Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Biochem Biophys Res Commun ; 723: 150222, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38850813

RESUMO

Salinity has become a crucial environmental factor that restricts plant growth, development, and productivity. Nevertheless, the mechanisms by which plants react to salt stress remain inadequately comprehended. In this study, we identified maize brassinosteroid-signaling kinase gene ZmBSK7 which is homologous to AtBSK1. Our results showed that ZmBSK7 is induced by salt stress and ZmBSK7 localizes in the plasma membrane. ZmBSK7 overexpression increases salt tolerance, while its knockdown decreases salt tolerance in maize. ZmBSK7 reduces the malondialdehyde (MDA) content and the percentage of electrolyte leakage, and also elevates the activities of antioxidant enzymes. Furthermore, ZmBSK7 promotes K+ content accumulation and reduces Na+/K+ ratio. Further found that ZmBSK7 physically interacts with K+ efflux antiporter 2 (ZmKEA2) in vivo and in vitro. Salt stress also increased the expression of ZmKEA2. Thus, ZmBSK7 improves salt tolerance in maize by affecting ZmKEA2 expression to promote K+ content accumulation and reduce Na+/K+ ratio. This study enhances the comprehension of BSK proteins and establishes a theoretical foundation for investigating salt stress tolerance in plants.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Tolerância ao Sal , Zea mays , Zea mays/genética , Zea mays/metabolismo , Tolerância ao Sal/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Estresse Salino , Transdução de Sinais , Brassinosteroides/metabolismo , Potássio/metabolismo , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Plantas Geneticamente Modificadas
2.
Plant Cell ; 33(5): 1790-1812, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-33630095

RESUMO

Calcium (Ca2+)/calmodulin (CaM)-dependent protein kinase (CCaMK) is an important positive regulator of abscisic acid (ABA) and abiotic stress signaling in plants and is believed to act upstream of mitogen-activated protein kinase (MAPK) in ABA signaling. However, it is unclear how CCaMK activates MAPK in ABA signaling. Here, we show that OsDMI3, a rice (Oryza sativa) CCaMK, directly interacts with and phosphorylates OsMKK1, a MAPK kinase (MKK) in rice, in vitro and in vivo. OsDMI3 was found to directly phosphorylate Thr-25 in the N-terminus of OsMKK1, and this Thr-25 phosphorylation is OsDMI3-specific in ABA signaling. The activation of OsMKK1 and its downstream kinase OsMPK1 is dependent on Thr-25 phosphorylation of OsMKK1 in ABA signaling. Moreover, ABA treatment induces phosphorylation in the activation loop of OsMKK1, and the two phosphorylations, in the N-terminus and in the activation loop, are independent. Further analyses revealed that OsDMI3-mediated phosphorylation of OsMKK1 positively regulates ABA responses in seed germination, root growth, and tolerance to both water stress and oxidative stress. Our results indicate that OsMKK1 is a direct target of OsDMI3, and OsDMI3-mediated phosphorylation of OsMKK1 plays an important role in activating the MAPK cascade and ABA signaling.


Assuntos
Ácido Abscísico/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Oryza/enzimologia , Proteínas de Plantas/metabolismo , Ácido Abscísico/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno/química , Modelos Biológicos , Oryza/efeitos dos fármacos , Oryza/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Fosfotreonina/metabolismo , Ligação Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Água
3.
J Integr Plant Biol ; 66(6): 1068-1086, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38607264

RESUMO

Drought stress is a crucial environmental factor that limits plant growth, development, and productivity. Autophagy of misfolded proteins can help alleviate the damage caused in plants experiencing drought. However, the mechanism of autophagy-mediated drought tolerance in plants remains largely unknown. Here, we cloned the gene for a maize (Zea mays) selective autophagy receptor, NEXT TO BRCA1 GENE 1 (ZmNBR1), and identified its role in the response to drought stress. We observed that drought stress increased the accumulation of autophagosomes. RNA sequencing and reverse transcription-quantitative polymerase chain reaction showed that ZmNBR1 is markedly induced by drought stress. ZmNBR1 overexpression enhanced drought tolerance, while its knockdown reduced drought tolerance in maize. Our results established that ZmNBR1 mediates the increase in autophagosomes and autophagic activity under drought stress. ZmNBR1 also affects the expression of genes related to autophagy under drought stress. Moreover, we determined that BRASSINOSTEROID INSENSITIVE 1A (ZmBRI1a), a brassinosteroid receptor of the BRI1-like family, interacts with ZmNBR1. Phenotype analysis showed that ZmBRI1a negatively regulates drought tolerance in maize, and genetic analysis indicated that ZmNBR1 acts upstream of ZmBRI1a in regulating drought tolerance. Furthermore, ZmNBR1 facilitates the autophagic degradation of ZmBRI1a under drought stress. Taken together, our results reveal that ZmNBR1 regulates the expression of autophagy-related genes, thereby increasing autophagic activity and promoting the autophagic degradation of ZmBRI1a under drought stress, thus enhancing drought tolerance in maize. These findings provide new insights into the autophagy degradation of brassinosteroid signaling components by the autophagy receptor NBR1 under drought stress.


Assuntos
Autofagia , Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Zea mays , Zea mays/genética , Zea mays/metabolismo , Zea mays/fisiologia , Autofagia/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Plantas Geneticamente Modificadas , Resistência à Seca
4.
Biochem Biophys Res Commun ; 604: 1-7, 2022 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-35279440

RESUMO

MYB transcription factors play a vital role in response to stress in plant. MYB-CC transcription factors belong to MYB transcription factors, which contain a conserved MYB DNA-binding domain and a coiled-coil (CC) domain. MYB-CC transcription factors participate in the process of plant drought tolerance. However, the underlying molecular mechanisms of ZmMYB-CC in regulating drought tolerance are still largely unknown. Here, we found that ZmMYB-CC10 enhanced drought tolerance by reducing oxidative damage in maize. Further, ZmMYB-CC10 improves the activity of APX and decreases the content of H2O2. Overexpression of ZmMYB-CC10 increases the expression of ZmAPX4 under drought stress. Luciferase assays and Yeast one-hybrid assays (Y1H) showed that ZmMYB-CC10 activates the expression of ZmAPX4 by directly binding to its promoter. Taken together, our results demonstrate that ZmMYB-CC10 enhances tolerance to drought stress by directly activating ZmAPX4 expression, thereby reducing H2O2 content.


Assuntos
Fatores de Transcrição , Zea mays , Secas , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico , Fatores de Transcrição/metabolismo , Zea mays/metabolismo
5.
Plant Cell ; 31(1): 128-152, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30538152

RESUMO

In plants, Ca2+/calmodulin-dependent protein kinase (CCaMK) is a positive regulator of abscisic acid (ABA) responses, including root growth, antioxidant defense, and tolerance of both water stress and oxidative stress. However, the underlying molecular mechanisms are poorly understood. Here, we show a direct interaction between DMI3 (Doesn't Make Infections 3), a rice (Oryza sativa) CCaMK and PP45, a type 2C protein phosphatase in rice (PP2C). This interaction involves the CaM binding domain of DMI3 and the PP2C domain of PP45. In the absence of ABA, PP45 directly inactivates DMI3 by dephosphorylating Thr-263 in DMI3. However, in the presence of ABA, ABA-induced H2O2 production by the NADPH oxidases RbohB/E inhibits the activity of PP45 not only by inhibiting the expression of PP45 but also by oxidizing Cys-350 and Cys-428 residues to form PP45 intermolecular dimers. ABA-induced oxidation of Cys-350 and Cys-428 in PP45 blocked the interaction between PP45 and DMI3 and substantially prevented PP45-mediated inhibition in DMI3 activity. Genetic analysis indicated that PP45 is an important negative regulator of ABA signaling. These results reveal important pathways for the inhibition of DMI3 under the basal state and for its ABA-induced activation in rice.


Assuntos
Ácido Abscísico/farmacologia , Peróxido de Hidrogênio/metabolismo , Oryza/metabolismo , Antioxidantes/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oryza/efeitos dos fármacos , Fosfoproteínas Fosfatases/metabolismo , Proteínas de Plantas/metabolismo
6.
Biochem Biophys Res Commun ; 567: 86-91, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34146906

RESUMO

NAC (NAM, ATAF1/2, and CUC2) transcription factors play vital roles in response to multiple abiotic stresses. Our previous study has demonstrated that ZmNAC84, a maize NAC transcription factor, enhanced the drought tolerance by increasing abscisic acid (ABA)-induced antioxidant enzyme activities of APX and SOD, and Ser-113, a key phosphorylation site, of ZmNAC84 played an important role in this process. However, the target gene of ZmNAC84 in this process is still unknown. Here, we found that ZmNAC84 only regulated the luciferase activity driven by ZmSOD2 promoter in tobacco. Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) assay showed that ZmNAC84 directly bound to the CACGTG motif of ZmSOD2 promoter. Furthermore, phosphorylation of ZmNAC84 at Ser-113 up-regulated the ZmSOD2 expression by enhancing the DNA binding ability of ZmNAC84 to ZmSOD2 promoter and improved the drought tolerance. Taken together, our results demonstrate that ZmNAC84 directly regulates ZmSOD2 expression to enhance drought tolerance and Ser-113 of ZmNAC84 is crucial in this process.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Superóxido Dismutase/genética , Fatores de Transcrição/genética , Zea mays/genética , Secas , Fosforilação , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Estresse Fisiológico , Superóxido Dismutase/metabolismo , Fatores de Transcrição/metabolismo , Zea mays/fisiologia
7.
New Phytol ; 231(2): 695-712, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33864702

RESUMO

Drought stress seriously limits crop productivity. Although studies have been carried out, it is still largely unknown how plants respond to drought stress. Here we find that drought treatment can enhance the phosphorylation activity of brassinosteroid-signaling kinase 1 (ZmBSK1) in maize (Zea mays). Our genetic studies reveal that ZmBSK1 positively affects drought tolerance in maize plants. ZmBSK1 localizes in plasma membrane, interacts with calcium/calmodulin (Ca2+ /CaM)-dependent protein kinase (ZmCCaMK), and phosphorylates ZmCCaMK. Ser-67 is a crucial phosphorylation site of ZmCCaMK by ZmBSK1. Drought stress enhances not only the interaction between ZmBSK1 and ZmCCaMK but also the phosphorylation of Ser-67 in ZmCCaMK by ZmBSK1. Furthermore, Ser-67 phosphorylation in ZmCCaMK regulates its Ca2+ /CaM binding, autophosphorylation and transphosphorylation activity, and positively affects its function in drought tolerance in maize. Our results reveal an important role for ZmBSK1 in drought tolerance and suggest a direct regulatory mode of ZmBSK1 phosphorylating ZmCCaMK.


Assuntos
Brassinosteroides , Zea mays , Cálcio/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Zea mays/metabolismo
8.
New Phytol ; 232(6): 2400-2417, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34618923

RESUMO

Mitogen-activated protein kinase (MPK) is a critical regulator of the antioxidant defence system in response to various stimuli. However, how MPK directly and exactly regulates antioxidant enzyme activities is still unclear. Here, we demonstrated that a NAC transcription factor ZmNAC49 mediated the regulation of antioxidant enzyme activities by ZmMPK5. ZmNAC49 expression is induced by oxidative stress. ZmNAC49 enhances oxidative stress tolerance in maize, and it also reduces superoxide anion generation and increases superoxide dismutase (SOD) activity. A detailed study showed that ZmMPK5 directly interacts with and phosphorylates ZmNAC49 in vitro and in vivo. ZmMPK5 directly phosphorylates Thr-26 in NAC subdomain A of ZmNAC49. Mutation at Thr-26 of ZmNAC49 does not affect the interaction with ZmMPK5 and its subcellular localisation. Further analysis found that ZmNAC49 activates the ZmSOD3 expression by directly binding to its promoter. ZmMPK5-mediated ZmNAC49 phosphorylation improves its ability to bind to the ZmSOD3 promoter. Thr-26 of ZmNAC49 is essential for its transcriptional activity. In addition, ZmSOD3 enhances oxidative stress tolerance in maize. Our results show that phosphorylation of Thr-26 in ZmNAC49 by ZmMPK5 increased its DNA-binding activity to the ZmSOD3 promoter, enhanced SOD activity and thereby improved oxidative stress tolerance in maize.


Assuntos
Regulação da Expressão Gênica de Plantas , Zea mays , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Estresse Oxidativo , Proteínas de Plantas , Zea mays/genética , Zea mays/metabolismo
9.
J Exp Bot ; 72(4): 1399-1410, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33130877

RESUMO

Drought stress severely limits the growth, development, and productivity of crops, and therefore understanding the mechanisms by which plants respond to drought is crucial. In this study, we cloned a maize NAC transcription factor, ZmNAC49, and identified its function in response to drought stress. We found that ZmNAC49 is localized in the nucleus and has transcriptional activation activity. ZmNAC49 expression is rapidly and strongly induced by drought stress, and overexpression enhances stress tolerance in maize. Overexpression also significant decreases the transpiration rate, stomatal conductance, and stomatal density in maize. Detailed study showed that ZmNAC49 overexpression affects the expression of genes related to stomatal development, namely ZmTMM, ZmSDD1, ZmMUTE, and ZmFAMA. In addition, we found that ZmNAC49 can directly bind to the promoter of ZmMUTE and suppress its expression. Taken together, our results show that the transcription factor ZmNAC49 represses ZmMUTE expression, reduces stomatal density, and thereby enhances drought tolerance in maize.


Assuntos
Secas , Proteínas de Plantas , Estresse Fisiológico , Fatores de Transcrição , Zea mays , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Zea mays/genética , Zea mays/metabolismo
10.
BMC Genomics ; 21(1): 524, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32727352

RESUMO

BACKGROUNDS: Paphiopedilum is an important genus of the orchid family Orchidaceae and has high horticultural value. The wild populations are under threat of extinction because of overcollection and habitat destruction. Mature seeds of most Paphiopedilum species are difficult to germinate, which severely restricts their germplasm conservation and commercial production. The factors inhibiting germination are largely unknown. RESULTS: In this study, large amounts of non-methylated lignin accumulated during seed maturation of Paphiopedilum armeniacum (P. armeniacum), which negatively correlates with the germination rate. The transcriptome profiles of P. armeniacum seed at different development stages were compared to explore the molecular clues for non-methylated lignin synthesis. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that a large number of genes associated with phenylpropanoid biosynthesis and phenylalanine metabolism during seed maturation were differentially expressed. Several key genes in the lignin biosynthetic pathway displayed different expression patterns during the lignification process. PAL, 4CL, HCT, and CSE upregulation was associated with C and H lignin accumulation. The expression of CCoAOMT, F5H, and COMT were maintained at a low level or down-regulated to inhibit the conversion to the typical G and S lignin. Quantitative real-time RT-PCR analysis confirmed the altered expression levels of these genes in seeds and vegetative tissues. CONCLUSIONS: This work demonstrated the plasticity of natural lignin polymer assembly in seed and provided a better understanding of the molecular mechanism of seed-specific lignification process.


Assuntos
Lignina , Orchidaceae , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Germinação/genética , Lignina/metabolismo , Orchidaceae/metabolismo , Sementes/genética , Sementes/metabolismo , Transcriptoma
11.
Biochem Biophys Res Commun ; 525(3): 537-542, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32113680

RESUMO

Calcium/calmodulin-dependent protein kinase (CCaMK) has been shown to play important roles in brassinosteroid (BR)-induced antioxidant defense and enhancing the tolerance of plants to drought stress. The autophosphorylation of CCaMK is a key step for the activation of CCaMK, thus promoting substrate phosphorylation. However, how CCaMK autophosphorylation function in BR-induced antioxidant defense is not known yet. Here, seven potential autophosphorylation sites of ZmCCaMK were identified using mass spectroscopy (liquid chromatography-tandem mass spectrometry [LC-MS/MS]) analysis. The transient gene expression analysis in maize protoplasts showed that Thr420 and Ser454 of ZmCCaMK were important for BR-induced antioxidant defense. Furthermore, Thr420 and Ser454 of ZmCCaMK were crucial for improving drought tolerance and alleviating drought induced oxidative damage of plants via overexpressing various mutant versions of ZmCCaMK in tobacco (Nicotiana tabacum). Mutations of Thr420 and Ser454 in ZmCCaMK substantially blocked the autophosphorylation and substrate phosphorylation of ZmCCaMK in vitro. Taken together, our results demonstrate that Thr420 and Ser454 of ZmCCaMK are crucial for BR-induced antioxidant defense and drought tolerance through modulating the autophosphorylation and substrate phosphorylation activities of ZmCCaMK.


Assuntos
Antioxidantes/metabolismo , Brassinosteroides/farmacologia , Proteínas Quinases Dependentes de Cálcio-Calmodulina/química , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Serina/metabolismo , Treonina/metabolismo , Zea mays/enzimologia , Adaptação Fisiológica/efeitos dos fármacos , Secas , Proteínas Mutantes/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Relação Estrutura-Atividade , Especificidade por Substrato/efeitos dos fármacos , Nicotiana/genética , Zea mays/efeitos dos fármacos
12.
New Phytol ; 225(2): 823-834, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31461539

RESUMO

l-Arabinose (l-Ara) is a major monosaccharide in plant polysaccharides and glycoproteins, and functions in plant growth and development. However, the potential role of l-Ara during abscisic acid (ABA)-mediated seed germination has been largely ignored. Here, our results showed a function of l-Ara during ABA-mediated seed germination. ABA slowed down the reduction of l-Ara in seed cell wall, and exogenous l-Ara aggravated the inhibition of ABA on germination. We further found that MUR4, encoding URIDINE 5'-DIPHOSPHATE-d-XYLOSE 4-EPIMERASE 1, played a vital role in ABA-mediated germination. MUR4 was highly expressed in embryo and induced by ABA in both seeds and seedlings. Overexpression of MUR4 conferred hypersensitive seed germination and early postgermination growth to ABA. Further analysis revealed that ABSCISIC ACID INSENSITIVE4 (ABI4) positively modulated the MUR4 expression by directly binding the Coupling Element1 motif of MUR4 promoter. Consistently, abi4-1 mutant had a lower l-Ara content in seed cell wall, while a higher l-Ara content in seed cell wall was observed in ABI4 overexpressors. Genetic analysis suggested that overexpression of MUR4 in abi4-1 partly restored the ABA sensitivity of abi4-1. We established the link between ABA and l-Ara during ABA-mediated seed germination and cotyledon greening in Arabidopsis and revealed the potential molecular mechanism.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabinose/metabolismo , Carboidratos Epimerases/metabolismo , Germinação/genética , Sementes/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Transcrição Gênica , Ácido Abscísico/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/embriologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Germinação/efeitos dos fármacos , Mutação/genética , Fenótipo , Regiões Promotoras Genéticas , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Sementes/efeitos dos fármacos , Sementes/genética , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
13.
J Exp Bot ; 70(19): 5495-5506, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31257449

RESUMO

Plants have evolved various strategies to sense and respond to saline environments, which severely reduce plant growth and limit agricultural productivity. Alteration to the cell wall is one strategy that helps plants adapt to salt stress. However, the physiological mechanism of how the cell wall components respond to salt stress is not fully understood. Here, we show that expression of XTH30, encoding xyloglucan endotransglucosylase-hydrolase30, is strongly up-regulated in response to salt stress in Arabidopsis. Loss-of-function of XTH30 leads to increased salt tolerance and overexpression of XTH30 results in salt hypersensitivity. XTH30 is located in the plasma membrane and is highly expressed in the root, flower, stem, and etiolated hypocotyl. The NaCl-induced increase in xyloglucan (XyG)-derived oligosaccharide (XLFG) of the wild type is partly blocked in xth30 mutants. Loss-of-function of XTH30 slows down the decrease of crystalline cellulose content and the depolymerization of microtubules caused by salt stress. Moreover, lower Na+ accumulation in shoot and lower H2O2 content are found in xth30 mutants in response to salt stress. Taken together, these results indicate that XTH30 modulates XyG side chains, altered abundance of XLFG, cellulose synthesis, and cortical microtubule stability, and negatively affecting salt tolerance.


Assuntos
Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/genética , Glicosídeo Hidrolases/genética , Tolerância ao Sal/genética , Regulação para Cima , Proteínas de Arabidopsis/metabolismo , Glucosiltransferases/metabolismo , Glicosídeo Hidrolases/metabolismo
14.
Biochem Biophys Res Commun ; 496(2): 497-501, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29307824

RESUMO

The alteration of cell wall component and structure is an important adaption to saline environment. Pectins, a major cell wall component, are often present in a highly methylesterified form. The level of methyl esterification determined by pectin methylesterases (PMEs) influences many important wall properties that are believed to relate to the adaption to saline stress. However, little is known about the function of PMEs in response to salt stress. Here, we established a link between pectin methylesterase31 (PME31) and salt stress tolerance. Salt stress significantly increases PME31 expression. PME31 is located in the plasma membrane and the expression level of PME31 was high in dry seeds. Knock-down mutants in PME31 conferred hypersensitive phenotypes to salt stress in seed germination and post-germination growth. Real-time PCR analysis revealed that the transcript levels of several stress genes (DREB2A, RD29A and RD29B) are lower in pme31-2 mutant than that in the wild type in response to salt stress. These results suggested that PME31 could positively modulate salt stress tolerance.


Assuntos
Arabidopsis/efeitos dos fármacos , Hidrolases de Éster Carboxílico/genética , Regulação da Expressão Gênica de Plantas , Células Vegetais/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Proteínas e Peptídeos de Choque Frio/genética , Proteínas e Peptídeos de Choque Frio/metabolismo , Germinação/efeitos dos fármacos , Isoenzimas/genética , Isoenzimas/metabolismo , Mutação , Células Vegetais/metabolismo , Salinidade , Tolerância ao Sal , Sementes/efeitos dos fármacos , Sementes/genética , Sementes/metabolismo , Estresse Fisiológico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Biochem Biophys Res Commun ; 491(3): 834-839, 2017 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-28559135

RESUMO

As the major resource of reactive oxygen species (ROS), the NADPH oxidases (Rbohs) have been shown to play important roles in plant cells under normal growth and stress conditions. Although many family members of Rbohs were studied, little is known about the function of RbohI in Arabidopsis thaliana. Here, we report that exogenous ABA application decreases RbohI expression and mannitol significantly increases RbohI expression at transcript level. The RbohI transcripts were strongly detected in dry seeds and roots. The loss-of-function mutant rbohI exhibited sensitivity to ABA and mannitol stress during germination. Furthermore, the lateral root growth of rbohI was severely inhibited after treatment with mannitol stress. Overexpression of RbohI in Arabidopsis significantly improves the drought tolerance. Moreover, more H2O2 accumulated in RbohI overexpressors than in wild type plants in response to mannitol stress. Our conclusion is that AtRbohI functions in drought-stress response in Arabidopsis thaliana.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Secas , Resposta ao Choque Térmico/fisiologia , NADPH Oxidases/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia
16.
Plant Physiol ; 171(3): 1651-64, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27208250

RESUMO

Calcium/calmodulin-dependent protein kinase (CCaMK) has been shown to play an important role in abscisic acid (ABA)-induced antioxidant defense and enhance the tolerance of plants to drought stress. However, its downstream molecular events are poorly understood. Here, we identify a NAC transcription factor, ZmNAC84, in maize (Zea mays), which physically interacts with ZmCCaMK in vitro and in vivo. ZmNAC84 displays a partially overlapping expression pattern with ZmCCaMK after ABA treatment, and H2O2 is required for ABA-induced ZmNAC84 expression. Functional analysis reveals that ZmNAC84 is essential for ABA-induced antioxidant defense in a ZmCCaMK-dependent manner. Furthermore, ZmCCaMK directly phosphorylates Ser-113 of ZmNAC84 in vitro, and Ser-113 is essential for the ABA-induced stimulation of antioxidant defense by ZmCCaMK. Moreover, overexpression of ZmNAC84 in tobacco (Nicotiana tabacum) can improve drought tolerance and alleviate drought-induced oxidative damage of transgenic plants. These results define a mechanism for ZmCCaMK function in ABA-induced antioxidant defense, where ABA-produced H2O2 first induces expression of ZmCCaMK and ZmNAC84 and activates ZmCCaMK. Subsequently, the activated ZmCCaMK phosphorylates ZmNAC84 at Ser-113, thereby inducing antioxidant defense by activating downstream genes.


Assuntos
Ácido Abscísico/metabolismo , Antioxidantes/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Fatores de Transcrição/metabolismo , Zea mays/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Secas , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Fosforilação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Plântula/genética , Serina/metabolismo , Nicotiana/genética , Nicotiana/fisiologia , Fatores de Transcrição/genética , Zea mays/efeitos dos fármacos , Zea mays/genética
17.
Plant Biotechnol J ; 14(2): 771-82, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26096642

RESUMO

In maize (Zea mays), the mitogen-activated protein kinase ZmMPK5 has been shown to be involved in abscisic acid (ABA)-induced antioxidant defence and to enhance the tolerance of plants to drought, salt stress and oxidative stress. However, the underlying molecular mechanisms are poorly understood. Here, using ZmMPK5 as bait in yeast two-hybrid screening, a protein interacting with ZmMPK5 named ZmABA2, which belongs to a member of the short-chain dehydrogenase/reductase family, was identified. Pull-down assay and bimolecular fluorescence complementation analysis and co-immunoprecipitation test confirmed that ZmMPK5 interacts with ZmABA2 in vitro and in vivo. Phosphorylation of Ser173 in ZmABA2 by ZmMPK5 was shown to increase the activity of ZmABA2 and the protein stability. Various abiotic stimuli induced the expression of ZmABA2 in leaves of maize plants. Pharmacological, biochemical and molecular biology and genetic analyses showed that both ZmMPK5 and ZmABA2 coordinately regulate the content of ABA. Overexpression of ZmABA2 in tobacco plants was found to elevate the content of ABA, regulate seed germination and root growth under drought and salt stress and enhance the tolerance of tobacco plants to drought and salt stress. These results suggest that ZmABA2 is a direct target of ZmMPK5 and is involved in ABA biosynthesis and functions.


Assuntos
Ácido Abscísico/biossíntese , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Plantas/metabolismo , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/genética , Secas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Reprodutibilidade dos Testes , Sementes/efeitos dos fármacos , Sementes/genética , Sementes/crescimento & desenvolvimento , Serina/metabolismo , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Nicotiana/efeitos dos fármacos , Nicotiana/genética
18.
Plant Cell Physiol ; 56(7): 1442-55, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25941233

RESUMO

Brassinosteroids (BRs) and ABA co-ordinately regulate water deficit tolerance in maize leaves. ZmMAP65-1a, a maize microtubule-associated protein (MAP) which plays an essential role in BR-induced antioxidant defense, has been characterized previously. However, the interactions among BR, ABA and ZmMAP65-1a in water deficit tolerance remain unexplored. In this study, we demonstrated that ABA was required for BR-induced antioxidant defense via ZmMAP65-1a by using biochemical blocking and ABA biosynthetic mutants. The expression of ZmMAP65-1a in maize leaves and mesophyll protoplasts could be increased under polyethylene glycol- (PEG) stimulated water deficit and ABA treatments. Furthermore, the importance of ABA in the early pathway of BR-induced water deficit tolerance was demonstrated by limiting ABA availability. Blocking ABA biosynthesis biochemically or by a null mutation inhibited the downstream gene expression of ZmMAP65-1a and the activity of ZmMAPK5 in the pathway. It also affected the activities of BR-induced antioxidant defense-related enzymes, namely ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), superoxide dismutase (SOD) and NADPH oxidase. In addition, combining results from transiently overexpressed or silenced ZmMAP65-1a in mesophyll protoplasts, we discovered that ZmMAP65-1a mediated the ABA-induced gene expression and activities of APX and SOD. Surprisingly, silencing of ZmMAP65-1a in mesophyll protoplasts did not alter the gene expression of ZmCCaMK and vice versa in response to ABA. Taken together, our data indicate that water deficit-induced ABA is a key mediator in BR-induced antioxidant defense via ZmMAP65-1a in maize.


Assuntos
Ácido Abscísico/metabolismo , Antioxidantes/metabolismo , Brassinosteroides/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Ácido Abscísico/farmacologia , Ascorbato Peroxidases/genética , Ascorbato Peroxidases/metabolismo , Vias Biossintéticas/genética , Brassinosteroides/farmacologia , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Catalase/genética , Catalase/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glutationa Redutase/genética , Glutationa Redutase/metabolismo , Proteínas Associadas aos Microtúbulos/classificação , Proteínas Associadas aos Microtúbulos/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutação , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Filogenia , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Protoplastos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Água/metabolismo , Zea mays/genética
19.
Plant Cell Physiol ; 56(5): 883-96, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25647327

RESUMO

Brassinosteroids (BRs) have been shown to enhance stress tolerance by inducing antioxidant defense systems. However, the mechanisms of BR-induced antioxidant defense in plants remain to be determined. In this study, the role of calcium (Ca(2+)) and maize calcium/calmodulin-dependent protein kinase (CCaMK), ZmCCaMK, in BR-induced antioxidant defense, and the relationship between ZmCCaMK and Ca(2+) in BR signaling were investigated. BR treatment led to a significant increase in cytosolic Ca(2+) concentration in protoplasts from maize mesophyll, and Ca(2+) was shown to be required for BR-induced antioxidant defense. Treatment with BR induced increases in gene expression and enzyme activity of ZmCCaMK in maize leaves. Transient overexpression and silencing of ZmCCaMK in maize protoplasts demonstrated that ZmCCaMK was required for BR-induced antioxidant defense. The requirement for CCaMK was further investigated using a loss-of-function mutant of OsCCaMK, the orthologous gene of ZmCCaMK in rice. Consistent with the findings in maize, BR treatment could not induce antioxidant defense in the rice OsCCAMK mutant. Furthermore, Ca(2+) was required for BR-induced gene expression and activation of ZmCCaMK, while ZmCCaMK was shown to enhance the BR-induced increase in cytosolic Ca(2+) concentration. Moreover, our results also showed that ZmCCaMK and H2O2 influenced each other. These results indicate that Ca(2+) works together with ZmCCaMK in BR-induced antioxidant defense, and there are two positive feedback loops between Ca(2+) or H2O2 and ZmCCaMK in BR signaling in maize.


Assuntos
Antioxidantes/metabolismo , Brassinosteroides/farmacologia , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Folhas de Planta/enzimologia , Proteínas de Plantas/metabolismo , Zea mays/enzimologia , Ascorbato Peroxidases/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Quelantes de Cálcio/farmacologia , Citosol/efeitos dos fármacos , Citosol/metabolismo , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Peróxido de Hidrogênio/metabolismo , Modelos Biológicos , Mutação/genética , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Proteínas de Plantas/genética , Protoplastos/efeitos dos fármacos , Protoplastos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Zea mays/efeitos dos fármacos , Zea mays/genética
20.
J Integr Plant Biol ; 57(2): 213-28, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24912543

RESUMO

In this study, the role of the rice (Oryza sativa L.) histidine kinase OsHK3 in abscisic acid (ABA)-induced antioxidant defense was investigated. Treatments with ABA, H2 O2 , and polyethylene glycol (PEG) induced the expression of OsHK3 in rice leaves, and H2 O2 is required for ABA-induced increase in the expression of OsHK3 under water stress. Subcellular localization analysis showed that OsHK3 is located in the cytoplasm and the plasma membrane. The transient expression analysis and the transient RNA interference test in rice protoplasts showed that OsHK3 is required for ABA-induced upregulation in the expression of antioxidant enzymes genes and the activities of antioxidant enzymes. Further analysis showed that OsHK3 functions upstream of the calcium/calmodulin-dependent protein kinase OsDMI3 and the mitogen-activated protein kinase OsMPK1 to regulate the activities of antioxidant enzymes in ABA signaling. Moreover, OsHK3 was also shown to regulate the expression of nicotinamide adenine dinucleotide phosphate oxidase genes, OsrbohB and OsrbohE, and the production of H2 O2 in ABA signaling. Our data indicate that OsHK3 play an important role in the regulation of ABA-induced antioxidant defense and in the feedback regulation of H2 O2 production in ABA signaling.


Assuntos
Ácido Abscísico/metabolismo , Antioxidantes/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Transdução de Sinais , Ácido Abscísico/farmacologia , Ascorbato Peroxidases/metabolismo , Catalase/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glutationa Redutase/metabolismo , Peróxido de Hidrogênio/farmacologia , Modelos Biológicos , Oryza/efeitos dos fármacos , Oryza/enzimologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Polietilenoglicóis/farmacologia , Transporte Proteico/efeitos dos fármacos , Protoplastos/efeitos dos fármacos , Protoplastos/metabolismo , Interferência de RNA/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Superóxido Dismutase/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA