Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Ecotoxicology ; 20(2): 419-28, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21229388

RESUMO

P-glycoprotein (P-gp), as an ATP-binding cassette transporter, transports a wide variety of substrates varying from small molecules like steroids to large polypeptides across the cell membrane in human and animals, even in aquatic animals. Although P-gp protein has attracted much attention of research, its effect on the toxicity of environmental toxicants such as antifouling biocides is still poorly understood. The goal of this study is to evaluate whether copper pyrithione (CuPT), Sea-Nine 211, dichlofluanid and tolylfluanid, four widely used antifouling agents, can be transported by P-gp in embryos of sea urchin Strongylocentrotus intermedius in the presence and absence of the P-gp inhibitor verapamil. Cytotoxcicities of Sea-Nine 211 (EC50 = 99 nM, at 4-arm pluteus) and dichlofluanid (EC50 = 144 nM, at multi-cell) are enhanced by the addition of the P-gp inhibitor, indicating that the two biocides are potential P-gp substrates. Tolylfluanid and CuPT are not transported by P-gp out of the cell, since no obvious changes in the cytotoxicities of the two biocides are observed no matter whether verapamil is added or not. In addition, to understand the mechanisms of ligand binding and its interaction with P-gp, a three-dimensional model of the sea urchin P-gp is generated based on the mouse crystal structure by using homology modeling approach. With this model, a flexible docking is performed and the results indicate that Sea-Nine 211 and dichlofluanid share the same binding site with verapamil, composed of key residues Lys677, Lys753, Thr756, Ala780, Met1033 and Phe1037, whereas tolylfluanid and CuPT display totally different binding modes to P-gp. This further demonstrates that Sea-Nine 211 and dichlofluanid are P-gp substrates, which provides us with new insights into the interactions of P-gp with the antifouling contaminants in aquatic invertebrate embryos.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Desinfetantes/toxicidade , Strongylocentrotus/efeitos dos fármacos , Sequência de Aminoácidos , Compostos de Anilina/toxicidade , Animais , Sítios de Ligação/efeitos dos fármacos , Incrustação Biológica/prevenção & controle , Transporte Biológico Ativo/efeitos dos fármacos , Crescimento e Desenvolvimento/efeitos dos fármacos , Dados de Sequência Molecular , Compostos Organometálicos/toxicidade , Piridinas/toxicidade , Strongylocentrotus/embriologia , Strongylocentrotus/metabolismo , Tiazóis/toxicidade , Poluentes Químicos da Água/toxicidade
2.
Int J Mol Sci ; 11(11): 4326-47, 2010 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-21151441

RESUMO

Development of anticancer drugs targeting Aurora B, an important member of the serine/threonine kinases family, has been extensively focused on in recent years. In this work, by applying an integrated computational method, including comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), homology modeling and molecular docking, we investigated the structural determinants of Aurora B inhibitors based on three different series of derivatives of 108 molecules. The resultant optimum 3D-QSAR models exhibited (q(2) = 0.605, r(2) (pred) = 0.826), (q(2) = 0.52, r(2) (pred) = 0.798) and (q(2) = 0.582, r(2) (pred) = 0.971) for MK-0457, GSK1070916 and SNS-314 classes, respectively, and the 3D contour maps generated from these models were analyzed individually. The contour map analysis for the MK-0457 model revealed the relative importance of steric and electrostatic effects for Aurora B inhibition, whereas, the electronegative groups with hydrogen bond donating capacity showed a great impact on the inhibitory activity for the derivatives of GSK1070916. Additionally, the predictive model of the SNS-314 class revealed the great importance of hydrophobic favorable contour, since hydrophobic favorable substituents added to this region bind to a deep and narrow hydrophobic pocket composed of residues that are hydrophobic in nature and thus enhanced the inhibitory activity. Moreover, based on the docking study, a further comparison of the binding modes was accomplished to identify a set of critical residues that play a key role in stabilizing the drug-target interactions. Overall, the high level of consistency between the 3D contour maps and the topographical features of binding sites led to our identification of several key structural requirements for more potency inhibitors. Taken together, the results will serve as a basis for future drug development of inhibitors against Aurora B kinase for various tumors.


Assuntos
Aurora Quinase B/química , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/farmacologia , Relação Quantitativa Estrutura-Atividade , Sequência de Aminoácidos , Aurora Quinase B/antagonistas & inibidores , Aurora Quinase B/metabolismo , Dados de Sequência Molecular , Inibidores de Proteínas Quinases/química
3.
PeerJ ; 7: e7242, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31309001

RESUMO

Exploring factors shaping genetic structure of marine fish is challenging due to fewer barriers to gene flow in the ocean. However, genome-wide sequence data can greatly enhance our ability to delineate previously unidentified population structure as well as potential adaptive divergence. The small yellow croaker (Larimichthys polyactis) is a commercially important fish species with high gene flow and its overwintering populations experience heterogeneous environment, suggesting possible population differentiation and adaptive divergence. To delineate patterns of population structure as well as test for signatures of local adaptation, a total of 68,666 quality filtered SNP markers were identified for 80 individuals from four overwintering populations by using restriction site-associated DNA sequencing (RAD-seq). Significant genetic differentiation among overwintering populations from the Central Yellow Sea, the South Yellow Sea and the North East China Sea were detected (Pair-wise F ST: 0.00036-0.00390), which were consistent with population division of overwintering groups inferred from traditional ecological approaches. In addition, a total of 126 unique SNPs were detected to be significantly associated with environmental parameters (temperature, salinity and turbidity). These candidate SNPs were involved in multiple pathways such as energy metabolism and phagocytosis, suggesting they may play key roles in growth and innate immunity. Our results suggested the existence of hitherto unrecognized cryptic population structure and local adaptation in this high gene flow marine fish and thus gain new insights into the design of management strategies.

4.
Genome Biol Evol ; 11(7): 1751-1764, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31173074

RESUMO

Understanding the patterns of genetic diversity and adaptation across species' range is crucial to assess its long-term persistence and determine appropriate conservation measures. The impacts of human activities on the genetic diversity and genetic adaptation to heterogeneous environments remain poorly understood in the marine realm. The roughskin sculpin (Trachidermus fasciatus) is a small catadromous fish, and has been listed as a second-class state protected aquatic animal since 1988 in China. To elucidate the underlying mechanism of population genetic structuring and genetic adaptations to local environments, RAD tags were sequenced for 202 individuals in nine populations across the range of T. fasciatus in China. The pairwise FST values over 9,271 filtered SNPs were significant except that between Dongying and Weifang. All the genetic clustering analysis revealed significant population structure with high support for eight distinct genetic clusters. Both the minor allele frequency spectra and Ne estimations suggested extremely small Ne in some populations (e.g., Qinhuangdao, Rongcheng, Wendeng, and Qingdao), which might result from recent population bottleneck. The strong genetic structure can be partly attributed to genetic drift and habitat fragmentation, likely due to the anthropogenic activities. Annotations of candidate adaptive loci suggested that genes involved in metabolism, development, and osmoregulation were critical for adaptation to spatially heterogenous environment of local populations. In the context of anthropogenic activities and environmental change, results of the present population genomic work provided important contributions to the understanding of genetic differentiation and adaptation to changing environments.


Assuntos
Genética Populacional/métodos , Metagenômica/métodos , Perciformes/genética , Animais , China , Ecossistema , Polimorfismo de Nucleotídeo Único/genética
5.
R Soc Open Sci ; 5(2): 171589, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29515871

RESUMO

Restriction site-associated DNA (RAD) sequencing is revolutionizing studies in ecological, evolutionary and conservation genomics. However, the assembly of paired-end RAD reads with random-sheared ends is still challenging, especially for non-model species with high genetic variance. Here, we present an efficient optimized approach with a pipeline software, RADassembler, which makes full use of paired-end RAD reads with random-sheared ends from multiple individuals to assemble RAD contigs. RADassembler integrates the algorithms for choosing the optimal number of mismatches within and across individuals at the clustering stage, and then uses a two-step assembly approach at the assembly stage. RADassembler also uses data reduction and parallelization strategies to promote efficiency. Compared to other tools, both the assembly results based on simulation and real RAD datasets demonstrated that RADassembler could always assemble the appropriate number of contigs with high qualities, and more read pairs were properly mapped to the assembled contigs. This approach provides an optimal tool for dealing with the complexity in the assembly of paired-end RAD reads with random-sheared ends for non-model species in ecological, evolutionary and conservation studies. RADassembler is available at https://github.com/lyl8086/RADscripts.

6.
Mol Ecol Resour ; 16(3): 755-68, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26439680

RESUMO

Recent advances in high-throughput sequencing technologies have offered the possibility to generate genomewide sequence data to delineate previously unidentified genetic structure, obtain more accurate estimates of demographic parameters and to evaluate potential adaptive divergence. Here, we identified 27 556 single nucleotide polymorphisms for the small yellow croaker (Larimichthys polyactis) using restriction-site-associated DNA (RAD) sequencing of 24 individuals from two populations. Significant sources of genetic variation were identified, with an average nucleotide diversity (π) of 0.00105 ± 0.000425 across individuals, and long-term effective population size was thus estimated to range between 26 172 and 261 716. According to the results, no differentiation between the two populations was detected based on the SNP data set of top quality score per contig or neutral loci. However, the two analysed populations were highly differentiated based on SNP data set of both top FST value per contig and the outlier SNPs. Moreover, local adaptation was highlighted by an FST -based outlier tests implemented in LOSITAN and a total of 538 potentially locally selected SNPs were identified. blast2go annotation of contigs containing the outlier SNPs yielded hits for 37 (66%) of 56 significant blastx matches. Candidate genes for local adaptation constituted a wide array of biological functions, including cellular response to oxidative stress, actin filament binding, ion transmembrane transport and synapse assembly. The generated SNP resources in this study provided a valuable tool for future population genetics and genomics studies of L. polyactis.


Assuntos
Bases de Dados Genéticas , Sequenciamento de Nucleotídeos em Larga Escala , Perciformes/genética , Polimorfismo de Nucleotídeo Único , Adaptação Biológica , Animais , Genética Populacional
7.
PLoS One ; 11(4): e0154020, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27100462

RESUMO

The spatial distribution of genetic diversity has been long considered as a key component of policy development for management and conservation of marine fishes. However, unraveling the population genetic structure of migratory fish species is challenging due to high potential for gene flow. Despite the shallow population differentiation revealed by putatively neutral loci, the higher genetic differentiation with panels of putatively adaptive loci could provide greater resolution for stock identification. Here, patterns of population differentiation of small yellow croaker (Larimichthys polyactis) were investigated by genotyping 15 highly polymorphic microsatellites in 337 individuals of 15 geographic populations collected from both spawning and overwintering grounds. Outlier analyses indicated that the locus Lpol03 might be under directional selection, which showed a strong homology with Grid2 gene encoding the glutamate receptor δ2 protein (GluRδ2). Based on Lpol03, two distinct clusters were identified by both STRUCTURE and PCoA analyses, suggesting that there were two overwintering aggregations of L. polyactis. A novel migration pattern was suggested for L. polyactis, which was inconsistent with results of previous studies based on historical fishing yield statistics. These results provided new perspectives on the population genetic structure and migratory routes of L. polyactis, which could have significant implications for sustainable management and utilization of this important fishery resource.


Assuntos
Adaptação Fisiológica/fisiologia , Fluxo Gênico , Biologia Marinha , Perciformes/genética , Animais , Repetições de Microssatélites/genética , Perciformes/fisiologia
8.
PLoS One ; 11(6): e0157809, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27336696

RESUMO

Next-generation sequencing and the collection of genome-wide single-nucleotide polymorphisms (SNPs) allow identifying fine-scale population genetic structure and genomic regions under selection. The spotted sea bass (Lateolabrax maculatus) is a non-model species of ecological and commercial importance and widely distributed in northwestern Pacific. A total of 22 648 SNPs was discovered across the genome of L. maculatus by paired-end sequencing of restriction-site associated DNA (RAD-PE) for 30 individuals from two populations. The nucleotide diversity (π) for each population was 0.0028±0.0001 in Dandong and 0.0018±0.0001 in Beihai, respectively. Shallow but significant genetic differentiation was detected between the two populations analyzed by using both the whole data set (FST = 0.0550, P < 0.001) and the putatively neutral SNPs (FST = 0.0347, P < 0.001). However, the two populations were highly differentiated based on the putatively adaptive SNPs (FST = 0.6929, P < 0.001). Moreover, a total of 356 SNPs representing 298 unique loci were detected as outliers putatively under divergent selection by FST-based outlier tests as implemented in BAYESCAN and LOSITAN. Functional annotation of the contigs containing putatively adaptive SNPs yielded hits for 22 of 55 (40%) significant BLASTX matches. Candidate genes for local selection constituted a wide array of functions, including binding, catalytic and metabolic activities, etc. The analyses with the SNPs developed in the present study highlighted the importance of genome-wide genetic variation for inference of population structure and local adaptation in L. maculatus.


Assuntos
Bass/genética , Variação Genética , Genética Populacional , Estudo de Associação Genômica Ampla , Genótipo , Polimorfismo de Nucleotídeo Único , Animais , Análise por Conglomerados , Biologia Computacional/métodos , Ontologia Genética , Anotação de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA