Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Plant Dis ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916906

RESUMO

Tobacco (Nicotiana tabacum L.) is one of the most widely cultivated industrial crops worldwide. From April to July 2023, about 40% of tobacco seedlings in the greenhouse exhibited irregular taupe lesions in Zhengzhou, Henan Province, China. At an early stage of the lesion development, light grey spots with the diameter of 1-2 mm were observed, these spots gradually expanded and connected into large irregular lesions causing leaf wrinkling or withered. A total of 12 infected leaf tissues were sterilized with 75% ethanol for 45 s, rinsed three times in sterilized water and then plated on potato dextrose agar (PDA) medium for 10 days at 28°C in darkness. Seven fungal colonies that show the similar appearance were isolated and three of them (MB-1, MB-2 and MB-3) were used for subsequent identification. Colonies of these strains on PDA with loose mycelium and orange-red pigment on the underside, white aerial in the center and light yellow hyphae near the periphery, formed in the shape of a concentric ring pattern. Ascomata appeared from the 14th day, were black, spherical or ellipsoid with walls of textura angularis, and size was 53.8-101.1 µm × 50.3-104.3 µm (n=30). Terminal hairs were brown and straight, gradually tapering toward the tips. Asci clavate or fusiform, spore bearing part 16.2-29.2 × 7.3-11.4 µm (n=21), with 8 irregularly arranged ascospores, evanescent. Ascospores are brown at maturity, biapiculate, navicular or fusiform shapes with size of 8.7-12.8 µm × 4.8-6.9 µm (n=100), and more or less inaequilateral. Single spore strains derived from these strains exhibited the morphological features consistent with the original strains. The morphological characteristics of the fungus were consistent with the description of Arcopilus aureus (Chivers) X.W. Wang & Samson (= Chaetomium aureum Chivers) (Lee et al. 2019). Furthermore, the sequences of RPB2 region were amplified from these strains and the result sequences (GenBank accession no. OR513105-OR513108) all showed a 100.00% identity with A. aureus strain CBS 538.73 (GenBank accession no. KX976807.1). It was reported that the RPB2 gene was efficient in discriminating Arcopilus species (Tavares et al. 2022), thus a maximum likelihood (ML) phylogenetic tree based on the RPB2 gene sequences were constructed using MEGA 7.0 with 1000 replications of bootstrapping (Kumar et al. 2016), which revealed that these strains formed a well-supported clade with A. aureus strains of (CBS 153.52 and CBS538.73) (Wang et al. 2022). Pathogenicity analysis were performed on healthy flue-cured tobacco seedlings leaves (cv Y85) by using mycelial agar plugs (5 mm in diameter) and spore suspension (1×106 spores/mL), and the PDA plugs and sterile water were used for control group, respectively. Tobacco seedlings were incubated in a 25°C and 70% RH growth chamber. After seven days, the leaves showed obvious symptoms, with taupe lesions and yellow halos on the periphery, whereas no symptoms were found on the control leaves. The A. aureu was then reisolated from inoculated diseased leaves. Previously, A. aureus has been only reported to cause leaf black disease on Pseudostellaria heterophylla in China (Yuan et al. 2021). To our knowledge, this is the first reported of A. aureus causing tobacco leaf grey spot worldwide. Arcopilus aureus has been reported as a plant biocontrol fungus (Wang et al. 2013). However, due to the potential serious damage in tobacco seedlings caused by this fungus, the use of A. aureus as a plant biocontrol agent needs to be given more attention, and disease control measures of this pathogen should be developed.

2.
Pestic Biochem Physiol ; 195: 105580, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37666605

RESUMO

Red swamp crayfish, Procambarus clarkii, is a globally invasive species, which has caused great damage to biodiversity, agriculture, and fishing. Therefore, the development of effective management methods, such as pheromone control, is necessary for biological control and biodiversity protection. However, the components of P. clarkii sex pheromones have not yet been explored, and the chemosensory mechanism of the P. clarkii antennae after stimulation by sex pheromone also remains unknown. In this study, we isolated and identified the candidate bioactive component of the female P. clarkii sex pheromone using ultrafiltration centrifugation, semi-preparative liquid phase separation and omics technologies and conducted bioassays to determine its attraction ability. Meanwhile, RNA-Seq technology was used to analyze the potential chemosensory mechanism of antennae. Our results indicated that the male P. clarkii were uniaxially attracted to the female crude conditioned water (FCW), medium fraction (MF, isolated by ultrafiltration centrifugation), and preparative fragment 6 of females (PFF6, isolated by semi-preparative liquid phase separation). Metabolomic analysis revealed the presence of 18 differential metabolites between the PFF6 and PFM6 samples, among which 15 were significantly upregulated in the PFF6 sample. Bioassay test also showed that mestranol, especially at concentrations of 10-5-10-2 mol∙l-1, could significantly attract P. clarkii males; therefore, mestranol was identified as the candidate sex pheromone component of P. clarkii females. Furthermore, RNA-Seq results showed that most differentially expressed genes (DEGs) enriched in lipid metabolism and signal transduction pathways were up-regulated in P. clarkii males. In addition, high expressions of Ca2+-binding protein and ion transporting ATPases may enhance the sensitivity of the antennae of P. clarkii males towards sex pheromones. Our study provides data on P. clarkii sex pheromone composition and reveals the molecular mechanism of sex pheromone response in P. clarkii. Moreover, our study provides a referable method for the isolation of candidate bioactive molecules from the P. clarkii sex pheromone.


Assuntos
Atrativos Sexuais , Feminino , Masculino , Animais , Atrativos Sexuais/farmacologia , Astacoidea , Mestranol , Feromônios , Adenosina Trifosfatases
3.
Cell Biol Int ; 44(1): 117-126, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31329335

RESUMO

MiR-214 has been reported to act as a tumor suppressor or oncogene involved in various malignancies. However, the biological functions and molecular mechanisms of miR-214 in hepatocellular carcinoma (HCC) still remain unclear. Previous studies suggest that pyruvate dehydrogenase kinase 2 (PDK2) and plant homeodomain finger protein 6 (PHF6) may be involved in some tumor cell proliferation and migration. Therefore, we studied the relationship between PDK2/PHF6 and miR-214. The expression of miR-214, PDK2, and PHF6 was determined by quantitative real-time polymerase chain reaction in HCC tissues and cell lines. The Luciferase reporter assay was used to confirm the interaction between miR-214 and PDK2/PHF6. Cell proliferation, apoptosis, and migration were evaluated by cell counting kit-8 assay, flow cytometry, and transwell assay, respectively. The expressions levels of α-smooth muscle actin (α-SMA) and E-cadherin were detected via immunofluorescence assay. Here, we found that the expression of miR-214 decreased in HCC and was negatively correlated with PDK2 and PHF6. Moreover, PDK2 and PHF6 were the direct targets of miR-214 in HCC cells. Functional analysis showed that knockdown of PDK2 or PHF6 as well as miR-214 overexpression significantly suppressed cell proliferation and migration in HCC cells. Furthermore, we found that the suppression of cell proliferation and migration through PDK2 or PHF6 knockdown could be partially reversed by miR-214 down-regulation. Moreover, we demonstrated a decrease of mesenchymal cell marker α-SMA and increase of the epithelial marker E-cadherin after miR-214 overexpression, PDK2 knockdown or PHF6 knockdown, respectively, which also suggested that cell proliferation and migration were suppressed. Additionally, lactate and pyruvic acid production experiments confirmed miR-214 could suppress the HCC cell lactate and pyruvic acid levels by down-regulating PDK2/PHF6. In conclusion, MiR-214 may act as a tumor suppressor gene, presenting its suppressive role in cell proliferation and migration of HCC cells by targeting PDK2 and PHF6, and might provide a potential therapy target for patients with HCC.

4.
Sci Rep ; 14(1): 11347, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762582

RESUMO

In order to increase the precision and effectiveness of power system analysis and fault diagnosis, this study aims to assess the power systems in the energy sector while utilizing artificial intelligence (AI) and environmental social governance (ESG). First, the ESG framework is presented in this study to fully account for the effects of the power system on the environment, society, and governance. Second, to coordinate the operation of various components and guarantee the balance and security of the power system, the CNN-BiLSTM power load demand forecasting model is built by merging convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM). Lastly, the particle swarm optimization (PSO) algorithm is used to introduce and optimize the deep belief network (DBN), and a power grid fault diagnostic model is implemented using the PSO technique and DBN. The model's performance is assessed through experimentation. The outcomes demonstrate how the CNN-BiLSTM algorithm significantly increases forecasting accuracy while overcoming the drawback of just having one dimension of power load data. The values of 0.054, 0.076, and 0.102, respectively, are the root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE). Effective processing of large-scale nonlinear data is achieved in the area of power grid fault diagnosis, resulting in prediction accuracy of 96.22% and prediction time of only 129.94 s. This is clearly better than other algorithms and increases fault prediction efficiency and accuracy. Consequently, the model presented in this study not only produces impressive results in fault diagnosis and load demand forecasting, but also advances the field of power system analysis in the energy industry and offers a significant amount of support for the sustainable and intelligent growth of the energy industry.

5.
Adv Healthc Mater ; 13(7): e2302606, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37987462

RESUMO

Induction of pyroptosis can promote anti-PD-L1 therapeutic efficacy due to the release of pro-inflammatory cytokines, but current approaches can cause off target toxicity. Herein, a phthalocyanine-conjugated mesoporous silicate nanoparticle (PMSN) is designed for amplifying sonodynamic therapy (SDT) to augment oxidative stress and induce robust pyroptosis in tumors. The sub-10 nm diameter structure and c(RGDyC)-PEGylated modification enhance tumor targeting and renal clearance. The unique porous architecture of PMSN doubles ROS yield and enhances pyroptotic cell populations in tumors (25.0%) via a cavitation effect. PMSN-mediated SDT treatment efficiently reduces tumor mass and suppressed residual tumors in treated and distant sites by synergizing with PD-L1 blockade (85.93% and 77.09%, respectively). Furthermore, loading the chemotherapeutic, doxorubicin, into PMSN intensifies SDT-pyroptotic effects and increased efficacy. This is the first report of the use of SDT regimens to induce pyroptosis in liver cancer. This noninvasive and effective strategy has potential for clinical translation.


Assuntos
Neoplasias Hepáticas , Nanopartículas , Terapia por Ultrassom , Humanos , Piroptose , Antígeno B7-H1 , Linhagem Celular Tumoral , Nanopartículas/química , Imunoterapia
6.
Med Rev (2021) ; 3(1): 31-48, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37724107

RESUMO

Microbubbles have been the earliest and most widely used ultrasound contrast agents by virtue of their unique features: such as non-toxicity, intravenous injectability, ability to cross the pulmonary capillary bed, and significant enhancement of echo signals for the duration of the examination, resulting in essential preclinical and clinical applications. The use of microbubbles functionalized with targeting ligands to bind to specific targets in the bloodstream has further enabled ultrasound molecular imaging. Nevertheless, it is very challenging to utilize targeted microbubbles for molecular imaging of extravascular targets due to their size. A series of acoustic nanomaterials have been developed for breaking free from this constraint. Especially, biogenic gas vesicles, gas-filled protein nanostructures from microorganisms, were engineered as the first biomolecular ultrasound contrast agents, opening the door for more direct visualization of cellular and molecular function by ultrasound imaging. The ordered protein shell structure and unique gas filling mechanism of biogenic gas vesicles endow them with excellent stability and attractive acoustic responses. What's more, their genetic encodability enables them to act as acoustic reporter genes. This article reviews the upgrading progresses of ultrasound contrast agents from microbubbles to biogenic gas vesicles, and the opportunities and challenges for the commercial and clinical translation of the nascent field of biomolecular ultrasound.

7.
PeerJ ; 10: e13245, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402093

RESUMO

Background: Gut microbiota play a critical role in nutrition absorption and environmental adaptation and can affect the biological characteristics of host animals. The invasive golden apple snail (Pomacea canaliculata) and native Chinese mud snail (Cipangopaludina chinensis) are two sympatric freshwater snails with similar ecological niche in southern China. However, gut microbiota comparison of interspecies remains unclear. Comparing the difference of gut microbiota between the invasive snail P. canaliculata and native snail C. chinensis could provide new insight into the invasion mechanism of P.canaliculata at the microbial level. Methods: Gut samples from 20 golden apple snails and 20 Chinese mud snails from wild freshwater habitats were collected and isolated. The 16S rRNA gene V3-V4 region of the gut microbiota was analyzed using high throughput Illumina sequencing. Results: The gut microbiota dominantly composed of Proteobacteria, Bacteroidetes, Firmicutes and Epsilonbacteraeota at phylum level in golden apple snail. Only Proteobacteria was the dominant phylum in Chinese mud snail. Alpha diversity analysis (Shannon and Simpson indices) showed there were no significant differences in gut microbial diversity, but relative abundances of the two groups differed significantly (P < 0.05). Beta diversity analysis (Bray Curtis and weighted UniFrac distance) showed marked differences in the gut microbiota structure (P < 0.05). Unique or high abundance microbial taxa were more abundant in the invasive snail compared to the native form. Functional prediction analysis indicated that the relative abundances of functions differed significantly regarding cofactor prosthetic group electron carrier and vitamin biosynthesis, amino acid biosynthesis, and nucleoside and nucleotide biosynthesis (P < 0.05). These results suggest an enhanced potential to adapt to new habitats in the invasive snail.


Assuntos
Microbioma Gastrointestinal , Animais , Humanos , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , População do Leste Asiático , Caramujos/genética , Alimentos
8.
Aging (Albany NY) ; 14(14): 5908-5924, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35896012

RESUMO

OBJECTIVES: Cancer stem cells (CSCs) comprise a small population of cells in cancerous tumors and play a critical role in tumor resistance to chemotherapy. miRNAs have been reported to enhance the sensitivity of pancreatic cancer to chemotherapy. However, the underlying molecular mechanism requires better understanding. METHODS: Cell viability and proliferation were examined with CCK8 assays. Quantitative real-time polymerase chain reaction was executed to assess mRNA expression. StarBase database was used to select the target genes of miRNA, which were further affirmed by dual luciferase assay. Transwell assay was used to analyze cell invasion and migration. RESULTS: We proved that miR-497 could be obviously downregulated in pancreatic cancer tissues and CSCs from Aspc-1 and Bxpc-3 cells. In addition, inhibition of miR-497 evidently accelerated pancreatic CSC gemcitabine resistance, migration and invasion. Moreover, we revealed that nuclear factor kappa B 1 (NFκB1) was prominently upregulated in pancreatic cancer tissues and pancreatic CSCs, and NFκB1 was also identified as a direct target of miR-497. Furthermore, we demonstrated that overexpression of NFκB1 could also notably promote the viability, migration, and invasion of gemcitabine-treated pancreatic CSCs, but this effect could be partially abolished by miR-497 overexpression. CONCLUSIONS: Those findings suggest that miR-497 overexpression could suppress gemcitabine resistance and the metastasis of pancreatic CSCs and non-CSCs by directly targeting NFκB1.


Assuntos
MicroRNAs , Neoplasias Pancreáticas , Linhagem Celular Tumoral , Proliferação de Células/genética , Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Gencitabina , Neoplasias Pancreáticas
9.
Signal Transduct Target Ther ; 7(1): 64, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35228516

RESUMO

Targeted photodynamic therapy (TPDT) is considered superior to conventional photodynamic therapy due to the enhanced uptake of photosensitizers by tumor cells. In this paper, an amphiphilic and asymmetric cyclo-Arg-Gly-Asp-d-Tyr-Lys(cRGDyK)-conjugated silicon phthalocyanine (RSP) was synthesized by covalently attaching the tripeptide Arg-Gly-Asp (RGD) to silicone phthalocyanine in the axial direction for TPDT of triple-negative breast cancer (TNBC). RSP was characterized by spectroscopy as a monomer in physiological buffer. Meanwhile, the modification of RSP with RGD led to a high accumulation of the photosensitizer in TNBC cells overexpressing ανß3 integrin receptors which can bind RGD, greatly reducing the risk of phototoxicity. In vitro photodynamic experiments showed that the IC50 of RSP was 295.96 nM in the 4T1 cell line, which caused significant apoptosis of the tumor cells. The tumor inhibition rate of RSP on the orthotopic murine TNBC achieved 74%, while the untargeted photosensitizer exhibited no obvious tumor inhibition. Overall, such novel targeted silicon phthalocyanine has good potential for clinical translation due to its simple synthesis route, strong targeting, and high therapeutic efficacy for TPDT treatment of TNBC.


Assuntos
Fotoquimioterapia , Neoplasias de Mama Triplo Negativas , Animais , Linhagem Celular Tumoral , Humanos , Isoindóis , Camundongos , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Fotoquimioterapia/métodos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo
10.
Pest Manag Sci ; 77(10): 4669-4679, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34116584

RESUMO

BACKGROUND: Sanguinarine (SAN) is a benzophenanthridine alkaloid that broadly targets a range of pathways in mammalian and fungal cells. In this study we set out to explore the molecular mechanism of sanguinarine inhibition of the fungal development and pathogenicity of Magnaporthe oryzae with the hope that sanguinarine will bolster the development of antiblast agents. RESULTS: We found that the fungus exhibited a significant reduction in vegetative growth and hyphal melanization while the spores produced long germ tubes on the artificial hydrophobic surface characteristic of a defect in thigmotropic sensing when exposed to 4, 8 and 0.5 µm sanguinarine, respectively. Consistent with these findings, we observed that the genes involved in melanin biosynthesis and the fungal hydrophobin MoMPG1 were remarkably suppressed in mycelia treated with 8 µm sanguinarine. Additionally, sanguinarine inhibited appressorium formation at a dose of 1.0 µm and this defect was restored by supplementing 5 mM of exogenous cAMP. By qRT-PCR assay we found cAMP pathway signalling genes such as MoCAP1 and MoCpkA were significantly repressed whereas MoCDTF1 and MoSOM1 were upregulated in sanguinarine-treated strains. Furthermore, we showed that sanguinarine does not selectively inhibit vegetative growth and appressorium formation of Guy11 but also other strains of M. oryzae. Finally, treatment of sanguinarine impaired the appressorium-mediated penetration and pathogenicity of M. oryzae in a dose-dependent manner. CONCLUSION: Based on our results we concluded that sanguinarine is an attractive antimicrobial candidate for fungicide development in the control of rice blast disease. © 2021 Society of Chemical Industry.


Assuntos
Magnaporthe , Oryza , Ascomicetos , Benzofenantridinas/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Isoquinolinas , Oryza/metabolismo , Doenças das Plantas , Virulência
11.
Cancer Biother Radiopharm ; 34(4): 245-251, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30888215

RESUMO

Background: The plant homeodomain finger 6 (PHF6) was originally identified as single gene mutated in Börjeson-Forssman-Lehmann syndrome, which was reported to be a tumor suppressor in T-cell acute lymphoblastic leukemia. However, the biological function of PHF6 in hepatocellular carcinoma (HCC) has been poorly characterized. Materials and Methods: In this study, we first determined the mRNA levels of PHF6 in HCC tissues and adjacent normal tissues using quantitative real-time PCR. Then the expression of PHF6 was knocked down in HCC cell lines (HepG2, SMMC-7721, and Bel-7402) by siRNA transfection. A series of functional experiments, including EdU proliferation assay, colony formation assay, and Transwell assay, were performed in HCC cells. Western blot analysis was used to detect the expression of PHF6, E-cadherin, and Vimentin. Results: We found that PHF6 was significantly elevated in HCC tissues and positively correlated with TNM stage, differentiation, and lymph node metastasis. Silencing PHF6 significantly inhibited cell proliferation, colony formation, and migration in HCC cells. Furthermore, silencing PHF6 obviously increased E-cadherin and decreased Vimentin expression. Conclusions: These findings suggest that PHF6 plays a positive role in the growth of HCC cells, and targeting PHF6 could serve as a promising therapeutic strategy for human HCC.


Assuntos
Carcinoma Hepatocelular/patologia , Proteínas de Transporte/metabolismo , Neoplasias Hepáticas/patologia , Metástase Linfática/patologia , Antígenos CD/metabolismo , Caderinas/metabolismo , Proteínas de Transporte/genética , Movimento Celular , Proliferação de Células , Técnicas de Silenciamento de Genes , Células Hep G2 , Humanos , Masculino , Estadiamento de Neoplasias , RNA Interferente Pequeno/metabolismo , Proteínas Repressoras , Regulação para Cima , Vimentina/metabolismo
12.
Funct Plant Biol ; 46(1): 30-43, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-30939256

RESUMO

Chilling stress increases the amount of polyphenols, especially lignin, which protects tobacco (Nicotiana tabacum L. cv. k326) from chilling stress. To clarify the molecular biosynthesis mechanism of the key representative compounds, specifically lignin, RNA sequencing and ultra-high pressure liquid chromatography coupled to quadrupole-time of flight mass spectrometry technologies were used to construct transcriptomic and metabolomic libraries from the leaves of tobacco plants subjected to normal (25°C) and chilling (4°C) temperature treatments. Transcriptomic libraries from the different samples were sequenced, generating more than 40million raw reads. Among nine samples, metabolomic analysis identified a total of 97 encoding enzymes that function in the key steps of pathways related to polyphenol biosynthesis, where 42 metabolites were also located. An integrated analysis of metabolic and transcriptomic data revealed that most of the intermediate metabolites and enzymes related to lignin biosynthesis were synthesised in the leaves under chilling stress, which suggests that the biosynthesis of lignin plays an important role in the response of tobacco leaves to cold temperatures. In addition, the cold insensitivity of chalcone synthase genes might be considered to be an important rate-limiting factor in the process of precursor substance flow to flavonoid biosynthesis under chilling stress. Furthermore, the upregulated expression of phenylalanine ammonia lyase (PAL), hydroxycinnamoyl transferase (HCT) and cinnamyl-alcohol dehydrogenase (CAD) under chilling stress is the key to an increase in lignin synthesis. This study provides a hypothetical basis for the screening of new active metabolites and the metabolic engineering of polyphenols in tobacco.


Assuntos
Redes e Vias Metabólicas , Nicotiana/metabolismo , Polifenóis/biossíntese , Temperatura Baixa , Metabolômica , RNA de Plantas , Análise de Sequência de RNA , Estresse Fisiológico , Transcriptoma
13.
J Cancer Res Clin Oncol ; 143(6): 981-990, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28271214

RESUMO

PURPOSE: Long non-coding RNA (LncRNA) urothelial carcinoma-associated 1 (UCA1) is reported to be dysregulated in hepatocellular carcinoma (HCC) progression. However, the functions of UCA1 in HCC still need further study. The aim is to detect the role of UCA1 involving in HCC cells proliferation and invasion, and epithelial-mesenchymal transition (EMT). METHODS: The quantitative real-time PCR was used to detect the UCA1 and miR-203 expression levels in 60 cases' HCC tissues and adjacent normal tissues. Western blotting analysis was performed to detect the EMT markers E-cadherin, Vimentin and transcription factor Snail1, Snail2 expression. Luciferase reporter assay, RNA immunoprecipitation (RIP) and pull-down assays were used to evaluate whether miR-203 was a target of UCA1. RESULTS: Our results showed that UCA1 was markedly upregulated in HCC tissues and higher UCA1 expression in HCC was positively associated with tumor size, vascular invasion and American Joint Committee on Cancer (AJCC) stage (P < 0.05). Furthermore, gain-of-function and loss-of-function analysis showed that UCA1 knockdown inhibited HCC cells proliferation and invasion in vitro and xenograft tumour growth in vivo. Moreover, UCA1 overexpression promoted cell epithelial-mesenchymal transition (EMT) in HCC via effectively sponging to miR-203 and thereby activating the expression of transcription factor Snail2. CONCLUSIONS: Our results identified that UCA1/miR-203/Snail2 pathway might involve in HCC progression. Inhibition of UCA1 acted as a promising therapeutic target for HCC patients.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , MicroRNAs/genética , RNA Longo não Codificante/fisiologia , Fatores de Transcrição da Família Snail/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Carcinoma Hepatocelular/patologia , Proliferação de Células/genética , Progressão da Doença , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA