Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Otolaryngol Head Neck Surg ; 51(1): 7, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35193694

RESUMO

Anaplastic thyroid cancer (ATC) is a rare, aggressive form of undifferentiated thyroid cancer, which exhibits rapid progression and is almost universally fatal. At least a subset of ATC is thought to arise from pre-existing well-differentiated thyroid cancer, most frequently papillary thyroid cancer (PTC). While PIK3CA mutations are rare in PTC, they are common in ATC and tend to co-occur with BRAF mutations. This provided the rationale for our study to identify the potential role of PIK3CA mutations in the progression from well-differentiated to undifferentiated thyroid cancer. We introduced PIK3CAE545K into the LAM1 PTC cell line, which carries a BRAFV600E mutation. In culture, the engineered cell line (LAM1:PIK3CAE545K) proliferated faster and demonstrated increased clonogenic potential relative to the parental line carrying an empty vector (LAM1EV). Both the LAM1EV and LAM1:PIK3CAE545K edited lines were implanted into hind flanks of athymic nude mice for in vivo determination of disease progression. While tumour weights and volumes were not significantly higher in LAM1:PIK3CAE545K mice, there was a decrease in expression of thyroid differentiation markers TTF-1, thyroglobulin, PAX8 and B-catenin, suggesting that introduction of PIK3CAE545K led to dedifferentiation in vivo. Collectively, this study provides evidence of a role for PIK3CAE545K in driving disease progression from a well-differentiated to an undifferentiated thyroid cancer; however, over-expression was not a determinant of an accelerated growth phenotype in ATC.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas B-raf , Neoplasias da Glândula Tireoide , Animais , Linhagem Celular , Linhagem Celular Tumoral , Classe I de Fosfatidilinositol 3-Quinases/genética , Humanos , Camundongos , Camundongos Nus , Mutação , Fenótipo , Proteínas Proto-Oncogênicas B-raf/genética , Câncer Papilífero da Tireoide/genética , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA