Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Thyroid ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38661522

RESUMO

Background: Monocarboxylate transporter 8 (MCT8) is the most specific thyroid hormone transporter identified to date, deficiency of which has been associated with severe intellectual and motor disability and abnormal serum thyroid function tests. However, it is presently unknown if MCT8, similar to other thyroid hormone transporters, also accepts additional substrates, and if disruption of their transport may contribute to the observed phenotype. Methods: In this study, we aimed to identify such substrates by applying liquid chromatography-mass spectrometry-based metabolome analysis in lysates of control and MCT8-overexpressing Xenopus oocytes. A subset of identified candidate substrates were validated by direct transport studies in transiently transfected COS-1 cells and human fibroblasts, which endogenously express MCT8. Moreover, transport characteristics were determined, including transport saturation and cis-inhibition potency of thyroid hormone transport. Results: Metabolome analysis identified 21 m/z ratios, corresponding to 87 candidate metabolites, with a 2.0-times differential abundance in MCT8-injected oocytes compared with controls. These metabolites included 3,5-diiodotyrosine (DIT) and several amino acids, including glutamate and glutamine. In accordance, MCT8-expressing COS-1 cells had 2.2-times lower intracellular accumulation of [125I]-DIT compared with control cells. This effect was largely blocked in the presence of 3,3',5-triiodothyronine (T3) (IC50: 2.5 ± 1.5 µM) or thyroxine (T4) (IC50: 5.8 ± 1.3 µM). Conversely, increasing concentrations of DIT enhanced the accumulation of T3 and T4. The MCT8-specific inhibitor silychristin increased the intracellular accumulation of DIT in human fibroblasts. COS-1 cells expressing MCT8 also exhibited a 50% reduction in intracellular accumulation of [125I]-3-monoiodotyrosine (MIT). In contrast, COS-1 cells expressing MCT8 did not alter the intracellular accumulation of [3H]-glutamate or [3H]-glutamine. However, studies in human fibroblasts showed a 1.5-1.9 times higher glutamate uptake in control fibroblasts compared with fibroblasts derived from patients with MCT8 deficiency, which was not affected in the presence of silychristin. Conclusions: Taken together, our results suggest that the iodotyrosines DIT and MIT can be exported by MCT8. MIT and DIT interfere with MCT8-mediated transport of thyroid hormone in vitro and vice versa. Future studies should elucidate if MCT8, being highly expressed in thyroidal follicular cells, also transports iodotyrosines in vivo.

2.
Ann Surg ; 255(4): 763-70, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22418009

RESUMO

OBJECTIVE: We measured a comprehensive set of outcome measures after different surgical procedures for painful chronic pancreatitis (CP) at long-term follow-up. BACKGROUND: Pain caused by CP can be alleviated through operative intervention with type of procedure depending on anatomical abnormalities. Outcome measures include functional (pain relief, quality of life [QoL]), medical (endo- and exocrine function), and clinical (reoperation) results reported by patient. METHODS: A cross-sectional cohort of 223 consecutive patients who underwent surgical drainage, head resection, or left-sided pancreas resection, depending on anatomical abnormalities, was analyzed. Participating patients were reassessed during a prospectively scheduled outpatient clinic visit. RESULTS: At follow-up, 44 patients had died; 146 of 179 living patients consented to participate in the study. After 63 months (range: 14-268), 68% reported no or little pain, 19% reported intermediate pain, and 12% reported severe pain. Preoperative daily opioid use (OR: 3.04; 95% confidence interval [CI]: 1.09-8.49) and high numbers of preceding endoscopic procedures (OR [odds ratio]: 3.89; 95% CI: 1.01-14.9) were associated with persistent severe pain. Compared with the general population, physical more than mental QoL remained impaired (P < 0.05). At follow-up, endocrine insufficiency was present in 57% of patients and exocrine insufficiency was present in 77%. Independently, a head resection and a reoperation for any cause were moderately associated with new-onset diabetes (P < 0.1). Compared with patients who underwent left-sided resection, the risk of developing exocrine insufficiency after surgery was higher after drainage or head resection. After 20 months (interquartile range: 10-51) after surgery, 26 (12%) of 223 patients underwent 1 or more elective reoperations. CONCLUSIONS: Operative intervention for painful CP, tailored to anatomical abnormalities, results in excellent to fair long-term pain relief, but approximately 10% of patients do not respond. QoL scores remained slightly compromised. High preoperative pain levels, suggested through daily opioid use and high numbers of endoscopic procedures, are associated with less favorable outcome.


Assuntos
Dor/cirurgia , Pancreatectomia/métodos , Pancreatite Crônica/cirurgia , Adulto , Analgésicos Opioides/uso terapêutico , Estudos Transversais , Procedimentos Cirúrgicos Eletivos , Doenças do Sistema Endócrino/etiologia , Insuficiência Pancreática Exócrina/etiologia , Feminino , Seguimentos , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Dor/tratamento farmacológico , Dor/etiologia , Medição da Dor , Pancreatite Crônica/complicações , Pancreatite Crônica/patologia , Complicações Pós-Operatórias , Qualidade de Vida , Reoperação , Estudos Retrospectivos , Inquéritos e Questionários , Resultado do Tratamento
3.
J Clin Endocrinol Metab ; 104(5): 1369-1377, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30423129

RESUMO

CONTEXT: Thyroid hormone is important for normal brain development. The type 2 deiodinase (D2) controls thyroid hormone action in the brain by activating T4 to T3. The enzymatic activity of D2 depends on the incorporation of selenocysteine for which the selenocysteine-insertion sequence (SECIS) element located in the 3' untranslated region is indispensable. We hypothesized that mutations in the SECIS element could affect D2 function, resulting in a neurocognitive phenotype. OBJECTIVE: To identify mutations in the SECIS element of DIO2 in patients with intellectual disability and to test their functional consequences. DESIGN, SETTING, AND PATIENTS: The SECIS element of DIO2 was sequenced in 387 patients with unexplained intellectual disability using a predefined pattern of thyroid function tests. SECIS element read-through in wild-type or mutant D2 was quantified by a luciferase reporter system in transfected cells. Functional consequences were assessed by quantifying D2 activity in cell lysate or intact cell metabolism studies. RESULTS: Sequence analysis revealed 2 heterozygous mutations: c.5703C>T and c.5730A>T, which were also present in the unaffected family members. The functional evaluation showed that both mutations did not affect D2 enzyme activity in cell lysates or intact cells, although the 5730A>T mutation decreased SECIS element read-through by 75%. In the patient harboring the c.5730A>T variant, whole genome sequencing revealed a pathogenic deletion of the STXBP1 gene. CONCLUSIONS: We report on two families with mutations in the SECIS element of D2. Although functional analysis showed that nucleotide 5730 is important for normal SECIS element read-through, the two variants did not segregate with a distinct phenotype.


Assuntos
Encefalopatias/genética , Iodeto Peroxidase/genética , Iodeto Peroxidase/metabolismo , Mutação , Sequências Reguladoras de Ácido Nucleico , Selenocisteína/metabolismo , Hormônios Tireóideos/metabolismo , Adulto , Encefalopatias/patologia , Criança , Estudos de Coortes , Feminino , Seguimentos , Deleção de Genes , Regulação da Expressão Gênica , Humanos , Masculino , Proteínas Munc18/genética , Linhagem , Prognóstico , Selenocisteína/genética , Adulto Jovem , Iodotironina Desiodinase Tipo II
4.
Thyroid ; 28(11): 1406-1415, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30296914

RESUMO

BACKGROUND: Thyroid hormones (TH) are essential for brain development and function. The TH transporters monocarboxylate transporter 8 (MCT8) and organic anion transporter1 C1 (OATP1C1) facilitate the transport of TH across the blood-brain barrier and into glia and neuronal cells in the brain. Loss of MCT8 function causes Allan-Herndon-Dudley syndrome (AHDS, OMIM 300523) characterized by severe intellectual and motor disability due to cerebral hypothyroidism. Here, the first patient with loss of OATP1C1 function is described. The patient is a 15.5-year-old girl with normal development in the first year of life, who gradually developed dementia with spasticity and intolerance to cold. Brain imaging demonstrated gray and white matter degeneration and severe glucose hypometabolism. METHODS: Exome sequencing of the patient and parents was performed to identify the disease-causing mutation, and the effect of the mutation was studied through a panel of in vitro experiments, including thyroxine uptake studies, immunoblotting, and immunocytochemistry. Furthermore, the clinical effects of treatment with the triiodothyronine analogue triiodothyroacetic acid (Triac) are described. RESULTS: Exome sequencing identified a homozygous missense mutation in OATP1C1, changing the highly conserved aspartic acid 252 to asparagine (D252N). In vitro, the mutated OATP1C1 displays impaired plasma membrane localization and decreased cellular thyroxine uptake. After treatment with Triac, the clinical condition improved in several domains. CONCLUSIONS: This is the first report of human OATP1C1 deficiency compatible with brain-specific hypothyroidism and neurodegeneration.


Assuntos
Encéfalo/metabolismo , Mutação de Sentido Incorreto , Degeneração Neural/genética , Transportadores de Ânions Orgânicos/genética , Adolescente , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Feminino , Humanos , Degeneração Neural/diagnóstico por imagem , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Transportadores de Ânions Orgânicos/metabolismo , Sequenciamento do Exoma
5.
Endocrinology ; 157(6): 2560-74, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27070099

RESUMO

Thyroid hormone (TH) transmembrane transporters are key regulators of TH availability in target cells where correct TH signaling is essential for normal development. Although the chicken embryo is a valuable model for developmental studies, the only functionally characterized chicken TH transporter so far is the organic anion transporting polypeptide 1C1 (OATP1C1). We therefore cloned the chicken L-type amino acid transporter 1 (LAT1) and the monocarboxylate transporters 8 (MCT8) and 10 (MCT10), and functionally characterized them, together with OATP1C1, in JEG3, COS1, and DF-1 cells. In addition, we used in situ hybridization to study their mRNA expression pattern during development. MCT8 and OATP1C1 are both high affinity transporters for the prohormone T4, whereas receptor-active T3 is preferably transported by MCT8 and MCT10. The latter one shows lower affinity but has a high Vmax and seems to be especially good at T3 export. Also, LAT1 has a lower affinity for its preferred substrate 3,3'-diiodothyronine. Reverse T3 is transported by all 4 TH transporters and is a good export product for OATP1C1. TH transporters are strongly expressed in eye (LAT1, MCT8, MCT10), pancreas (LAT1, MCT10), kidney, and testis (MCT8). Their extensive expression in the central nervous system, especially at the brain barriers, indicates an important role in brain development. In conclusion, we show TH transport by chicken MCT8, MCT10, and LAT1. Together with OATP1C1, these transporters have functional characteristics similar to their mammalian orthologs and are interesting target genes to further elucidate the role of THs during embryonic development.


Assuntos
Hormônios Tireóideos/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Animais , Células COS , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Galinhas , Embrião não Mamífero/metabolismo , Humanos , Imuno-Histoquímica , Hibridização In Situ , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ânions Orgânicos/metabolismo
6.
Eur J Endocrinol ; 174(4): 425-32, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26701870

RESUMO

BACKGROUND: Levels of thyroid hormone (TH) and trace elements (copper (Cu) and selenium (Se)) are important for development and function of the brain. Anti-epileptic drugs (AEDs) can influence serum TH and trace element levels. As the relationship between AEDs, THs, and trace elements has not yet been studied directly, we explored these interactions. METHOD: In total 898 participants, from the Thyroid Origin of Psychomotor Retardation study designed to investigate thyroid parameters in subjects with intellectual disability (ID), had data available on serum Se, Cu, thyroid stimulating hormone (TSH), free thyroxine (FT4), tri-iodothyronine (T3), reverse T3, T4, and thyroxine-binding globulin (TBG); 401 subjects were on AED treatment. Differences in trace elements according to medication usage was investigated using ANOVA, and associations between trace elements and thyroid parameters were analysed using (non-) linear regression models. RESULTS: Study participants were not deficient in any of the trace elements analyzed. AED (carbamazepine, valproate and phenytoin) usage was negatively associated with serum Se and showed compound-specific associations with Cu levels. After correction for drug usage, Se was positively associated with TSH levels, negatively associated with FT4 levels, and positively with T3 levels. Cu was positively associated with T4, T3, and rT3, which was largely dependent on TBG levels. CONCLUSION: The subjects with ID did not display profound deficiencies in trace element levels. AEDs were associated with serum Se and Cu levels, while serum Se and Cu were also associated with thyroid parameters. Further studies on the underlying mechanisms and potential clinical importance are warranted.


Assuntos
Anticonvulsivantes/uso terapêutico , Hormônios Tireóideos/sangue , Oligoelementos/sangue , Anticonvulsivantes/farmacologia , Estudos de Coortes , Cobre/sangue , Interações Medicamentosas , Feminino , Humanos , Deficiência Intelectual/sangue , Deficiência Intelectual/complicações , Deficiência Intelectual/epidemiologia , Masculino , Pessoa de Meia-Idade , Países Baixos/epidemiologia , Selênio/sangue , Testes de Função Tireóidea , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/fisiopatologia
7.
PLoS One ; 11(3): e0149941, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26953569

RESUMO

DNA damage contributes to the process of aging, as underscored by premature aging syndromes caused by defective DNA repair. Thyroid state changes during aging, but underlying mechanisms remain elusive. Since thyroid hormone (TH) is a key regulator of metabolism, changes in TH signaling have widespread effects. Here, we reveal a significant common transcriptomic signature in livers from hypothyroid mice, DNA repair-deficient mice with severe (Csbm/m/Xpa-/-) or intermediate (Ercc1-/Δ-7) progeria and naturally aged mice. A strong induction of TH-inactivating deiodinase D3 and decrease of TH-activating D1 activities are observed in Csbm/m/Xpa-/- livers. Similar findings are noticed in Ercc1-/Δ-7, in naturally aged animals and in wild-type mice exposed to a chronic subtoxic dose of DNA-damaging agents. In contrast, TH signaling in muscle, heart and brain appears unaltered. These data show a strong suppression of TH signaling in specific peripheral organs in premature and normal aging, probably lowering metabolism, while other tissues appear to preserve metabolism. D3-mediated TH inactivation is unexpected, given its expression mainly in fetal tissues. Our studies highlight the importance of DNA damage as the underlying mechanism of changes in thyroid state. Tissue-specific regulation of deiodinase activities, ensuring diminished TH signaling, may contribute importantly to the protective metabolic response in aging.


Assuntos
Envelhecimento/metabolismo , Dano ao DNA , Iodeto Peroxidase/metabolismo , Hormônios Tireóideos/metabolismo , Envelhecimento/genética , Animais , Hipotireoidismo/genética , Hipotireoidismo/metabolismo , Iodeto Peroxidase/genética , Fígado/metabolismo , Camundongos , Camundongos Knockout , Especificidade de Órgãos , Hormônios Tireóideos/genética
8.
Endocrinology ; 156(11): 4345-55, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26305885

RESUMO

Thyroid hormone (TH) transporters facilitate cellular TH influx and efflux, which is paramount for normal physiology. The L-type amino acid transporters LAT1 and LAT2 are known to facilitate TH transport. However, the role of LAT3, LAT4, and LAT5 is still unclear. Therefore, the aim of this study was to further characterize TH transport by LAT1 and LAT2 and to explore possible TH transport by LAT3, LAT4, and LAT5. FLAG-LAT1-5 constructs were transiently expressed in COS1 cells. LAT1 and LAT2 were cotransfected with the CD98 heavy chain. Cellular transport was measured using 10 nM (125)I-labeled T4, T3, rT3, 3,3'-T2, and 10 µM [(125)I]3'-iodotyrosine (MIT) as substrates. Intracellular metabolism of these substrates was determined in cells cotransfected with either of the LATs with type 1 or type 3 deiodinase. LAT1 facilitated cellular uptake of all substrates and LAT2 showed a net uptake of T3, 3,3'-T2, and MIT. Expression of LAT3 or LAT4 did not affect transport of T4 and T3 but resulted in the decreased cellular accumulation of 3,3'-T2 and MIT. LAT5 did not facilitate the transport of any substrate. Cotransfection with LAT3 or LAT4 strongly diminished the cellular accumulation of 3,3'-T2 and MIT by LAT1 and LAT2. These data were confirmed by metabolism studies. LAT1 and LAT2 show distinct preferences for the uptake of the different iodocompounds, whereas LAT3 and LAT4 specifically facilitate the 3,3'-T2 and MIT efflux. Together our findings suggest that different sets of transporters with specific influx or efflux capacities may cooperate to regulate the cellular thyroid state.


Assuntos
Sistema L de Transporte de Aminoácidos/metabolismo , Hormônios Tireóideos/metabolismo , Animais , Transporte Biológico , Células COS , Chlorocebus aethiops , Humanos
9.
J Clin Endocrinol Metab ; 100(3): 920-33, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25569702

RESUMO

CONTEXT: A common polymorphism in the gene encoding the activating deiodinase (Thr92Ala-D2) is known to be associated with quality of life in millions of patients with hypothyroidism and with several organ-specific conditions. This polymorphism results in a single amino acid change within the D2 molecule where its susceptibility to ubiquitination and proteasomal degradation is regulated. OBJECTIVE: To define the molecular mechanisms underlying associated conditions in carriers of the Thr92Ala-D2 polymorphism. DESIGN, SETTING, PATIENTS: Microarray analyses of 19 postmortem human cerebral cortex samples were performed to establish a foundation for molecular studies via a cell model of HEK-293 cells stably expressing Thr92 or Ala92 D2. RESULTS: The cerebral cortex of Thr92Ala-D2 carriers exhibits a transcriptional fingerprint that includes sets of genes involved in CNS diseases, ubiquitin, mitochondrial dysfunction (chromosomal genes encoding mitochondrial proteins), inflammation, apoptosis, DNA repair, and growth factor signaling. Similar findings were made in Ala92-D2-expressing HEK-293 cells and in both cases there was no evidence that thyroid hormone signaling was affected ie, the expression level of T3-responsive genes was unchanged, but that several other genes were differentially regulated. The combined microarray analyses (brain/cells) led to the development of an 81-gene classifier that correctly predicts the genotype of homozygous brain samples. In contrast to Thr92-D2, Ala92-D2 exhibits longer half-life and was consistently found in the Golgi. A number of Golgi-related genes were down-regulated in Ala92-D2-expressing cells, but were normalized after 24-h-treatment with the antioxidant N-acetylecysteine. CONCLUSIONS: Ala92-D2 accumulates in the Golgi, where its presence and/or ensuing oxidative stress disrupts basic cellular functions and increases pre-apoptosis. These findings are reminiscent to disease mechanisms observed in other neurodegenerative disorders such as Huntington's disease, and could contribute to the unresolved neurocognitive symptoms of affected carriers.


Assuntos
Iodeto Peroxidase/genética , Doenças do Sistema Nervoso/genética , Polimorfismo de Nucleotídeo Único , Doenças da Glândula Tireoide/genética , Transcriptoma , Adulto , Alanina/genética , Substituição de Aminoácidos , Estudos de Casos e Controles , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Frequência do Gene , Células HEK293 , Células HeLa , Humanos , Masculino , Análise em Microsséries , Doenças do Sistema Nervoso/patologia , Estresse Oxidativo/genética , Síndrome , Treonina/genética , Doenças da Glândula Tireoide/patologia , Iodotironina Desiodinase Tipo II
10.
J Clin Endocrinol Metab ; 99(11): E2429-36, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25140401

RESUMO

CONTEXT: Thyroid hormones (TH) are important for normal brain development and abnormal TH regulation in the brain results in neurocognitive impairments. The type 2 deiodinase (D2) is important for local TH control in the brain by generating the active hormone T3 from its precursor T4. Dysfunction of D2 likely results in a neurocognitive phenotype. No mutations in D2 have been reported yet. OBJECTIVE: The objective of the study was to identify D2 mutations in patients with intellectual disability and to test their functional consequences. DESIGN, SETTING, AND PATIENTS: The patients were selected from the multicenter Thyroid Origin of Psychomotor Retardation study, which is a cohort of 946 subjects with unexplained intellectual disability. Based on characteristic serum TH values, the coding region of the DIO2 gene was sequenced in 387 patients. Functional consequences were assessed by in vitro D2 assays or intact cell metabolism studies using cells transfected with wild-type or mutant D2. RESULTS: Sequence analysis revealed two heterozygous mutations: c.11T>A (p.L4H) in three subjects and c.305C>T (p.T102I) in one subject. Sequence analysis of family members revealed several carriers, but no segregation was observed with thyroid parameters or neurocognitive phenotype. Extensive tests with different in vitro D2 assays did not show differences between wild-type and mutant D2. CONCLUSION: This study describes the identification and functional consequences of novel genetic variation in TH activating enzyme D2. Family studies and functional tests suggest that these variants do not underlie the neurocognitive impairment. Altogether our data provide evidence of the existence of rare but apparently harmless genetic variants of D2.


Assuntos
Iodeto Peroxidase/genética , Mutação , Polimorfismo de Nucleotídeo Único , Hormônios Tireóideos/sangue , Humanos , Deficiência Intelectual/sangue , Deficiência Intelectual/genética , Iodotironina Desiodinase Tipo II
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA