RESUMO
BACKGROUND: To evaluate the improvement of evaluation accuracy of cervical maturity for Chinese women with labor induction by adding objective ultrasound data and machine learning models to the existing traditional Bishop method. METHODS: The machine learning model was trained and tested using 101 sets of data from pregnant women who were examined and had their delivery in Peking University Third Hospital in between December 2019 and January 2021. The inputs of the model included cervical length, Bishop score, angle, age, induced labor time, measurement time (MT), measurement time to induced labor time (MTILT), method of induced labor, and primiparity/multiparity. The output of the model is the predicted time from induced labor to labor. Our experiments analyzed the effectiveness of three machine learning models: XGBoost, CatBoost and RF(Random forest). we consider the root-mean-squared error (RMSE) and the mean absolute error (MAE) as the criterion to evaluate the accuracy of the model. Difference was compared using t-test on RMSE between the machine learning model and the traditional Bishop score. RESULTS: The mean absolute error of the prediction result of Bishop scoring method was 19.45 h, and the RMSE was 24.56 h. The prediction error of machine learning model was lower than the Bishop score method. Among the three machine learning models, the MAE of the model with the best prediction effect was 13.49 h and the RMSE was 16.98 h. After selection of feature the prediction accuracy of the XGBoost and RF was slightly improved. After feature selection and artificially removing the Bishop score, the prediction accuracy of the three models decreased slightly. The best model was XGBoost (p = 0.0017). The p-value of the other two models was < 0.01. CONCLUSION: In the evaluation of cervical maturity, the results of machine learning method are more objective and significantly accurate compared with the traditional Bishop scoring method. The machine learning method is a better predictor of cervical maturity than the traditional Bishop method.
Assuntos
Colo do Útero , População do Leste Asiático , Trabalho de Parto Induzido , Trabalho de Parto , Feminino , Humanos , Gravidez , Colo do Útero/diagnóstico por imagem , Trabalho de Parto Induzido/métodos , Paridade , Valor Preditivo dos Testes , Maturidade Cervical , Ultrassonografia , Aprendizado de MáquinaRESUMO
Selective isolation of phosphoproteins is of great significance in biological applications. Herein, titanium dioxide-functionalized dendritic mesoporous silica nanoparticles are prepared via a post-grafting method for selective capture of phosphoproteins. The fabricated nanoparticles possess a unique central-radial pore structure with a surface area of 666.66 m2 /g and a pore size of 22.2 nm. The high-binding affinity of TiO2 with the phosphate groups facilitates the selective adsorption of phosphoproteins. Moreover, the open central-radial pore structure endows the dendritic mesoporous nanoparticles with better adsorption performance toward phosphoproteins with respect to the commercial titanium dioxide nanoparticles and titanium dioxide-functionalized conventional mesoporous silica nanoparticles by providing more accessible affinity sites. At pH 2, an adsorption capacity of 157.2 mg/g is derived for ß-casein. The feasibility of the as-prepared dendritic material in real biological sample assay is demonstrated by the selective isolation of phosphoproteins from defatted milk, as illustrated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis assay.
Assuntos
Nanopartículas/química , Fosfoproteínas/análise , Fosfoproteínas/isolamento & purificação , Dióxido de Silício/química , Titânio/química , Adsorção , Animais , Cromatografia de Afinidade/métodos , Leite/químicaRESUMO
The aim of this study is to explore the various modes of action miR-497 has on human cervical cancer (CC) cell behavior. We also speculate that miR-497 achieves its anti-tumor role by governing RAF-1 via MAPK/ERK signaling pathway. CC tissues with corresponding adjacent normal tissues were collected from 168 CC patients. RAF-1-positive cells were identified by means of immunohistochemistry in tissues. A series of inhibitors, mimics and siRNA against RAF-1 were introduced to validate regulatory mechanisms for miR-497 and RAF-1. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot assay were employed for evaluating alternations of miR-497, RAF-1, and MAPK/ERK signaling pathway. HeLa cell proliferation, invasion, migration, cycle progression, and apoptosis were assessed by means of CCK-8, wound-healing, transwell invasion assays, and flow cytometry, respectively. The target prediction program and luciferase activity determination were used to identify miR-497 targeting RAF-1. We determined reduced miR-497 expression and elevated expression of RAF-1 in CC tissues as opposed to adjacent tissues. Transfection of miR-497 mimics and siRNA-RAF-1 both decreased levels of MEK1, ERK1, and p38 phosphorylation in HeLa cells, inhibited cell proliferation, migration and invasion, induced more cells arrested in the G0/G1 phase, and promoted cell apoptosis; while miR-497 inhibitors led to opposite results. These findings indicate miR-497 as a tumor suppressor results from negative regulation of the MAPK/ERK signaling pathway via RAF-1 in CC.
Assuntos
Proliferação de Células/genética , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-raf/genética , Neoplasias do Colo do Útero/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Apoptose/genética , Movimento Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Células HeLa , Humanos , MAP Quinase Quinase 1/genética , Sistema de Sinalização das MAP Quinases/genética , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , RNA Interferente Pequeno/genética , Neoplasias do Colo do Útero/patologiaRESUMO
Activity-directed fractionation and purification processes were employed to identify xanthine oxidase (XO) inhibitory compounds from the leaves of Perilla frutescens. The total extract was evaluated in vitro on XO inhibitory activity and in vivo in an experimental model with potassium oxonate-induced hyperuricemia in mice which was used to evaluate anti-hyperuricemic activity. The crude extract showed expressive urate-lowering activity results. Solvent partitioning of the total extract followed by macroporous resin column chromatography of the n-butanol extract yielded four extracts and eluted parts. Among them, only the 70% ethanol eluted part of the n-butanol extract showed strong activity and therefore was subjected to separation and purification using various chromatographic techniques. Five compounds showing potent activity were identified by comparing their spectral data with literature values to be caffeic acid, vinyl caffeate, rosmarinic acid, methyl rosmarinate, and apigenin. These results indicate that pending further study, these compounds could be used as novel natural product agents for the treatment of hyperuricemia.
Assuntos
Bioensaio , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/farmacologia , Perilla frutescens/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Folhas de Planta/química , Xantina Oxidase/antagonistas & inibidores , Animais , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Descoberta de Drogas , Inibidores Enzimáticos/química , Hiperuricemia/induzido quimicamente , Hiperuricemia/tratamento farmacológico , Cinética , Camundongos , Estrutura Molecular , Extratos Vegetais/químicaRESUMO
OBJECTIVE: To report the first case of fructose-1,6-bisphosphatase (FBPase) deficiency diagnosed by genetic sequencing in China, and to improve the cognition of this rare disease. METHODS: The clinical and laboratory characteristics of FBPase deficiency were reviewed, and the findings of direct sequencing of genomic DNA described, and published literature on FBPase deficiency reviewed. RESULTS: A 23-month-old boy was repeatedly admitted for 5 times with recurrent onset of lethargy and drowsiness every time after diarrhea and vomiting for 2-3 days during the last 7 months after being weaned, and he had convulsion this time. On admission, his physical examination showed tachypnea, and mild hepatomegaly, and he had normal physical and mental development. His paternal-grandparents had cousinship, and his parents were collateral relatives in the fifth generation. The laboratory findings revealed severe hypoglycemia, lacticacidemia, metabolic acidosis, ketonemia and hyperuricacidemia. After intravenous infusion of glucose, bicarbonate and antibiotics, there was a dramatic clinical improvement in a short time. Urine organic acids analyses ever showed an elevation of gluconeogenetic substrates including lactic acid, ketone and glycerol. The molecular analysis of liver fructose-1, 6-bisphosphatase (FBP1) gene showed a homozygous mutation with one G residue insertion at base 961 in exon 7(c.960/961insG), resulting in a reading frame shift mutation of 320th amino acid and premature termination at 333th amino acid. This mutation had been reported to be the most common mutation among patients with FBPase deficiency. Frequent feeding by avoiding taking in too much sweet food, restriction of food with high protein and fat, and the use of uncooked starch had been taken after our patient was discharged from the hospital. There had been no attack in the last 9 months. CONCLUSION: Clinicians must consider the diagnosis of FBPase deficiency when confronted with the patient who has episodes of severe hypoglycemia and lacticacidemia, especially accompanied by metabolic acidosis and ketonemia, which are typically triggered by infection and fasting. Early diagnosis, urgent treatment of hypoglycemia and appropriate diet control can prevent death, improve growth and quality of life of these children.
Assuntos
Deficiência de Frutose-1,6-Difosfatase/genética , Pré-Escolar , Diarreia , Éxons , Deficiência de Frutose-1,6-Difosfatase/diagnóstico , Humanos , Hipoglicemia , Fígado/enzimologia , Masculino , Mutação , VômitoRESUMO
BACKGROUND: Regular physical activity during childhood and adolescence is beneficial to bone development, as evidenced by the ability to increase bone density and peak bone mass by promoting bone formation. AIM: To investigate the effects of exercise on bone formation in growing mice and to investigate the underlying mechanisms. METHODS: 20 growing mice were randomly divided into two groups: Con group (control group, n = 10) and Ex group (treadmill exercise group, n = 10). Hematoxylin-eosin staining, immunohistochemistry, and micro-CT scanning were used to assess the bone formation-related indexes of the mouse femur. Bioinformatics analysis was used to find potential miRNAs targets of long non-coding RNA H19 (lncRNA H19). RT-qPCR and Western Blot were used to confirm potential miRNA target genes of lncRNA H19 and the role of lncRNA H19 in promoting osteogenic differentiation. RESULTS: Compared with the Con group, the expression of bone morphogenetic protein 2 was also significantly increased. The micro-CT results showed that 8 wk moderate-intensity treadmill exercise significantly increased bone mineral density, bone volume fraction, and the number of trabeculae, and decreased trabecular segregation in the femur of mice. Inhibition of lncRNA H19 significantly upregulated the expression of miR-149 and suppressed the expression of markers of osteogenic differentiation. In addition, knockdown of lncRNA H19 significantly downregulated the expression of autophagy markers, which is consistent with the results of autophagy-related protein changes detected in mouse femurs by immunofluorescence. CONCLUSION: Appropriate treadmill exercise can effectively stimulate bone formation and promote the increase of bone density and bone volume in growing mice, thus enhancing the peak bone mass of mice. The lncRNA H19/miR-149 axis plays an important regulatory role in osteogenic differentiation.
RESUMO
Background: The interaction between the intestinal flora and gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) remains poorly understood, despite the known effect of the gut microbiota on gastrointestinal adenocarcinomas. Hence, the present research aimed to determine the potential causal correlation between the intestinal flora and GEP-NENs by conducting a bidirectional Mendelian randomization (MR) analysis. Methods: Two-sample MR analysis was conducted using the summary statistics of the gut microbiota from the MiBioGen consortium and those of GEP-NENs from the FinnGen research project. The inverse-variance weighted approach was utilized as the primary analytical method. To enhance the robustness of our findings, multiple sensitivity tests were performed, including Cochran's Q test for evaluating heterogeneity, the MR-Egger intercept test to detect horizontal pleiotropy, and the MR-PRESSO test to identify outliers and assess pleiotropy bias. Additionally, a leave-one-out analysis was performed to validate the consistency of our findings. The MR-Steiger test was also utilized to determine the causal direction in the correlation between the gut microbiota and GEP-NENs. Finally, a reverse MR analysis was performed to assess reverse causality between the intestinal flora and GEP-NENs. Results: We identified 42 taxa of the gut microbiota that were potentially causally associated with GEP-NENs; of these taxa, 7, 8, 11, and 16 taxa were causally associated with pancreatic NENs, colorectal NENs, small intestinal NENs, and gastric NENs, respectively. After adjusting for false discovery rate (FDR) correction, we found significant causal links of Euryarchaeota with small intestinal NENs and Family XIII UCG-001 with gastric NENs. The sensitivity analyses confirmed the stability of these correlations. In the reverse MR analysis, colorectal NENs and small intestinal NENs were found to be associated with variations in 8 and 6 different taxa of the gut microbiota, respectively. After adjusting for FDR correction, no significant causal links were detected between GEP-NENs and the intestinal flora. Conclusion: The present study reveals a potential causal association between certain taxa of the intestinal flora and GEP-NENs, thus providing new perspectives regarding the role of the intestinal flora in the development of these tumors. These insights could provide innovative approaches to screen and prevent these diseases.
RESUMO
Coxsackievirus B3 (CVB3), one serotype of enteroviruses, can induce fatal myocarditis and hepatitis in neonates, but both treatment and vaccine are unavailable. Few reports tested antivirals to reduce CVB3. Several antivirals were developed against other enterovirus serotypes, but these antivirals failed in clinical trials due to side effects and drug resistance. Repurposing of clinical drugs targeting cellular factors, which enhance viral replication, may be another option. Parasite and cancer studies showed that the cellular protein kinase B (Akt) decreases interferon (IFN), apoptosis, and interleukin (IL)-6-induced STAT3 responses, which suppress CVB3 replication. Furthermore, miltefosine, the Akt inhibitor used in the clinic for parasite infections, enhances IL-6, IFN, and apoptosis responses in treated patients, suggesting that miltefosine could be the potential antiviral for CVB3. This study was therefore designated to test the antiviral effects of miltefosine against CVB3 in vitro and especially, in mice, as few studies test miltefosine in vitro, but not in vivo. In vitro results showed that miltefosine inhibited viral replication with enhanced activation of the cellular transcription factor, STAT3, which is reported to reduce CVB3 both in vitro and in mice. Notably, STAT3 knockdown abolished the anti-CVB3 activity of miltefosine in vitro. Mouse studies demonstrated that miltefosine pretreatment reduced CVB3 lethality of mice with decreased virus loads, organ damage, and apoptosis, but enhanced STAT3 activation. Miltefosine could be prophylaxis for CVB3 by targeting Akt to enhance STAT3 activation in the mechanism, which is independent of IFN responses and hardly reported in pathogen infections.
Assuntos
Infecções por Enterovirus , Fosforilcolina/análogos & derivados , Fator de Transcrição STAT3 , Humanos , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt , Apoptose , Antígenos Virais , Infecções por Enterovirus/tratamento farmacológico , Interleucina-6 , Antivirais/farmacologiaRESUMO
Cervical cancer (CCa) patients with lymph node (LN) metastasis face poor prognoses and have limited treatment options. Aberrant N6-methyladenosine (m6A) modification of RNAs are known to promote tumor metastasis, but their role in CCa remains unclear. Our study reveals that HNRNPC, an alternative splicing (AS) factor and m6A reader, increases tumor-related variants through m6A-dependent manner, thereby promoting lymphatic metastasis in CCa. We found that HNRNPC overexpression correlates with lymphatic metastasis and poorer prognoses in CCa patients. Functionally, knocking down HNRNPC markedly inhibited the migration and invasion of several CCa cell lines, while supplementing HNRNPC restored the malignant phenotypes of these cells. Mechanistically, HNRNPC regulates exon skipping of FOXM1 by binding to its m6A-modified motif. Mutating the m6A site on FOXM1 weakened the interaction between HNRNPC and FOXM1 pre-RNA, leading to a reduction in the metastasis-related FOXM1-S variant. In conclusion, our findings demonstrate that m6A-dependent alternative splicing mediated by HNRNPC is essential for lymphatic metastasis in CCa, potentially providing novel clinical markers and therapeutic strategies for patients with advanced CCa.
Assuntos
Processamento Alternativo , Proteína Forkhead Box M1 , Ribonucleoproteínas Nucleares Heterogêneas Grupo C , Metástase Linfática , Neoplasias do Colo do Útero , Humanos , Processamento Alternativo/genética , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/genética , Feminino , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/genética , Linhagem Celular Tumoral , Adenosina/análogos & derivados , Adenosina/metabolismo , Camundongos Nus , Animais , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Camundongos , Pessoa de Meia-Idade , Camundongos Endogâmicos BALB CRESUMO
Ultrastructural observations, combined with proteomic and comparative genomic analyses, were applied to interpret the differences in protein composition and oil-body characteristics of mature seed of two Brassica napus lines with high and low oil contents of 55.19% and 36.49%, respectively. The results showed that oil bodies were arranged much closer in the high than in the low oil content line, and differences in cell size and thickness of cell walls were also observed. There were 119 and 32 differentially expressed proteins (DEPs) of total and oil-body proteins identified. The 119 DEPs of total protein were mainly involved in the oil-related, dehydration-related, storage and defense/disease, and some of these may be related to oil formation. The DEPs involved with dehydration-related were both detected in total and oil-body proteins for high and low oil lines and may be correlated with the number and size of oil bodies in the different lines. Some genes that corresponded to DEPs were confirmed by quantitative trait loci (QTL) mapping analysis for oil content. The results revealed that some candidate genes deduced from DEPs were located in the confidence intervals of QTL for oil content. Finally, the function of one gene that coded storage protein was verified by using a collection of Arabidopsis lines that can conditionally express the full length cDNA from developing seeds of B. napus.
Assuntos
Brassica napus/química , Brassica napus/genética , Óleos de Plantas/análise , Proteínas de Plantas/metabolismo , Sementes/química , Arabidopsis , Brassica napus/metabolismo , Tamanho Celular , DNA Complementar/genética , Eletroforese em Gel Bidimensional , Ácidos Graxos/análise , Genômica/métodos , Glucosinolatos/análise , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Proteômica/métodos , Locos de Características Quantitativas/genética , Especificidade da EspécieRESUMO
OBJECTIVE: To investigate the diagnostic values of heart rate varibility (HRV) on unexplained syncope (UPS) in children. METHODS: Forty-nine children with unexplained syncope underwent head-up tilt test (HUT) and Holter monitering, then the differences were analyzed between HUT positive children and HUT negative children. The receiver operating characteristic (ROC) curve was used to explore the diagnostic values of HRV. RESULTS: Of the 49 patients, 32 (65.3%) were HUT positive. The diagnostic positive rate of HUT was 65.3%. The SDNNi, rMSSD, TP, ULF, VLF, LF and HF in the HUT positive group were significantly higher than those in the HUT negative group (P<0.05), respectively. There were no significant differences in SDNN, pNN50 and triangular index between the patients with different HUT outcomes (P>0.05). The ROC curve on the predictive values of SDNNi, rMSSD, TP, ULF, VLF, LF and HF showed that ULF, LF, and HF (12 947.00, 9 462.50, and 9 509.00) as cutting values produced both high sensitivity (75.0%, 68.8%, and 68.8%) and specificity (64.7%, 64.7%, and 64.7%) to predict the diagnostic values of HUT for diagnosing unexplained syncope. CONCLUSION: ULF, LF and HF can be considered as indicators for diagnosing neurally-mediated syncope in children. ULF, LF, and HF (12 947.00, 9 462.50, and 9 509.00) taken as cutting values may produce both high sensitivity and specificity.
Assuntos
Frequência Cardíaca , Síndrome da Taquicardia Postural Ortostática , Síncope Vasovagal , Teste da Mesa Inclinada , Adolescente , Criança , Pré-Escolar , Feminino , Frequência Cardíaca/fisiologia , Humanos , Hipotensão Ortostática/diagnóstico , Hipotensão Ortostática/fisiopatologia , Masculino , Síndrome da Taquicardia Postural Ortostática/diagnóstico , Síndrome da Taquicardia Postural Ortostática/fisiopatologia , Curva ROC , Síncope Vasovagal/diagnóstico , Síncope Vasovagal/fisiopatologiaRESUMO
OBJECTIVE: To study the changes of plasma prealbumin (PA) and C-reactive protein (CRP) in children with Kawasaki disease, and to explore the importance of integral analysis of plasma PA and CRP in predicting the severity of coronary artery lesions in Kawasaki Disease. METHODS: In a retrorespective study, 108 children with Kawasaki disease admitted in our hospital were enrolled. The statistical methods included t test, Chi-square test, and ROC curve analysis. The changes of plasma PA and CRP during the disease were studied. Also, the usefulness of comprehensive analysis of PA and CRP in predicting the severity of coronary artery lesions was also evaluated. RESULTS: During the acute phase of Kawasaki disease, the plasma PA level was decreased distinctly, while the CRP level increased significantly. Among the 55 cases whose plasma PA level was <80 mg/L, setting CRP=76.5 mg/L as the cutoff value, the occurrence of coronary artery dilations for those with CRP level<76.5 mg/L was significantly higher than those with CRP level >76.5 mg/L (P<0.05). CONCLUSION: Plasma PA and CRP changed greatly during the process of Kawasaki disease. And it may be of importance in predicting the severity of coronary artery lesions, by using integrated plasma PA and CRP.
Assuntos
Proteína C-Reativa/metabolismo , Vasos Coronários/patologia , Síndrome de Linfonodos Mucocutâneos/sangue , Síndrome de Linfonodos Mucocutâneos/patologia , Pré-Albumina/metabolismo , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Valor Preditivo dos TestesRESUMO
BACKGROUND/AIM: Head and neck squamous cell carcinoma (HNSCC) is the sixth leading cancer worldwide, with a high recurrence rate and a low cure rate. Phosphoglycerate kinase 1 (PGK1), an essential enzyme in the aerobic glycolysis pathway, is a prognostic marker for a variety of cancers. However, it remains unclear whether a PGK1-based immune signature can be used as a prognostic biomarker in HNSCC patients. MATERIALS AND METHODS: We explored the potential oncogenic mechanisms of PGK1 by multiple bioinformatics analyses combined with multiple databases, including the correlation between PGK1 and prognosis, and the infiltration of immune cells in HNSCC. Functional enrichment analyses were further performed to investigate the potential role of PGK1 in HNSCC. RESULTS: The expression of PGK1 was significantly higher in HNSCC tissues compared to normal tissues. High expression of PGK1 was associated with poor prognosis in HNSCC, and multivariate cox regression analysis showed that PGK1 could be an independent prognostic factor in HNSCC. Pathway analysis revealed that PGK1 may regulate the pathogenesis of HNSCC through the immune signaling pathway. Moreover, PGK1 expression significantly correlated with the infiltration level of 16 types of immune cells. CONCLUSION: The current study reports that PGK1 expression was increased in HNSCC and that high PGK1 expression was closely associated with poor prognosis and immune cell infiltration, which could serve as a promising independent prognostic biomarker and potential immunotherapeutic target for HNSCC.
Assuntos
Neoplasias de Cabeça e Pescoço , Fosfoglicerato Quinase , Transdução de Sinais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Biomarcadores , Neoplasias de Cabeça e Pescoço/diagnóstico , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico , Fosfoglicerato Quinase/metabolismoRESUMO
Autoantibodies have been detected in leprosy patients, indicating that infection with M. leprae may lead to autoimmune disorders. However, whether autoimmune response last until patients are cured is unknown. Knowing the autoimmune response in cured leprosy patients is essential to identify whether symptoms are caused by leprosy itself or by other immune-related diseases. This knowledge is essential for the ongoing health management in cured leprosy patients where autoimmune disorders still exist. In our study, we selected six autoantibodies, including anticardiolipin antibody of IgG (ACA), anti-nuclear antibody (ANA), extractable nuclear antigen antibody (ENA), anti-streptolysin O (ASO), anti-double stranded DNA antibody (dsDNA), and rheumatoid factor (RF), that had been reported in leprosy patients as typical autoantibodies. We tested the six typical autoantibodies combined with LACC1, which encodes a protein associated with autoimmune disease such as Crohn's disease and is also the susceptible gene conferring leprosy risk, in cured leprosy patients through ELISA to assess the cured patient's immune status. We observed high positive rates of autoantibodies in cured leprosy patients, and the average plasma levels of five (ACA, ANA, ENA, ASO, and RF) out of the six autoantibodies were significantly higher in cured leprosy patients than in controls. The positive detection of autoantibodies is independent of the recovery period. Moreover, the level of these autoantibodies showed a strong positive correlation with the level of LACC1 in both controls and cured patients. This study showed that there is long-term autoimmunological activation in leprosy patients, even after decades of recovery. Autoimmune responses may influence the development and prognosis of leprosy. Special care should be given to posttreatment or cured leprosy patients regarding long-term autoimmunological activation.
Assuntos
Doenças Autoimunes , Hanseníase , Humanos , Autoanticorpos , Anticorpos Antinucleares , Fator Reumatoide , Mycobacterium lepraeRESUMO
Trehalose is a substrate for the chitin synthesis pathway in insects. Thus, it directly affects chitin synthesis and metabolism. Trehalose-6-phosphate synthase (TPS) is a crucial enzyme in the trehalose synthesis pathway in insects, but its functions in Mythimna separata remain unclear. In this study, a TPS-encoding sequence in M. separata (MsTPS) was cloned and characterized. Its expression patterns at different developmental stages and in diverse tissues were investigated. The results indicated that MsTPS was expressed at all analyzed developmental stages, with peak expression levels in the pupal stage. Moreover, MsTPS was expressed in the foregut, midgut, hindgut, fat body, salivary gland, Malpighian tubules, and integument, with the highest expression levels in the fat body. The inhibition of MsTPS expression via RNA interference (RNAi) resulted in significant decreases in the trehalose content and TPS activity. It also resulted in significant changes in Chitin synthase (MsCHSA and MsCHSB) expression, and significantly decrease the chitin content in the midgut and integument of M. separata. Additionally, the silencing of MsTPS was associated with a significant decrease in M. separata weight, larval feed intake, and ability to utilize food. It also induced abnormal phenotypic changes and increased the M. separata mortality and malformation rates. Hence, MsTPS is important for M. separata chitin synthesis. The results of this study also suggest RNAi technology may be useful for enhancing the methods used to control M. separata infestations.
RESUMO
Pyroptosis is a form of pro-inflammatory cell death that can be mediated by gasdermin D (GSDMD) activation induced by inflammatory caspases such as caspase-1. Emerging evidence suggests that targeting GSDMD activation or pyroptosis may facilitate the reduction of vascular inflammation and atherosclerotic lesion development. The current study investigated the therapeutic effects of inhibition of GSDMD activation by the novel GSDMD inhibitor N-Benzyloxycarbonyl-Leu-Leu-Ser-Asp(OMe)-fluoromethylketone (Z-LLSD-FMK), the specific caspase-1 inhibitor N-Benzyloxycarbonyl-Tyr-Val-Ala-Asp(OMe)-fluoromethylketone (Z-YVAD-FMK), and a combination of both on atherosclerosis in ApoE-/- mice fed a western diet at 5 weeks of age, and further determined the efficacy of these polypeptide inhibitors in bone marrow-derived macrophages (BMDMs). In vivo studies there was plaque formation, GSDMD activation, and caspase-1 activation in aortas, which increased gradually from 6 to 18 weeks of age, and increased markedly at 14 and 18 weeks of age. ApoE-/- mice were administered Z-LLSD-FMK (200 µg/day), Z-YVAD-FMK (200 µg/day), a combination of both, or vehicle control intraperitoneally from 14 to 18 weeks of age. Treatment significantly reduced lesion formation, macrophage infiltration in lesions, protein levels of vascular cell adhesion molecule-1 and monocyte chemoattractant protein-1, and pyroptosis-related proteins such as activated caspase-1, activated GSDMD, cleaved interleukin(IL)-1ß, and high mobility group box 1 in aortas. No overt differences in plasma lipid contents were detected. In vitro treatment with these polypeptide inhibitors dramatically decreased the percentage of propidium iodide-positive BMDMs, the release of lactate dehydrogenase and IL-1ß, and protein levels of pyroptosis-related proteins both in supernatants and cell lysates elevated by lipopolysaccharide + nigericin. Notably however, there were no significant differences in the above-mentioned results between the Z-LLSD-FMK group and the Z-YVAD-FMK group, and the combination of both did not yield enhanced effects. These findings indicate that suppression of GSDMD activation by Z-LLSD-FMK or Z-YVAD-FMK reduces vascular inflammation and lesion development in ApoE-/- mice.
RESUMO
Wound healing is a considerable problem for clinicians. Ever greater attention has been paid to the role of Chinese herbal monomers and compounds on wound healing. This study aims to elucidate the wound healing mechanism of Modified Hongyu Decoction (MHD) in vivo and in vitro. MHD wound healing activity in vivo was evaluated using an excision rat model. H and E staining, Masson's staining and immunofluorescence of wound tissue on days 7 and 14 were performed to evaluate the efficacy of MHD on wound healing. Subsequently, human umbilical vein endothelial cells (HUVECs) were used to evaluate wound healing characteristics in vitro. Cell Counting Kit-8 (CCK-8) and scratch assays were conducted to assess the effects of MHD on the proliferation and migration of HUVECs. The involvement of the VEGF/PI3K/Akt signaling pathway was assessed by western blotting. The rats in the MHD group displayed more neovascularization and collagen fibers. Western blotting of wound tissue showed that VEGF, PI3K, p-Akt and p-eNOS expression were significantly increased (p<0.05) in the MHD group. Cell Counting Kit-8 and scratch assays demonstrated that MHD promoted HUVECs proliferation and migration. MHD treatment significantly increased VEGF, PI3K, p-Akt and p-eNOS expression in HUVECs (p<0.05), which was inhibited by LY294002. Both in vivo and in vitro data indicated that MHD promotes wound healing by regulating the VEGF/PI3K/Akt signaling pathway.
Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Humanos , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator A de Crescimento do Endotélio Vascular , Proliferação de Células , Movimento Celular , Transdução de Sinais , Cicatrização , Células Endoteliais da Veia Umbilical Humana/metabolismoRESUMO
Embryogenic cultures of longan (Dimocarpus longan Lour.) contain various metabolites with pharmacological properties that may function in the regulation of somatic embryogenesis (SE). In this study, based on widely targeted metabolomics, 501 metabolites were obtained from the embryogenic calli, incomplete compact proembryogenic cultures, and globular embryos during early SE of longan, among which 41 flavonoids were differentially accumulated during the SE. Using RNA sequencing, 36 flavonoid-biosynthesis-related genes and 43 MYB and 52 bHLH transcription factors were identified as differentially expressed genes. Furthermore, Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that the flavonoid metabolism-related pathways were significantly enriched during the early SE. These results suggested that the changes in flavonoid levels in the embryogenic cultures of longan were mediated by MYBs and bHLHs via regulating flavonoid-biosynthesis-related genes, thus potentially regulating early SE. The identified metabolites in the embryogenic cultures of longan can be used to develop pharmaceutical ingredients.
Assuntos
Sapindaceae , Transcriptoma , Flavonoides/metabolismo , Perfilação da Expressão Gênica , Sapindaceae/genética , Sapindaceae/metabolismo , Desenvolvimento Embrionário , Regulação da Expressão Gênica de PlantasRESUMO
Myeloid-derived suppressor cells (MDSCs), major components maintaining the immune suppressive microenvironment in lung cancer, are relevant to the invasion, metastasis, and poor prognosis of lung cancer, through the regulation of epithelial-mesenchymal transition, remodeling of the immune microenvironment, and regulation of angiogenesis. MDSCs regulate T-cell immune functions by maintaining a strong immunosuppressive microenvironment and promoting tumor invasion. This raises the question of whether reversing the immunosuppressive effect of MDSCs on T cells can improve lung cancer treatment. To understand this further, this review explores the interactions and specific mechanisms of different MDSCs subsets, including regulatory T cells, T helper cells, CD8 + T cells, natural killer T cells, and exhausted T cells, as part of the lung cancer immune microenvironment. Second, it focuses on the guiding significance confirmed via clinical liquid biopsy and tissue biopsy that different MDSC subsets improve the prognosis of lung cancer. Finally, we conclude that targeting MDSCs through action targets or signaling pathways can help regulate T-cell immune functions and suppress T-cell exhaustion. In addition, immune checkpoint inhibitors targeting MDSCs may serve as a new approach for enhancing the efficiency of immunotherapy and targeted therapy for lung cancer in the future, providing better comprehensive options for lung cancer treatment.
RESUMO
In the present article, the spherical and high activity TiCl4/MgCI2/MMT intercalated catalyst was successfully prepared. The active centers of obtained catalyst well dispersed in the MMT through electron probe micro-analysis (EPMA). The d-spacing of MMT was broadened from 0.97 nm to 1.42 nm after addition of MgCl2 and the space between MMT layers was 1.60 nm after treated with excess TiCl4. In addition, the catalyst shows a very high activity toward ethylene polymerization. During the ethylene polymerization, the MMT layers were exfoliated by the polymerization force arising from the propagation of ethylene chain. Interestingly, the macro-scale morphology of the obtained polyethylene (PE)/MMT nanocomposite still retained the spherical shape of precursor catalyst; while the PE particles contain MMT platelets take the shape of "flower petal" in the micro-scale. Transmission electron microscopy (TEM) photographs showed that the MMT homogeneously dispersed in the PE.