Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39180381

RESUMO

In order to investigate the regularity of fecal microorganisms changes in Landrace × Large White × Duroc (DLY) and Diqing Tibetan pigs (TP) induced by dietary fiber, and further explore the buffering effect of different intestinal flora structures on dietary stress. DLY (n = 15) and TP (n = 15) were divided into two treatments. Then, diet with 20% neutral detergent fiber (NDF) was supplemented for 9 days. Our results showed that the feed conversion efficiency of TP was significantly higher (p < 0.05) than that of DLY. The fecal microorganisms shared by the two groups gradually increased with the feeding cycle. In addition, the dispersion of Shannon, Simpson, ACE and Chao of TP decreased. Also, we found that the fecal microorganisms of TP (R2 = 0.2089, p < 0.01) and DLY (R2 = 0.3982, p < 0.01) showed significant differences in different feeding cycles. With the prolongation of feeding cycle, the similarity of fecal microbial composition between DLY and TP increased. Our study strongly suggests that the complex environment and diet structure have shaped the unique gut microbiota of TP, which plays a vital role in the buffering effect of high-fiber diets.

2.
Eur J Nutr ; 62(7): 2873-2890, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37392244

RESUMO

BACKGROUND AND AIMS: Amino acids (AAs) not only constitute milk protein but also stimulate milk synthesis through the activation of mTORC1 signaling, but which amino acids that have the greatest impact on milk fat and protein synthesis is still very limited. In this study, we aimed to identify the most critical AAs involved in the regulation of milk synthesis and clarify how these AAs regulate milk synthesis through the G-protein-coupled receptors (GPCRs) signaling pathway. METHODS: In this study, a mouse mammary epithelial cell line (HC11) and porcine mammary epithelial cells (PMECs) were selected as study subjects. After treatment with different AAs, the amount of milk protein and milk fat synthesis were detected. Activation of mTORC1 and GPCRs signaling induced by AAs was also investigated. RESULTS: In this study, we demonstrate that essential amino acids (EAAs) are crucial to promote lactation by increasing the expression of genes and proteins related to milk synthesis, such as ACACA, FABP4, DGAT1, SREBP1, α-casein, ß-casein, and WAP in HC11 cells and PMECs. In addition to activating mTORC1, EAAs uniquely regulate the expression of calcium-sensing receptor (CaSR) among all amino-acid-responsive GPCRs, which indicates a potential link between CaSR and the mTORC1 pathway in mammary gland epithelial cells. Compared with other EAAs, leucine and arginine had the greatest capacity to trigger GPCRs (p-ERK) and mTORC1 (p-S6K1) signaling in HC11 cells. In addition, CaSR and its downstream G proteins Gi, Gq, and Gßγ are involved in the regulation of leucine- and arginine-induced milk synthesis and mTORC1 activation. Taken together, our data suggest that leucine and arginine can efficiently trigger milk synthesis through the CaSR/Gi/mTORC1 and CaSR/Gq/mTORC1 pathways. CONCLUSION: We found that the G-protein-coupled receptor CaSR is an important amino acid sensor in mammary epithelial cells. Leucine and arginine promote milk synthesis partially through the CaSR/Gi/mTORC1 and CaSR/Gq/mTORC1 signaling systems in mammary gland epithelial cells. Although this mechanism needs further verification, it is foreseeable that this mechanism may provide new insights into the regulation of milk synthesis.


Assuntos
Proteínas do Leite , Receptores de Detecção de Cálcio , Camundongos , Feminino , Animais , Suínos , Leucina/farmacologia , Leucina/metabolismo , Receptores de Detecção de Cálcio/genética , Receptores de Detecção de Cálcio/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Arginina/farmacologia , Aminoácidos/metabolismo , Caseínas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Glândulas Mamárias Animais/metabolismo , Células Epiteliais/metabolismo
3.
J Nutr ; 152(11): 2471-2482, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36774113

RESUMO

BACKGROUND: The approach to matching appropriate carbohydrates alongside free amino acids to achieve optimal muscle growth remains unclear. OBJECTIVES: We investigated whether the consumption of a diet containing rapidly digested carbohydrate and free amino acids can enhance intestinal absorption and muscular uptake of amino acids in pigs. METHOD: Twelve barrows (28 kg; 11 wk old) with catheters installed in the portal vein, mesenteric vein, femoral artery, and femoral vein were randomly assigned to consume 1 of 2 free amino acid-enriched diets (3.34%) containing rapidly [waxy corn starch (WCS)] or slowly [pea starch (PS)] digested carbohydrate for 27 d. Blood was collected to determine the fluxes of plasma glucose and amino acids across the portal vein and the hindlimb muscle. Dietary in vitro carbohydrate digestive rates were also determined. Data were analyzed using repeated-measures (time × group) ANOVA. RESULTS: Carbohydrate in vitro cumulative digestibility at 30 and 240 min was 69.00% and 95.25% for WCS and 23.25% and 81.15% for PS, respectively. The animal experiment presented WCS increased individual amino acids (lysine, 0.67 compared with 0.53 mmol/min; threonine, 0.40 compared with 0.29 mmol/min; isoleucine, 0.33 compared with 0.22 mmol/min; glutamate, 0.51 compared with 0.35 mmol/min; and proline, 0.51 compared with 0.27 mmol/min), essential amino acid (EAA; 3.26 compared with 2.65 mmol/min), and branched-chain amino acid (BCAA; 0.86 compared with 0.65 mmol/min) fluxes across the portal vein during 8 h postprandial, as well as individual amino acids (isoleucine, 0.08 compared with 0.02 mmol/min; leucine, 0.06 compared with 0.02 mmol/min; and glutamine, 0.44 compared with 0.25 mmol/min), EAA (0.50 compared with 0.21 mmol/min), and BCAA (0.17 compared with 0.06 mmol/min) net fluxes across the hindlimb muscle during 8 h postprandial compared with PS (P < 0.05). CONCLUSIONS: A diet containing rapidly digested carbohydrate and free amino acids can promote intestinal absorption and net fluxes across hindlimb muscle of amino acids in pigs.


Assuntos
Aminoácidos , Isoleucina , Suínos , Animais , Aminoácidos/metabolismo , Dieta/veterinária , Carboidratos da Dieta/metabolismo , Amido , Intestinos , Músculo Esquelético/metabolismo
4.
FASEB J ; 35(2): e21316, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33433947

RESUMO

Maintaining ovarian steroidogenesis is of critical importance, considering that steroid hormones are required for successful establishment and maintenance of pregnancy and proper development of embryos and fetuses. Investigating the mechanism that butyrate modulates the ovarian steroidogenesis is beneficial for understanding the impact of lipid nutrition on steroidogenesis. Herein, we identified that butyrate improved estradiol and progesterone synthesis in rat primary ovarian granulosa cells and human granulosa KGN cells and discovered the related mechanism. Our data indicated that butyrate was sensed by GPR41 and GPR43 in ovarian granulosa cells. Butyrate primarily upregulated the acetylation of histone H3K9 (H3K9ac). Chromatin immune-precipitation and sequencing (ChIP-seq) data of H3K9ac revealed the influenced pathways involving in the mitochondrial function (including cellular metabolism and steroidogenesis) and cellular antioxidant capacity. Additionally, increasing H3K9ac by butyrate further stimulated the PPARγ/CD36/StAR pathways to increase ovarian steroidogenesis and activated PGC1α to enhance mitochondrial dynamics and alleviate oxidative damage. The improvement in antioxidant capacity and mitochondrial dynamics by butyrate enhanced ovarian steroidogenesis. Collectively, butyrate triggers histone H3K9ac to activate steroidogenesis through PPARγ and PGC1α pathways in ovarian granulosa cells.


Assuntos
Butiratos/farmacologia , Células da Granulosa/metabolismo , Histonas/metabolismo , PPAR gama/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Acetilação/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Imunoprecipitação da Cromatina , Feminino , Células da Granulosa/efeitos dos fármacos , Histonas/efeitos dos fármacos , Humanos , Immunoblotting , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Reação em Cadeia da Polimerase , Ratos , Espécies Reativas de Oxigênio/metabolismo
5.
FASEB J ; 34(1): 1018-1037, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914603

RESUMO

Recombinant antimicrobial peptide microcin J25 (MccJ25) causes potent antimicrobial activity against enterotoxigenic Escherichia coli (ETEC) in vitro; however, independently of this activity, its role in suppressing intestinal inflammation and epithelial barrier injury in vivo remains unclear. We investigated the therapeutic effects of MccJ25 on intestinal inflammation and epithelial barrier dysfunction and the underlying mechanism, using gentamicin for comparison. In a mouse model of intestinal inflammation, therapeutic administration of either MccJ25 or gentamicin after ETEC K88 infection attenuated clinical symptoms, reduced intestinal pathogen colonization, improved intestinal morphology, and decreased inflammatory pathologies and intestinal permeability, ultimately improving the hosts' health. MccJ25 also attenuated ETEC-induced mouse intestinal barrier dysfunction by enhancing tight junction proteins (TJPs). Using the human epithelial cell line Caco-2, we verified the epithelial barrier-strengthening and mucosal injury-alleviating effects of MccJ25 on ETEC infection: increased expression of TJPs by activating the p38/MAPK pathway, balancing the microbiota, and improving short-chain fatty acid concentrations in the cecum of ETEC-infected mice. Although gentamicin and MccJ25 had similar effects in the inflamed gut, MccJ25 was superior to gentamicin with regard to defending the host from ETEC infection. Overall, MccJ25 may be a promising therapeutic drug for treating enteric pathogen-induced intestinal inflammation diseases.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Bacteriocinas/farmacologia , Epitélio/efeitos dos fármacos , Infecções por Escherichia coli/imunologia , Inflamação/imunologia , Mucosa Intestinal/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Células CACO-2 , Citocinas/metabolismo , Escherichia coli Enterotoxigênica , Feminino , Microbioma Gastrointestinal , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/farmacologia
6.
FASEB J ; 33(3): 4490-4501, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30653349

RESUMO

The gut microbiota plays a critical role in various physiologic processes; however, maternal microbial and metabolic changes during pregnancy and lactation remain elusive. Using pigs as an animal model, we conducted comparative analyses of gut microbiota and short-chain fatty acid (SCFA) profiles across different stages of gestation, lactation, and the empty (nonpregnancy) phase in 2 distinct breeds of sow, Rongchang (RS) and Landrace (LS). Coriobacteriaceae were found to gradually increase over gestational time irrespective of breed, which was further validated in an independent cohort of sows, indicating that Coriobacteriaceae are likely associated with the progression of pregnancy. Escherichia increased as well. Relative to empty and gestation, lactation was associated with an increase in SCFA producers and a concomitant augmentation in SCFA production in both breeds. A comparison between the 2 breeds revealed that Ruminococcaceae were more abundant in RSs than in LSs, consistent with the strong ability of Rongchang pigs to digest highly fibrous feedstuffs. Taken together, we revealed characteristic structural and metabolic changes in maternal gut microbiota throughout pregnancy, lactation, and the empty phase, which could potentially help improve the pregnancy and lactation outcomes for both animals and humans.-Liu, H., Hou, C., Li, N., Zhang, X., Zhang, G., Yang, F., Zeng, X., Liu, Z., Qiao, S. Microbial and metabolic alterations in gut microbiota of sows during pregnancy and lactation.


Assuntos
Microbioma Gastrointestinal , Lactação/metabolismo , Prenhez/metabolismo , Suínos/metabolismo , Ração Animal , Animais , Bactérias/isolamento & purificação , Colo , Gorduras na Dieta/farmacocinética , Ácidos Graxos Voláteis/análise , Fezes/química , Fezes/microbiologia , Feminino , Gravidez , Especificidade da Espécie , Suínos/microbiologia
7.
Cell Mol Life Sci ; 76(20): 3917-3937, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31250035

RESUMO

The gastrointestinal tract is the site of nutrient digestion and absorption and is also colonized by diverse, highly mutualistic microbes. The intestinal microbiota has diverse effects on the development and function of the gut-specific immune system, and provides some protection from infectious pathogens. However, interactions between intestinal immunity and microorganisms are very complex, and recent studies have revealed that this intimate crosstalk may depend on the production and sensing abilities of multiple bioactive small molecule metabolites originating from direct produced by the gut microbiota or by the metabolism of dietary components. Here, we review the interplay between the host immune system and the microbiota, how commensal bacteria regulate the production of metabolites, and how these microbiota-derived products influence the function of several major innate and adaptive immune cells involved in modulating host immune homeostasis.


Assuntos
Imunidade Adaptativa , Disbiose/metabolismo , Microbioma Gastrointestinal/imunologia , Imunidade Inata , Mucosa Intestinal/metabolismo , Metaboloma/imunologia , Aminoácidos/imunologia , Aminoácidos/metabolismo , Animais , Ácidos e Sais Biliares/imunologia , Ácidos e Sais Biliares/metabolismo , Disbiose/imunologia , Disbiose/microbiologia , Disbiose/terapia , Ácidos Graxos/imunologia , Ácidos Graxos/metabolismo , Transplante de Microbiota Fecal , Vida Livre de Germes/imunologia , Homeostase/imunologia , Humanos , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Linfócitos/imunologia , Linfócitos/metabolismo , Linfócitos/microbiologia , Células Mieloides/imunologia , Células Mieloides/metabolismo , Células Mieloides/microbiologia , Simbiose/imunologia
8.
BMC Biol ; 17(1): 106, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852478

RESUMO

BACKGROUND: The early-life microbiota exerts a profound and lifelong impact on host health. Longitudinal studies in humans have been informative but are mostly based on the analysis of fecal samples and cannot shed direct light on the early development of mucosa-associated intestinal microbiota and its impact on GI function. Using piglets as a model for human infants, we assess here the succession of mucosa-associated microbiota across the intestinal tract in the first 35 days after birth. RESULTS: Although sharing a similar composition and predicted functional profile at birth, the mucosa-associated microbiome in the small intestine (jejunum and ileum) remained relatively stable, while that of the large intestine (cecum and colon) quickly expanded and diversified by day 35. Among detected microbial sources (milk, vagina, areolar skin, and feces of sows, farrowing crate, and incubator), maternal milk microbes were primarily responsible for the colonization of the small intestine, contributing approximately 90% bacteria throughout the first 35 days of the neonatal life. Although maternal milk microbes contributed greater than 90% bacteria to the large intestinal microbiota of neonates upon birth, their presence gradually diminished, and they were replaced by maternal fecal microbes by day 35. We found strong correlations between the relative abundance of specific mucosa-associated microbes, particularly those vertically transmitted from the mother, and the expression levels of multiple intestinal immune and barrier function genes in different segments of the intestinal tract. CONCLUSION: We revealed spatially specific trajectories of microbial colonization of the intestinal mucosa in the small and large intestines, which can be primarily attributed to the colonization by vertically transmitted maternal milk and intestinal microbes. Additionally, these maternal microbes may be involved in the establishment of intestinal immune and barrier functions in neonates. Our findings strengthen the notion that studying fecal samples alone is insufficient to fully understand the co-development of the intestinal microbiota and immune system and suggest the possibility of improving neonatal health through the manipulation of maternal microbiota.


Assuntos
Microbioma Gastrointestinal/fisiologia , Mucosa Intestinal/microbiologia , Intestinos/microbiologia , Leite/microbiologia , Sus scrofa/microbiologia , Animais , Animais Recém-Nascidos/microbiologia , Fezes/microbiologia
9.
J Anim Physiol Anim Nutr (Berl) ; 104(5): 1454-1461, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32618065

RESUMO

This study was designed to evaluate the effects of guanidinoacetic acid (GAA) on growth performance, carcass characteristics, meat and muscle fibre traits of growing-finishing gilts. 300 female PIC pigs were randomly divided (30.10 ± 2.94 kg) into 2 treatments with 6 replicates of 25 each for a 100-day trial. Two dietary treatments were comprised of a control diet and a control diet fortified with 450 mg/kg GAA. Growth performance was evaluated for each phase. Carcass characteristics and meat quality were determined at last phase. Gilts had free access to feed and water during the experiment. The result indicated that GAA did not affect growth performance (p > 0.05). GAA not only increased longissimus dorsi (LM) muscle weight but also decreased its shear force, b*value and drip loss (p < 0.05). Mandibular fat index was decreased by GAA (p < 0.05). GAA upregulated myosin heavy chain (MyHC) I mRNA expression with lower myofibre cross-sectional area and fibre diameter in LM muscle (p < .05). In conclusion, GAA can improve carcass characteristics and meat quality by changing muscle fibre characteristics and reducing mandibular fat index in finishing gilts.


Assuntos
Ração Animal/análise , Dieta/veterinária , Suplementos Nutricionais , Glicina/análogos & derivados , Carne/normas , Suínos/fisiologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Composição Corporal/efeitos dos fármacos , Feminino , Glicina/farmacologia , Fibras Musculares de Contração Rápida , Músculo Esquelético/efeitos dos fármacos
10.
Br J Nutr ; 116(4): 593-602, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27464458

RESUMO

Knowledge of regulation of glucose transport contributes to our understanding of whole-body glucose homoeostasis and human metabolic diseases. Isoleucine has been reported to participate in regulation of glucose levels in many studies; therefore, this study was designed to examine the effect of isoleucine on intestinal and muscular GLUT expressions. In an animal experiment, muscular GLUT and intestinal GLUT were determined in weaning pigs fed control or isoleucine-supplemented diets. Supplementation of isoleucine in the diet significantly increased piglet average daily gain, enhanced GLUT1 expression in red muscle and GLUT4 expression in red muscle, white muscle and intermediate muscle (P<0·05). In additional, expressions of Na+/glucose co-transporter 1 and GLUT2 were up-regulated in the small intestine when pigs were fed isoleucine-supplemented diets (P<0·05). C2C12 cells were used to examine the expressions of muscular GLUT and glucose uptake in vitro. In C2C12 cells supplemented with isoleucine in the medium, cellular 2-deoxyglucose uptake was increased (P<0·05) through enhancement of the expressions of GLUT4 and GLUT1 (P<0·05). The effect of isoleucine was greater than that of leucine on glucose uptake (P<0·05). Compared with newborn piglets, 35-d-old piglets have comparatively higher GLUT4, GLUT2 and GLUT5 expressions. The results of this study demonstrated that isoleucine supplementation enhanced the intestinal and muscular GLUT expressions, which have important implications that suggest that isoleucine could potentially increase muscle growth and intestinal development by enhancing local glucose uptake in animals and human beings.


Assuntos
Suplementos Nutricionais , Glucose/metabolismo , Mucosa Intestinal/metabolismo , Isoleucina/farmacologia , Músculo Esquelético/metabolismo , Animais , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 2/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Intestino Delgado/metabolismo , Transportador 1 de Glucose-Sódio/metabolismo , Suínos
11.
Int J Mol Sci ; 17(5)2016 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-27153059

RESUMO

Over the last decade, the rapid emergence of multidrug-resistant pathogens has become a global concern, which has prompted the search for alternative antibacterial agents for use in food animals. Antimicrobial peptides (AMPs), produced by bacteria, insects, amphibians and mammals, as well as by chemical synthesis, are possible candidates for the design of new antimicrobial agents because of their natural antimicrobial properties and a low propensity for development of resistance by microorganisms. This manuscript reviews the current knowledge of the basic biology of AMPs and their applications in non-ruminant nutrition. Antimicrobial peptides not only have broad-spectrum activity against bacteria, fungi, and viruses but also have the ability to bypass the common resistance mechanisms that are placing standard antibiotics in jeopardy. In addition, AMPs have beneficial effects on growth performance, nutrient digestibility, intestinal morphology and gut microbiota in pigs and broilers. Therefore, AMPs have good potential as suitable alternatives to conventional antibiotics used in swine and poultry industries.


Assuntos
Ração Animal/microbiologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Animais , Antibacterianos/efeitos adversos , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/efeitos adversos , Peptídeos Catiônicos Antimicrobianos/química , Galinhas , Microbioma Gastrointestinal/efeitos dos fármacos , Suínos
12.
Arch Anim Nutr ; 70(4): 263-77, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27216554

RESUMO

The aim of the experiment on 180 weaned piglets (8.9 kg body weight) was to investigate the influence of high fibre diets formulated with different fibrous ingredients on performance, nutrient digestibility, diarrhoea incidence and numbers of faecal microbiota. The dietary treatments included a Control diet and five high fibre diets formulated with different fibre sources including wheat bran, soybean hulls, naked oat hulls, palm kernel expeller and bamboo fibre. The high fibre diets averaged 14.6% neutral detergent fibre with different non-starch polysaccharides (NSP) components and were fed ad libitum for 28 d. Faecal samples were collected during the last 3 d of the experiment and the apparent total tract digestibility of nutrients and fibre components were determined. Pigs fed the Control and wheat bran diets had a higher (p ≤ 0.05) average daily gain (ADG) than pigs fed the palm kernel expeller and bamboo meal diets. The reduced ADG for pigs appeared to be related to reductions in the digestibility of gross energy and dry matter, respectively. The feed-to-gain ratio was significantly higher (p ≤ 0.05) for pigs fed the fibre diets. The digestibility of NSP components was different among the treatments. The diarrhoea incidence was not affected by treatments. The abundance of faecal bifidobacteria was significantly higher (p ≤ 0.05) for pigs fed the wheat bran diet than for pigs fed the bamboo meal diet. It was concluded that the diets formulated with different fibre sources when fed to weaned piglets have different effects on pig performance, nutrient digestibility and numbers of faecal microbiota. The wheat bran diet rich in arabinoxylans enabled a better performance than the other tested diets with fibre addition.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Dieta/veterinária , Fibras na Dieta/metabolismo , Microbiota/fisiologia , Polissacarídeos/metabolismo , Sus scrofa/fisiologia , Ração Animal/análise , Animais , Fibras na Dieta/análise , Fezes/microbiologia , Feminino , Masculino , Polissacarídeos/análise , Sus scrofa/crescimento & desenvolvimento , Sus scrofa/microbiologia , Desmame
13.
BMC Microbiol ; 15: 32, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25888437

RESUMO

BACKGROUND: Tight junctions (TJs) maintain the intestinal mucosal barrier, dysfunction of which plays a vital role in the pathophysiology of a variety of gastrointestinal disorders. Previously, we have shown that L. reuteri I5007 maintained the gut epithelial barrier in newborn piglets. Here we aimed to decipher the influence of L. reuteri I5007 on tight junction (TJ) protein expression both in vivo and in vitro. RESULTS: We found that L. reuteri I5007 significantly increased the protein abundance of intestinal epithelial claudin-1, occludin and zonula occluden-1 (ZO-1) in newborn piglets (orally administrated with 6 × 10(9) CFU of L. reuteri I5007 daily for 14 days). In vitro, treatment with L. reuteri I5007 alone maintained the transepithelial electrical resistance (TEER) of IPEC-J2 cells with time. In addition, IPEC-J2 cells were stimulated with 1 µg/mL lipopolysaccharide (LPS) for 1, 4, 8, 12 or 24 h, following pre-treatment with L. reuteri I5007 or its culture supernatant for 2 h. The results showed that LPS time-dependently induced (significantly after 4 or 8 h) the expression of TNF-α and IL-6, and decreased TJ proteins, which was reversed by pre-treatment of L. reuteri I5007 or its culture supernatant. CONCLUSIONS: L. reuteri I5007 had beneficial effects on the expression of TJ proteins in newborn piglets and the in-vitro results showed this strain had a positive effect on TEER of cells and inhibited the reduction of TJ proteins expression induced by LPS. These findings indicated L. reuteri I5007 may have potential roles in protection TJ proteins in TJ-deficient conditions.


Assuntos
Claudina-1/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Limosilactobacillus reuteri/crescimento & desenvolvimento , Lipopolissacarídeos/metabolismo , Ocludina/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo , Animais , Linhagem Celular , Células Epiteliais/imunologia , Interleucina-6/metabolismo , Limosilactobacillus reuteri/imunologia , Suínos , Fator de Necrose Tumoral alfa/metabolismo
14.
J Nutr ; 145(10): 2212-20, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26290006

RESUMO

BACKGROUND: Early pregnancy loss is a major concern in humans and animals. N-carbamylglutamate (NCG) has been found to enhance embryonic survival during early pregnancy in rats. However, little is known about the key factors in the endometrium involved in the improvement of embryonic implantation and development induced by maternal NCG supplementation. OBJECTIVES: Our objectives were to investigate whether NCG supplementation during early gestation enhanced embryonic survival and development in gilts and to uncover the related factors using the approach of endometrium proteome analysis with isobaric tags for relative and absolute quantification (iTRAQ). METHODS: Uteruses and embryos/fetuses were obtained on days 14 and 28 of gestation from gilts fed a basal diet that was or was not supplemented with 0.05% NCG. The iTRAQ-based quantitative proteomics approach was performed to explore the endometrium proteome altered by NCG supplementation. RESULTS: Maternal NCG supplementation significantly increased the number of total fetuses and live fetuses on day 28 of gestation by 1.32 and 1.29, respectively (P < 0.05), with a significant decrease in embryonic mortality (P < 0.05). iTRAQ results indicated that a total of 59 proteins showed at least 2-fold differences (P < 0.05), including 52 proteins that were present at higher abundance and 7 proteins present at lower abundance in NCG-supplemented gilts. The differentially expressed proteins primarily are involved in cell adhesion, energy metabolism, lipid metabolism, protein metabolism, antioxidative stress, and immune response. On day 14 of gestation, several proteins closely related to embryonic implantation and development, such as integrin-αv, integrin-ß3, talin, and endothelial nitric oxide synthase, were upregulated (3.7-, 4.1-, 2.4-, and 5.4-fold increases, respectively) by NCG supplementation. CONCLUSION: To our knowledge, our results provide the first evidence that altered abundance of the endometrial proteome induced by NCG supplementation is highly associated with the improvement of embryonic survival and development in gilts.


Assuntos
Suplementos Nutricionais , Desenvolvimento Embrionário , Endométrio/metabolismo , Reabsorção do Feto/prevenção & controle , Regulação da Expressão Gênica no Desenvolvimento , Glutamatos/uso terapêutico , Fenômenos Fisiológicos da Nutrição Materna , Aminoácidos/sangue , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , China , Cruzamentos Genéticos , Feminino , Reabsorção do Feto/sangue , Reabsorção do Feto/metabolismo , Tamanho da Ninhada de Vivíparos , Óxido Nítrico/sangue , Placentação , Gravidez , Proteômica/métodos , Distribuição Aleatória , Sus scrofa
15.
Amino Acids ; 46(12): 2633-42, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25063204

RESUMO

Leucine has been shown to influence intestinal protein metabolism, cell proliferation and migration. Furthermore, our previous study demonstrated that branched-chain amino acids could modulate the intestinal amino acid and peptide transporters in vivo. As the possible mechanisms are still largely unknown, in the present work, we studied the transcriptional and translational regulation of leucine on amino acid transporter production in IPEC-J2 cells and the signaling pathways involved. Treatment of IPEC-J2 cells with 7.5 mM leucine enhanced the mRNA expression of the Na(+)-neutral AA exchanger 2 (ASCT2) and 4F2 heavy chain (4F2hc) and caused an increase in ASCT2 protein expression. Leucine also activated phosphorylation of 4E-BP1 and eIF4E through the phosphorylation of mTOR, Akt and ERK signaling pathways in IPEC-J2 cells. Pre-treatment of IPEC-J2 cells with inhibitors of mTOR and Akt (rapamycin and wortmannin) or an inhibitor of ERK (PD098059) for 30 min before leucine treatment attenuated the positive effect of leucine in enhancing the protein abundance of ASCT2. These results demonstrate that leucine could up-regulate the expression of the amino acid transporters (ASCT2) through transcriptional and translational regulation by ERK and PI3K/Akt/mTOR activation.


Assuntos
Sistema ASC de Transporte de Aminoácidos/genética , Células Epiteliais/metabolismo , Jejuno/metabolismo , Leucina/metabolismo , Transdução de Sinais , Sistema ASC de Transporte de Aminoácidos/metabolismo , Animais , Linhagem Celular , Células Epiteliais/enzimologia , Jejuno/enzimologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Suínos , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
16.
Mol Biol Rep ; 41(6): 3611-20, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24510411

RESUMO

The objective of this study was to investigate the effects of free amino acids supplementation to protein restricted diet on the intestinal morphology and proteome composition in weaning pigs. Weanling piglets were randomly fed one of the three diets including a corn-soybean based control diet and two lower protein diets with or without free amino acids supplementation for 2 weeks. The jejunum samples of piglets were collected for morphology and proteome analysis. Compared with the control diet, the protein restricted diet had a significant lower average daily gain and higher feed conversion rate. Free amino acids supplementation to the protein restricted diet significantly improved average daily gain and higher feed conversion rate, compared with the protein restricted diet. The villous height in pigs fed the protein restricted diet was lower than that of the control and free amino acids diet. Using two-dimensional gel electrophoresis and mass spectrometry, we identified 16 differentially expressed protein spots in the jejunum of the weaning piglet. These proteins were related to stress and immune response, the metabolism of carbohydrates and lipids, and tissue structure. Based on the proteome and ELISA analysis, free amino acids diet significantly down-regulated the jejunal expression of stress protein heat shock 60 kDa protein. Our results indicated that amino acids supplementation to the protein restricted diet could enhance weight gain and feed efficiency in weanling pigs through improving intestinal nutrient absorption and transportation, gut health, and mucosal immunity.


Assuntos
Suplementos Nutricionais , Proteoma/genética , Estresse Fisiológico/genética , Sus scrofa/genética , Animais , Dieta , Jejuno/metabolismo , Glycine max , Estresse Fisiológico/imunologia , Sus scrofa/metabolismo , Suínos , Desmame
17.
IEEE Trans Vis Comput Graph ; 30(6): 2968-2980, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38648150

RESUMO

Visually encoding quantitative information associated with graph links is an important problem in graph visualization. A conventional approach is to vary the thickness of lines to encode the strength of connections in node-link diagrams. In this paper, we present Sticky Links, a novel visual encoding method that draws graph links with stickiness. Taking the metaphor of links with glues, sticky links represent connection strength using spiky shapes, ranging from two broken spikes for weak connections to connected lines for strong connections. We conducted a controlled user study to compare the efficiency and aesthetic appeal of stickiness with conventional thickness encoding. Our results show that stickiness enables more effective and expressive quantitative encoding while maintaining the perception of node connectivity. Participants also found sticky links to be more aesthetic and less visually cluttering than conventional thickness encoding. Overall, our findings suggest that sticky links offer a promising alternative to conventional methods for encoding quantitative information in graphs.

18.
Anim Nutr ; 17: 1-10, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38434773

RESUMO

The reduced nutrient digestibility of low-protein (LP) diets has been shown to be caused by the weakened fermentative capacity of the post-gut flora. The dynamic regulation of dietary protein contents on post-gut microbial population and fermentative metabolism is unclear. Twelve growing barrows (19.9 ± 0.8 kg) fitted with a T-cannula at the blind end of the cecum were randomly administered a high-protein (HP, 21.5% crude protein [CP]) diet or an LP (15.5% CP) diet for 28 d. The cecal content and feces were collected at d 1, 14, and 28 of the experiment for microflora structures and metabolite concentrations analysis. The nutrient digestibility coefficient and plasma biochemical parameters were also determined. Compared with the HP treatment, the LP treatment showed decreased plasma urea nitrogen concentration and apparent total tract digestibility of dry matter, gross energy, and CP (P < 0.01). In addition, urinary nitrogen losses, total nitrogen losses, and daily nitrogen retention in the LP treatment were lower than those in the HP treatment (P < 0.01), and the nitrogen retention-to-nitrogen intake ratio in the LP treatment was increased (P < 0.01). The HP group showed increased cecal total short-chain fatty acids (SCFA) concentration and fecal propionate, butyrate, and total SCFA concentrations (P < 0.05) on d 14 and 28, which may be mainly related to the elevated abundance of SCFA-producing bacteria, such as Ruminococcus, Lactobacillus, and Prevotella (P < 0.05). Probiotics, such as Bifidobacterium, Bacteroidales S24-7, and Rikenella, enriched in the LP treatment possibly contributed to reduced plasma endotoxin content. The differences in the abundances of almost all the above-mentioned flora appeared on d 28 but not d 14. Likewise, differences in the Simpson and Shannon indices and clustering patterns of the microbiota between treatments were also only observed on d 28. To sum up, in a time-dependent manner, the LP diet increased probiotics with gut-improving functions and decreased SCFA-producing bacteria, which may cause enhanced intestine health and reduced nutrient digestibility.

19.
Antioxidants (Basel) ; 13(2)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397844

RESUMO

This study aimed to evaluate the effects of a complex comprising formic acid, benzoic acid, and essential oils (AO3) on the growth performance of weaned piglets and explore the underlying mechanism. Dietary AO3 supplementation significantly enhanced the average daily gain (ADG) and average daily feed intake (ADFI), while decreasing the feed conversion rate (FCR) and diarrhea rate (p < 0.05). Additionally, AO3 addition altered the fecal microflora composition with increased abundance of f_Prevotellaceae. LPS challenges were further conducted to investigate the detailed mechanism underlying the benefits of AO3 supplementation. The piglets fed with AO3 exhibited a significant increase in villus height and decrease in crypt depth within the jejunum, along with upregulation of ZO-1, occludin, and claudin-1 (p < 0.05) compared with those piglets subjected to LPS. Furthermore, AO3 supplementation significantly ameliorated redox disturbances (T-AOC, SOD, and GSH) and inflammation (TNF-α, IL-1ß, IL-6, and IL-12) in both the serum and jejunum of piglets induced by LPS, accompanied by suppressed activation of the MAPK signaling pathway (ERK, JNK, P38) and NF-κB. The LPS challenge downregulated the activation of the AMPK signaling pathway, mRNA levels of electron transport chain complexes, and key enzymes involved in ATP synthesis, which were significantly restored by the AO3 supplementation. Additionally, AO3 supplementation restored the reduced transport of amino acids, glucose, and fatty acids induced by LPS back to the levels observed in the control group. In conclusion, dietary AO3 supplementation positively affected growth performance and gut microbiota composition, also enhancing intestinal barrier integrity, nutrient uptake, and energy metabolism, as well as alleviating oxidative stress and inflammation under LPS stimulation.

20.
J Adv Res ; 58: 163-173, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37315842

RESUMO

INTRODUCTION: Ovarian steroidogenesis not only affects the embryonic development and pregnancy outcome, but also associates with many diseases in mammals and women. Exploring the nutrients and mechanisms influencing ovarian steroidogenesis is critical to maintaining the optimal reproductive performance, as well as guaranteeing body health. OBJECTIVES: This research aimed to explore the effect of retinol metabolism on ovarian steroidogenesis and the underlying mechanisms. METHODS: Comparative transcriptomic analysis of ovaries from normal and low reproductive performance sows were performed to identify the main causes leading to low fertility. The metabolites regulating steroid hormones synthesis were investigated in ovarian granulosa cells. Gene interference, overexpression, dual-luciferase reporter assays, chromatin immunoprecipitation and transcriptome analysis were further conducted to explore the underlying mechanisms of Aldh1a1 mediating ovarian steroidogenesis. RESULTS: Transcriptome analysis of ovaries from normal and low reproductive performance sows showed the significant differences in both retinol metabolism and steroid hormones synthesis, indicating retinol metabolism probably influenced steroid hormones synthesis. The related metabolite retinoic acid was furtherly proven a highly active and potent substance strengthening estrogen and progesterone synthesis in ovarian granulosa cells. For the first time, we revealed that retinoic acid synthesis in porcine and human ovarian granulosa cells was dominated by Aldh1a1, and required the assistance of Aldh1a2. Importantly, we demonstrated that Aldh1a1 enhanced the proliferation of ovarian granulosa cells by activating PI3K-Akt-hedgehog signaling pathways. In addition, Aldh1a1 regulated the expression of transcription factor MESP2, which targeted the transcription of Star and Cyp11a1 through binding to corresponding promoter regions. CONCLUSION: Our data identified Aldh1a1 modulates ovarian steroidogenesis through enhancing granulosa cell proliferation and MESP2/STAR/CYP11A1 pathway. These findings provide valuable clues for improving ovarian health in mammals.


Assuntos
Enzima de Clivagem da Cadeia Lateral do Colesterol , Ovário , Feminino , Suínos , Animais , Gravidez , Humanos , Ovário/metabolismo , Tretinoína , Fosfatidilinositol 3-Quinases , Vitamina A , Proteínas Hedgehog , Progesterona , Proliferação de Células , Mamíferos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA