo-tolerance and lignocellulolytic bacteria and fungi. The five most abundant genera in bamboo sphere composting comprised Bacillus (0-71.47%), Chloroplast-norank (0-47.17%), Pusillimonas (0-33.24%), Acinetobacter (0-27.98%) and unclassified Sphingobacteriaceae (0-22.62%). Linear discriminant analysis effect size showed that Firmicutes, Thermoascaceae and Actinobacteriota, which have a relationship with the decomposition of soluble organic matter and lignocellulose, were significantly enriched in bamboo sphere treatment. Canonical correspondence analysis illustrated that total organic carbon (TOC), TK, and TP were the most important environmental factors on microbial community succession in the two composting systems. Together these results suggest that bamboo sphere as a reusable amendment can shorten maturity period, improve humification degree, increase the contents of nutrient and contribute to the succession of microbial community during food waste composting. These findings provide a theoretical basis for improving the efficiency of food waste composting.


Assuntos
Compostagem , Microbiota , Eliminação de Resíduos , Alimentos , Esterco , Solo
9.
J Environ Manage ; 319: 115765, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35982566

RESUMO

The aim of this study was to explore the dynamic of microbial community and metabolic function in food waste composting amended with traditional Chinese medicine residues (TCMRs). Results suggested that TCMRs addition at up to 10% leads to a higher peak temperature (60.5 °C), germination index (GI) value (119.26%), and a greater reduction in total organic carbon (TOC) content (8.08%). 10% TCMRs significantly induced the fluctuation of bacterial community composition, as well as the fungal community in the thermophilic phase. The addition of 10% TCMRs enhanced the abundance of bacterial genera such as Acetobacter, Bacillus, and Brevundimonas, as well as fungal genera such as Chaetomium, Thermascus, and Coprinopsis, which accelerated lignocellulose degradation and humification degree. Conversely, the growth of Lactobacillus and Pseudomonas was inhibited by 10% TCMRs to weaken the acidic environment and reduce nitrogen loss. Metabolic function analysis revealed that 10% TCMRs promoted the metabolism of carbohydrate and amino acid, especially citrate cycle, glycolysis/gluconeogenesis, and cysteine and methionine metabolism. Redundancy analysis showed that the carbon to nitrogen (C/N) ratio was the most significant environmental factor influencing the dynamic of bacterial and fungal communities.


Assuntos
Compostagem , Microbiota , Eliminação de Resíduos , Bactérias/metabolismo , Carbono/metabolismo , Alimentos , Esterco , Medicina Tradicional Chinesa , Nitrogênio/metabolismo , Solo
10.
Angew Chem Int Ed Engl ; 61(46): e202212720, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36151587

RESUMO

Due to its stringent stereospecificity, D-amino acid oxidase (DAAO) has made it very easy to synthesize L-amino acids. However, the low activity of the wild-type enzyme toward unnatural substrates, such as D-glufosinate (D-PPT), restricts its application. In this study, DAAO from Rhodotorula gracilis (RgDAAO) was directly evolved using a hydrophilicity-substitution saturation mutagenesis strategy, yielding a mutant with significantly increased catalytic activity against D-PPT. The mutant displays distinct catalytic properties toward hydrophilic substrates as compared to numerous WT-DAAOs. The analysis of homology modeling and molecular dynamic simulation suggest that the extended reaction pocket with greater hydrophilicity was the reason for the enhanced activity. The current study established an enzymatic synthetic route to L-PPT, an excellent herbicide, with high efficiency, and the proposed strategy provides a new viewpoint on enzyme engineering for the biosynthesis of unnatural amino acids.


Assuntos
Aminoácidos , Aminobutiratos , Cinética , Interações Hidrofóbicas e Hidrofílicas , Aminoácidos/metabolismo , Especificidade por Substrato
11.
Phytother Res ; 35(10): 5754-5766, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34431562

RESUMO

Spinal cord injury (SCI) is a devastating neurological occurrence that usually leads to a loss of motor and sensory function in patients. Axon regeneration has been reported to be crucial for recovery after trauma to the nervous system. Morin, a natural bioflavonoid obtained from the Moraceae family, has previously been reported to exert neuroprotective effects. In our study, we investigated the protective effects of morin on PC12 cells and primary neurons treated with oxygen-glucose deprivation (OGD) and its function in an SCI model. In vitro experiments showed that treating neuronal cells with morin enhanced axonal regeneration after OGD treatment by regulating microtubule stabilization and protecting mitochondrial function. Mechanistically, morin protected neuronal cells exposed to OGD by activating the nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/heme oxygenase 1 (HO-1) pathway. An in vivo study illustrated that oral morin administration improved microtubule stability and promoted axon regeneration in SCI rats. Taken together, this study showed that treatment with morin improves functional recovery after SCI and that morin may serve as a potential agent for treating SCI.


Assuntos
Heme Oxigenase-1 , Traumatismos da Medula Espinal , Animais , Axônios , Flavonoides/farmacologia , Humanos , Fator 2 Relacionado a NF-E2 , Regeneração Nervosa , Ratos , Ratos Sprague-Dawley , Medula Espinal , Traumatismos da Medula Espinal/tratamento farmacológico
12.
BMC Microbiol ; 20(1): 106, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32354325

RESUMO

BACKGROUND: Antimonite [Sb(III)]-oxidizing bacterium has great potential in the environmental bioremediation of Sb-polluted sites. Bacillus sp. S3 that was previously isolated from antimony-contaminated soil displayed high Sb(III) resistance and Sb(III) oxidation efficiency. However, the genomic information and evolutionary feature of Bacillus sp. S3 are very scarce. RESULTS: Here, we identified a 5,436,472 bp chromosome with 40.30% GC content and a 241,339 bp plasmid with 36.74% GC content in the complete genome of Bacillus sp. S3. Genomic annotation showed that Bacillus sp. S3 contained a key aioB gene potentially encoding As (III)/Sb(III) oxidase, which was not shared with other Bacillus strains. Furthermore, a wide variety of genes associated with Sb(III) and other heavy metal (loid) s were also ascertained in Bacillus sp. S3, reflecting its adaptive advantage for growth in the harsh eco-environment. Based on the analysis of phylogenetic relationship and the average nucleotide identities (ANI), Bacillus sp. S3 was proved to a novel species within the Bacillus genus. The majority of mobile genetic elements (MGEs) mainly distributed on chromosomes within the Bacillus genus. Pan-genome analysis showed that the 45 genomes contained 554 core genes and many unique genes were dissected in analyzed genomes. Whole genomic alignment showed that Bacillus genus underwent frequently large-scale evolutionary events. In addition, the origin and evolution analysis of Sb(III)-resistance genes revealed the evolutionary relationships and horizontal gene transfer (HGT) events among the Bacillus genus. The assessment of functionality of heavy metal (loid) s resistance genes emphasized its indispensable role in the harsh eco-environment of Bacillus genus. Real-time quantitative PCR (RT-qPCR) analysis indicated that Sb(III)-related genes were all induced under the Sb(III) stress, while arsC gene was down-regulated. CONCLUSIONS: The results in this study shed light on the molecular mechanisms of Bacillus sp. S3 coping with Sb(III), extended our understanding on the evolutionary relationships between Bacillus sp. S3 and other closely related species, and further enriched the Sb(III) resistance genetic data sources.


Assuntos
Antimônio/metabolismo , Bacillus/genética , Sequenciamento Completo do Genoma/métodos , Bacillus/metabolismo , Composição de Bases , Biodegradação Ambiental , Cromossomos Bacterianos/genética , Evolução Molecular , Tamanho do Genoma , Genoma Bacteriano , Genômica , Anotação de Sequência Molecular , Filogenia , Plasmídeos/genética
13.
Ecotoxicol Environ Saf ; 205: 111174, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32853867

RESUMO

Smelting wastewater is characterized with high concentration of toxic heavy metals and high acidity, which must be properly treated before discharge. Here, bioelectrochemical system (BES) coupled with thermoelectric generator (TEG) was first demonstrated to simultaneously treat organic wastewater and smelting wastewater by utilizing the simulated waste heat that was abundant in smelting factories. By modulating the input voltage generated from simulated waste heat via TEG to 0, 1.0 and 2.0 V, almost all the Cu2+, Cd2+ and Co2+ in smelting wastewater were sequentially recovered with a respective rate of 121.17, 158.20 and 193.87 mg L-1 d-1. Cu2+ was bioelectrochemically recovered as Cu0. While, Cd2+ and Co2+ were recovered by electrodeposition as Cd(OH)2, CdCO3 or Co(OH)2 on cathodic surface. High throughput sequencing analysis showed that the microbial community of anodic biofilm was greatly shifted after successive treatment by batch-mode. Desulfovibrio (17.00%), Megasphaera (11.81%), Geobacter (10.36%) and Propionibacterium (8.64%) were predominant genera in anodic biofilm enriched from activated sludge in BES before treatment. After successive treatment by batch-mode, Geobacter (34.76%), Microbacter (8.60%) and Desulfovibrio (5.33%) were shifted as the major genera. Economic analysis revealed that it was feasible to use TEG to substitute electrical grid energy to integrate with BES for wastewater treatment. In addition, literature review indicated that it was not uncommon for the coexistence of waste heat with typical pollutants (e.g. heavy metal ions and various biodegradation-resistant organic wastes) that could be treated by BES in different kinds of factories or geothermal sites. This study provides novel insights to expand the application potentials of BES by integrating with TEG to utilize widespread waste heat.


Assuntos
Reatores Biológicos/microbiologia , Técnicas Eletroquímicas/métodos , Metais Pesados/análise , Águas Residuárias/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Fontes de Energia Bioelétrica , Biofilmes/crescimento & desenvolvimento , Eletrodos , Geobacter/crescimento & desenvolvimento , Temperatura Alta , Esgotos/microbiologia
14.
Bioprocess Biosyst Eng ; 43(11): 1951-1960, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32500436

RESUMO

In this study, the roles of extracellular polymeric substances (EPSs) excreted by Pandoraea sp. XY-2 in the removal of tetracycline (TC) were investigated. In the early stage, TC in the solution was mainly removed by the adsorption of EPSs, which accounted for 20% of TC. Thereafter, large amount of TC was transported into the intracellular and biodegraded. EPSs was extracted and the contents of polyprotein and polysaccharides reached their maximum values (30.84 mg/g and 11.15 mg/g) in the first four days. Fourier transform infrared spectroscopy analysis revealed that hydroxyl, methylidyne, methylene and amide I groups in EPSs participated in the adsorption of TC. Furthermore, three-dimensional excitation-emission matrix fluorescence spectroscopy analysis revealed that TC caused the quenching of EPSs fluorescent groups. The quenching mechanism was attributed to static quenching and protein-like substances in EPSs from Pandoraea sp. XY-2 dominated the TC adsorption process. Bioinformatic analysis of Pandoraea sp. XY-2 genome identified multiple genes involved in exopolysaccharide synthesis and EPSs formation. The insights gained in this study might provide a better understanding about the adsorption process of EPSs in tetracycline-contaminated environment.


Assuntos
Burkholderiaceae/metabolismo , Matriz Extracelular de Substâncias Poliméricas/química , Polímeros/química , Poliproteínas/química , Polissacarídeos/química , Espectrometria de Fluorescência/métodos , Tetraciclina/química , Tetraciclina/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Antibacterianos/química , Biotecnologia/métodos , Metano/análogos & derivados , Esgotos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Fatores de Tempo , Poluentes Químicos da Água/química , Purificação da Água
15.
Bioprocess Biosyst Eng ; 43(1): 153-167, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31549306

RESUMO

Heavy metal resistant bacteria are of great interest because of their potential use in bioremediation. Understanding the survival and adaptive strategies of these bacteria under heavy metal stress is important for better utilization of these bacteria in remediation. The objective of this study was to investigate the role of bacterial extracellular polymeric substance (EPS) in detoxifying against different heavy metals in Bacillus sp. S3, a new hyper antimony-oxidizing bacterium previously isolated from contaminated mine soils. The results showed that Bacillus sp. S3 is a multi-metal resistant bacterial strain, especially to Sb(III), Cu(II) and Cr(VI). Toxic Cd(II), Cr(VI) and Cu(II) could stimulate the secretion of EPS in Bacillus sp. S3, significantly enhancing the adsorption and detoxification capacity of heavy metals. Both Fourier transform infrared spectroscopy (FTIR) and three-dimensional excitation-emission matrix (3D-EEM) analysis further confirmed that proteins were the main compounds of EPS for metal binding. In contrast, the EPS production was not induced under Sb(III) stress. Furthermore, the TEM-EDX micrograph showed that Bacillus sp. S3 strain preferentially transported the Sb(III) to the inside of the cell rather than adsorbed it on the extracellular surface, indicating intracellular detoxification rather than extracellular EPS precipitation played an important role in microbial resistance towards Sb(III). Together, our study suggests that the toxicity response of EPS to heavy metals is associated with difference in EPS properties, metal types and corresponding environmental conditions, which is likely to contribute to microbial-mediated remediation.


Assuntos
Bacillus/metabolismo , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Metais Pesados/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Solo , Biodegradação Ambiental
16.
J Ind Microbiol Biotechnol ; 46(8): 1113-1127, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31165968

RESUMO

Extremely thermoacidophilic Crenarchaeota belonging to the order Sulfolobales, such as Metallosphaera sedula, are metabolically versatile and of great relevance in bioleaching. However, the impacts of extreme thermoacidophiles propagated with different energy substrates on subsequent bioleaching of refractory chalcopyrite remain unknown. Transcriptional responses underlying their different bioleaching potentials are still elusive. Here, it was first showed that M. sedula inocula propagated with typical energy substrates have different chalcopyrite bioleaching capabilities. Inoculum propagated heterotrophically with yeast extract was deficient in bioleaching; however, inoculum propagated mixotrophically with chalcopyrite, pyrite or sulfur recovered 79%, 78% and 62% copper, respectively, in 12 days. Compared with heterotrophically propagated inoculum, 937, 859 and 683 differentially expressed genes (DEGs) were identified in inoculum cultured with chalcopyrite, pyrite or sulfur, respectively, including upregulation of genes involved in bioleaching-associated metabolism, e.g., Fe2+ and sulfur oxidation, CO2 fixation. Inoculum propagated with pyrite or sulfur, respectively, shared 480 and 411 DEGs with chalcopyrite-cultured inoculum. Discrepancies on repertories of DEGs that involved in Fe2+ and sulfur oxidation in inocula greatly affected subsequent chalcopyrite bioleaching rates. Novel genes (e.g., Msed_1156, Msed_0549) probably involved in sulfur oxidation were first identified. This study highlights that mixotrophically propagated extreme thermoacidophiles especially with chalcopyrite should be inoculated into chalcopyrite heaps at industrial scale.


Assuntos
Cobre/metabolismo , Sulfolobaceae/metabolismo , Processos Heterotróficos , Ferro/metabolismo , Oxirredução , Sulfetos/metabolismo , Sulfolobaceae/genética , Enxofre/metabolismo
17.
Prep Biochem Biotechnol ; 49(1): 21-29, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30621500

RESUMO

Psidium guajava leaves are rich in health-promoting flavonoids compounds. For better utilization of the resource, the ultrasound-assisted aqueous extraction was investigated using Box-Behnken design under response surface methodology. A high coefficient of determination (R2 = 97.8%) indicated good agreement between the experimental and predicted values of flavonoids yield. The optimal extraction parameters to obtain the highest total flavonoids yield were ultrasonic power of 407.41 W, extraction time of 35.15 min, and extraction temperature of 72.69 °C. The average extraction rate of flavonoids could reach 5.12% under the optimum conditions. Besides, HPLC analysis and field emission scanning electron microscopy indicated that the ultrasonic treatment did not change the main component of flavonoids during extraction process and the higher flavonoids content was attributed by the disruption of the cell walls of guava particles. Thus, the extraction method could be applied successfully for large-scale extraction of total flavonoids from guava leaves.


Assuntos
Flavonoides/isolamento & purificação , Extratos Vegetais/química , Folhas de Planta/química , Psidium/química , Sonicação/normas , Cromatografia Líquida de Alta Pressão , Custos e Análise de Custo , Flavonoides/análise , Temperatura Alta , Microscopia Eletrônica de Varredura , Sonicação/economia , Propriedades de Superfície , Fatores de Tempo , Água
18.
Curr Microbiol ; 75(7): 818-826, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29464360

RESUMO

Iron-oxidizing Acidithiobacillus spp. are applied worldwide in biomining industry to extract metals from sulfide minerals. They derive energy for survival through Fe2+ oxidation and generate Fe3+ for the dissolution of sulfide minerals. However, molecular mechanisms of their iron oxidation still remain elusive. A novel two-cytochrome-encoding gene cluster (named tce gene cluster) encoding a high-molecular-weight cytochrome c (AFE_1428) and a c4-type cytochrome c552 (AFE_1429) in A. ferrooxidans ATCC 23270 was first identified in this study. Bioinformatic analysis together with transcriptional study showed that AFE_1428 and AFE_1429 were the corresponding paralog of Cyc2 (AFE_3153) and Cyc1 (AFE_3152) which were encoded by the extensively studied rus operon and had been proven involving in ferrous iron oxidation. Both AFE_1428 and AFE_1429 contained signal peptide and the classic heme-binding motif(s) as their corresponding paralog. The modeled structure of AFE_1429 showed high resemblance to Cyc1. AFE_1428 and AFE_1429 were preferentially transcribed as their corresponding paralogs in the presence of ferrous iron as sole energy source as compared with sulfur. The tce gene cluster is highly conserved in the genomes of four phylogenetic-related A. ferrooxidans strains that were originally isolated from different sites separated with huge geographical distance, which further implies the importance of this gene cluster. Collectively, AFE_1428 and AFE_1429 involve in Fe2+ oxidation like their corresponding paralog by integrating with the metalloproteins encoded by rus operon. This study provides novel insights into the Fe2+ oxidation mechanism in Fe2+-oxidizing A. ferrooxidans ssp.


Assuntos
Acidithiobacillus/metabolismo , Proteínas de Bactérias/genética , Compostos Ferrosos/metabolismo , Família Multigênica , Acidithiobacillus/genética , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Citocromos c/metabolismo , Regulação Bacteriana da Expressão Gênica , Dados de Sequência Molecular , Óperon , Oxirredução , Filogenia , Alinhamento de Sequência , Enxofre/metabolismo
19.
Curr Microbiol ; 71(1): 62-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25941022

RESUMO

Sulfate adenylyltransferase gene and 4Fe-4S ferredoxin gene are the key genes related to sulfur and iron oxidations during bioleaching system, respectively. In order to better understand the bioleaching and microorganism synergistic mechanism in chalcopyrite bioleaching by mixed culture of moderate thermophiles, expressions of the two energy metabolism genes and community dynamics of free and attached microorganisms were investigated. Specific primers were designed for real-time quantitative PCR to study the expression of these genes. Real-time PCR results showed that sulfate adenylyltransferase gene was more highly expressed in Sulfobacillus thermosulfidooxidans than that in Acidithiobacillus caldus, and expression of 4Fe-4S ferredoxin gene was higher in Ferroplasma thermophilum than that in S. thermosulfidooxidans and Leptospirillum ferriphilum. The results indicated that in the bioleaching system of chalcopyrite concentrate, sulfur and iron oxidations were mainly performed by S. thermosulfidooxidans and F. thermophilum, respectively. The community dynamics results revealed that S. thermosulfidooxidans took up the largest proportion during the whole period, followed by F. thermophilum, A. caldus, and L. ferriphilum. The CCA analysis showed that 4Fe-4S ferredoxin gene expression was mainly affected (positively correlated) by high pH and elevated concentration of ferrous ion, while no factor was observed to prominently influence the expression of sulfate adenylyltransferase gene.


Assuntos
Biota , Cobre/metabolismo , Ferredoxinas/genética , Perfilação da Expressão Gênica , Microbiologia do Solo , Sulfato Adenililtransferase/genética , Ferredoxinas/biossíntese , Concentração de Íons de Hidrogênio , Ferro/metabolismo , Oxirredução , Reação em Cadeia da Polimerase em Tempo Real , Sulfato Adenililtransferase/biossíntese , Enxofre/metabolismo
20.
Appl Environ Microbiol ; 80(2): 741-50, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24242252

RESUMO

Three kinds of samples (acid mine drainage, coal mine wastewater, and thermal spring) derived from different sites were collected in China. Thereafter, these samples were combined and then inoculated into a basal salts solution in which different substrates (ferrous sulfate, elemental sulfur, and chalcopyrite) served as energy sources. After that, the mixed cultures growing on different substrates were pooled equally, resulting in a final mixed culture. After being adapted to gradually increasing pulp densities of chalcopyrite concentrate by serial subculturing for more than 2 years, the final culture was able to efficiently leach the chalcopyrite at a pulp density of 20% (wt/vol). At that pulp density, the culture extracted 60.4% of copper from the chalcopyrite in 25 days. The bacterial and archaeal diversities during adaptation were analyzed by denaturing gradient gel electrophoresis and constructing clone libraries of the 16S rRNA gene. The results show that the culture consisted mainly of four species, including Leptospirillum ferriphilum, Acidithiobacillus caldus, Sulfobacillus acidophilus, and Ferroplasma thermophilum, before adapting to a pulp density of 4%. However, L. ferriphilum could not be detected when the pulp density was greater than 4%. Real-time quantitative PCR was employed to monitor the microbial dynamics during bioleaching at a pulp density of 20%. The results show that A. caldus was the predominant species in the initial stage, while S. acidophilus rather than A. caldus became the predominant species in the middle stage. F. thermophilum accounted for the greatest proportion in the final stage.


Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Reatores Biológicos/microbiologia , Cobre/isolamento & purificação , Microbiologia Industrial/métodos , Acidithiobacillus/genética , Acidithiobacillus/metabolismo , Adaptação Fisiológica , Archaea/genética , Bactérias/genética , Biodiversidade , China , Cobre/metabolismo , Eletroforese em Gel de Gradiente Desnaturante , Compostos Ferrosos/metabolismo , Consórcios Microbianos , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S , Enxofre/metabolismo , Thermoplasmales/genética , Thermoplasmales/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA