Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Infect Dis ; 229(1): 117-121, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-37565805

RESUMO

Using a prospective, observational cohort study during the post-"dynamic COVID-zero" wave in China, we estimated short-term relative effectiveness against Omicron BA.5 infection of inhaled aerosolized adenovirus type 5-vectored ancestral strain coronavirus disease 2019 (COVID-19) vaccine as a second booster dose approximately 1 year after homologous boosted primary series of inactivated COVID-19 vaccine compared with no second booster. Participants reported nucleic acid or antigen test results weekly until they tested positive or completed predesignated follow-up. After excluding participants infected <14 days after study entry, relative effectiveness among the 6576 participants was 61% in 18- to 59-year-olds and 38% in ≥60-year-olds and was sustained for 12 weeks.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , COVID-19/prevenção & controle , Estudos Prospectivos , Eficácia de Vacinas , China/epidemiologia , Adenoviridae/genética
2.
Langmuir ; 40(22): 11642-11649, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38761148

RESUMO

Colloidal quantum dots (QDs) have exceptional fluorescence properties. Overcoming aggregation-induced quenching and enhancing the fluorescence of colloidal QDs have remained a challenging issue in this field. In this study, composite hollow nanospheres composed of Au nanoparticles (NPs) and CdS:Ag-doped QDs were successfully constructed through controlled microemulsion-based cooperative assembly. This method harnessed the localized surface plasmon resonance (LSPR) effect of Au NPs nearby doped QDs, resulting in enhanced doped QD fluorescence and the observation of the Purcell effect. The composite hollow nanospheres show a fluorescence enhancement compared to that of the pure CdS:Ag QDs. The enhanced fluorescence was demonstrated to come from the synergetic enhancement of the absorption and emission transition of the doped QDs. This approach provides a feasible technological pathway to address the challenge of improving the fluorescence performance of the doped QDs.

3.
J Med Virol ; 95(1): e28227, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36241424

RESUMO

Compared with the nucleic acid amplification test (NATT), the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) rapid antigen self-testing (RAST) has advantages in speed and convenience. However, little is known about people's acceptance and influencing factors for SARS-CoV-2 RAST. A cross-sectional study was conducted from April 21 to 30, 2022 in China. The χ2 test and multivariate logistic regressions were used to identify the influencing factors. The structural equation model was used to test the extended protective motivation theory (PMT) model hypotheses. Among the total of 5107 participants, 62.5% were willing to accept the SARS-CoV-2 RAST. There were significant differences in acceptance among different residences (p < 0.001), educational level (p < 0.001), occupation (p < 0.001), monthly income (p < 0.001), travel frequency (p < 0.05), and feelings about NATT (p < 0.001). Response efficacy (ß = 0.05; p = 0.025) and self-efficacy (ß = 0.84; p < 0.001) had a positive effect, while response cost showed a negative effect (ß = -0.07; p < 0.001). The public's major concerns about SARS-CoV-2 RAST are its reliability, testing method, price, and authority. Overall, a moderate intention to use SARS-CoV-2 RAST was found among the Chinese population. The extended PMT can be used for the prediction of intention to accept the RAST. We need to take measures to increase people's acceptance of SARS-CoV-2 RAST.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Estudos Transversais , Reprodutibilidade dos Testes , China
4.
Ann Hepatol ; 28(3): 101082, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36893888

RESUMO

INTRODUCTION AND OBJECTIVES: As a fatal clinical syndrome, acute liver failure (ALF) is characterized by overwhelming liver inflammation and hepatic cell death. Finding new therapeutic methods has been a challenge in ALF research. VX-765 is a known pyroptosis inhibitor and has been reported to prevent damage in a variety of diseases by reducing inflammation. However, the role of VX-765 in ALF is still unclear. MATERIALS AND METHODS: ALF model mice were treated with D-galactosamine (D-GalN) and lipopolysaccharide (LPS). LO2 cells were stimulated with LPS. Thirty subjects were enrolled in clinical experiments. The levels of inflammatory cytokines, pyroptosis-associated proteins and peroxisome proliferator-activated receptor α (PPARα) were detected using quantitative reverse transcription-polymerase chain reaction (qRT‒PCR), western blotting and immunohistochemistry. An automatic biochemical analyzer was used to determine the serum aminotransferase enzyme levels. Hematoxylin and eosin (HE) staining was used to observe the pathological features of the liver. RESULTS: With the progression of ALF, the expression levels of interleukin (IL) -1ß, IL-18, caspase-1, and serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were increased. VX-765 could reduce the mortality rate of ALF mice, relieve liver pathological damage, and reduce inflammatory responses to protect against ALF. Further experiments showed that VX-765 could protect against ALF through PPARα, and this protective effect against ALF was reduced in the context of PPARα inhibition. CONCLUSIONS: As ALF progresses, inflammatory responses and pyroptosis deteriorate gradually. VX-765 can inhibit pyroptosis and reduce inflammatory responses to protect against ALF by upregulating PPARα expression, thus providing a possible therapeutic strategy for ALF.


Assuntos
Falência Hepática Aguda , PPAR alfa , Camundongos , Animais , PPAR alfa/genética , PPAR alfa/metabolismo , Piroptose , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/prevenção & controle , Fígado/patologia , Inflamação/prevenção & controle , Inflamação/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Camundongos Endogâmicos C57BL
5.
J Med Virol ; 94(9): 4115-4124, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35506329

RESUMO

The promotion of the booster shots against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is an open issue to be discussed. Little is known about the public intention and the influencing factors regarding the booster vaccine. A cross-sectional survey in Chinese adults was conducted using an online questionnaire, which designed on the basis of protection motivation theory (PMT) scale and vaccine hesitancy scale (VHS). Hierarchical multiple regression was used to compare the fitness of the PMT scale and VHS for predicting booster vaccination intention. Multivariable logistic regression was used to analyze the factors associated with the acceptance. Six thousand three hundred twenty-one (76.8%) of participants were willing to take the booster shot. However, the rest of the participants (23.2%) were still hesitant to take the booster vaccine. The PMT scale was more powerful than the VHS in explaining the vaccination intention. Participants with high perceived severity (adjusted odds ratio [aOR] = 0.69) and response cost (aOR = 0.47) were less willing to take the booster shots, but participants with high perceived susceptibility (aOR = 1.19), response efficacy (aOR = 2.13), and self-efficacy (aOR = 3.33) were more willing to take the booster shots. In summary, interventions based on PMT can provide guidance to ensure the acceptance of the booster vaccine.


Assuntos
COVID-19 , Vacinas , Adulto , COVID-19/prevenção & controle , China , Estudos Transversais , Humanos , Motivação , SARS-CoV-2 , Vacinação
6.
Molecules ; 27(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35744801

RESUMO

This work suggested that Cu2+ ion coordinated by the peptide with a histidine (His or H) residue in the first position from the free N-terminal reveals oxidase-mimicking activity. A biotinylated polymer was prepared by modifying His residues on the side chain amino groups of lysine residues (denoted as KH) to chelate multiple Cu2+ ions. The resulting biotin-poly-(KH-Cu)20 polymer with multiple catalytic sites was employed as the signal label for immunoassay. Prostate specific antigen (PSA) was determined as the model target. The captured biotin-poly-(KH-Cu)20 polymer could catalyze the oxidation of o-phenylenediamine (OPD) to produce fluorescent 2,3-diaminophenazine (OPDox). The signal was proportional to PSA concentration from 0.01 to 2 ng/mL, and the detection limit was found to be eight pg/mL. The high sensitivity of the method enabled the assays of PSA in real serum samples. The work should be valuable for the design of novel biosensors for clinical diagnosis.


Assuntos
Cobre , Antígeno Prostático Específico , Biotina , Cobre/química , Humanos , Imunoensaio/métodos , Masculino , Fenilenodiaminas , Polímeros
7.
Angew Chem Int Ed Engl ; 61(13): e202115875, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35068052

RESUMO

Efficient radiative recombination is essential for perovskite luminescence, but the intrinsic radiative recombination rate as a basic material property is challenging to tailor. Here we report an interfacial chemistry strategy to dramatically increase the radiative recombination rate of perovskites. By coating aluminum oxide on the lead halide perovskite, lead-oxygen bonds are formed at the perovskite-oxide interface, producing the perovskite surface states with a large exciton binding energy and a high localized density of electronic state. The oxide-bonded perovskite exhibits a ≈500 fold enhanced photoluminescence with a ≈10 fold reduced lifetime, indicating an unprecedented ≈5000 fold increase in the radiative recombination rate. The enormously enhanced radiative recombination promises to significantly promote the perovskite optoelectronic performance.

8.
Chem Soc Rev ; 49(3): 951-982, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31960011

RESUMO

The invention and development of the laser have revolutionized science, technology, and industry. Metal halide perovskites are an emerging class of semiconductors holding promising potential in further advancing the laser technology. In this Review, we provide a comprehensive overview of metal halide perovskite lasers from the viewpoint of materials chemistry and engineering. After an introduction to the materials chemistry and physics of metal halide perovskites, we present diverse optical cavities for perovskite lasers. We then comprehensively discuss various perovskite lasers with particular functionalities, including tunable lasers, multicolor lasers, continuous-wave lasers, single-mode lasers, subwavelength lasers, random lasers, polariton lasers, and laser arrays. Following this a description of the strategies for improving the stability and reducing the toxicity of metal halide perovskite lasers is provided. Finally, future research directions and challenges toward practical technology applications of perovskite lasers are provided to give an outlook on this emerging field.

9.
Angew Chem Int Ed Engl ; 59(37): 15992-15996, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32519468

RESUMO

Miniaturized lasers with high spectral purity and wide wavelength tunability are crucial for various photonic applications. Here we propose a strategy to realize broadband-tunable single-mode lasing based on a photoisomerization-activated intramolecular charge-transfer (ICT) process in coupled polymer microdisk cavities. The photoisomerizable molecules doped in the polymer microdisks can be quantitatively transformed into a kind of laser dye with strong ICT character by photoexcitation. The gain region was tailored over a wide range through the self-modulation of the optically activated ICT isomers. Meanwhile, the resonant modes shifted with the photoisomerization because of a change in the effective refractive index of the polymer microdisk cavity. Based on the synergetic modulation of the optical gain and microcavity, we realized the broadband tuning of the single-mode laser. These results offer a promising route to fabricate broadband-tunable microlasers towards practical photonic integrations.

10.
J Am Chem Soc ; 140(41): 13147-13150, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30269477

RESUMO

In this work, we demonstrate a stimulated emission-controlled photonic transistor on a single organic triblock nanowire composed of alternate energy donor and acceptor. The population of acceptor excitons was engineered by energy transfer to achieve enhanced fluorescence, which was further amplified by the stimulated emission of the donor and the optical feedback in the nanowire microcavities, yielding a remarkable nonlinear amplification of the acceptor emission. On this basis, a prototype of photonic transistor with high nonlinear gain at very low pump energy was achieved. The results will provide a useful enlightenment for the rational design of novel all-optical switches with desired performances.

11.
Nano Lett ; 17(1): 91-96, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-28073268

RESUMO

Wavelength switchable micro/nanoscale laser is essential to construct various ultracompact photonic devices. However, traditional semiconductors as the gain media generally provide only monochromatic laser output due to their continuous energy band structures. For luminescent conjugated molecules, the broad emission band usually contains a series of vibronic peaks, which is very helpful for extending the lasing spectrum to several different wavelengths. Here we propose a novel strategy to realize wavelength switchable lasers based on the controlled competition of dual-wavelength vibronic lasing in single-component organic microcrystals. The vibrationally structured fluorescence property of the single-crystal organic microdisks brings dual-wavelength lasing at different vibronic bands. Their relative optical gain intensity was modulated by controlling the population on the certain vibronic level of the ground state with varied temperature, which consequently enabled the reversible switching of the dual-wavelength vibronic lasing. The results point out a promising route to the rational design of miniaturized lasers and other photonic elements with desired performances.

12.
Angew Chem Int Ed Engl ; 57(12): 3108-3112, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29341441

RESUMO

The very broad emission bands of organic semiconductor materials are, in theory, suitable for achieving versatile solid-state lasers; however, most of organic materials only lase at short wavelength corresponding to the 0-1 transition governed by the Franck-Condon (FC) principle. A strategy is developed to overcome the limit of FC principle for tailoring the output of microlasers over a wide range based on the controlled vibronic emission of organic materials at microcrystal state. For the first time, the output wavelength of organic lasers is tailored across all vibronic (0-1, 0-2, 0-3, and even 0-4) bands spanning the entire emission spectrum.

13.
J Am Chem Soc ; 138(4): 1118-21, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26756966

RESUMO

Wavelength tunable micro/nanolasers are indispensable components for various photonic devices. Here, we report broadband tunable microlasers built by incorporating a highly polarized organic intramolecular charge-transfer (ICT) compound with a supramolecular host. The spatial confinement of the ICT dye generates an optimized energy level system that favors controlled population distribution between the locally excited (LE) state and the twisted intramolecular charge-transfer (TICT) state, which is beneficial for significantly broadening the tailorable gain region. As a result, we realized a wide tuning of lasing wavelength in the organic supramolecular microcrystals based on temperature-controlled population transfer from the LE to TICT state. The results will provide a useful enlightenment for the rational design of miniaturized lasers with desired performances.

14.
Sci Rep ; 14(1): 13370, 2024 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862511

RESUMO

Hepatitis B virus (HBV) infection is highly prevalent in Guangzhou, China. This study aimed to examine the long-term trend of HB incidence from 2008 to 2022 and the independent impacts of age, period, and cohort on the trends. HBV data were collected from the China Information System for Disease Control and Prevention. Joinpoint regression was utilized to examine temporal trends, and an age-period-cohort model was employed to estimate the effects of age, period, and cohort. A total of 327,585 HBV cases were included in this study. The incidence of chronic and acute HB showed a decreasing trend in Guangzhou over the past 15 years, with an average annual percent change of - 4.31% and - 16.87%, respectively. Age, period, and cohort all exerted significant effects. The incidence of HB was higher in males than in females and non-central areas compared to central areas. Age groups of 0-4 years and 15-24 years were identified as high-risk groups. The period relative risks for chronic HB incidence decreased initially and then stabilized. Cohorts born later had lower risks. Chronic HB incidences remain high in Guangzhou, especially among males, younger individuals, and residents of non-central areas. More efforts are still needed to achieve hepatitis elimination targets.


Assuntos
Hepatite B , Humanos , China/epidemiologia , Feminino , Masculino , Incidência , Adolescente , Adulto , Pessoa de Meia-Idade , Lactente , Criança , Pré-Escolar , Adulto Jovem , Hepatite B/epidemiologia , Recém-Nascido , Idoso , Fatores Etários , Efeito de Coortes , Vírus da Hepatite B , Fatores de Risco
15.
Biomater Sci ; 12(2): 425-439, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38050470

RESUMO

In this work, we successfully constructed Mn-coordinated nitrogen-carbon nanoparticles (Mn-N-C NPs) exhibiting multienzyme-like activities. In a bacterial infectious microenvironment, the POD-like and OXD-like activities of Mn-N-C NPs could synergistically trigger the generation of ROS (˙OH and O2˙-), causing oxidative damage to the bacterial cell membrane for killing bacteria. Alternatively, in neutral or weak alkaline normal tissues, the excessive O2˙- could be converted into O2 and H2O2via the SOD-like ability of Mn-N-C NPs, and subsequently their CAT-like activity catalyzed excess H2O2 into H2O and O2 for protecting normal cells through the antioxidant defense. Mn-N-C NPs also possessed a good NIR-photothermal performance, which could enhance their POD-like and OXD-like activities. Furthermore, Mn-N-C NPs could facilitate the GSH oxidation process and disrupt the intrinsic balance in the bacterial protection microenvironment with the assistance of H2O2, which is beneficial for rapid bacterial death. Undoubtedly, the Mn-N-C NPs + H2O2 system showed the highest antibacterial activity when irradiated with an 808 nm laser, destroying the bacterial membrane and causing the efflux of proteins. Moreover, the Mn-N-C NPs + H2O2 system was immune to the development of bacterial resistance and could efficiently disrupt the formation of a bacterial biofilm with negligible cytotoxicity and low hemolysis ratio. Finally, Mn-N-C NPs exhibited an excellent antibacterial performance in vivo and could accelerate wound healing without cellular inflammation production. Therefore, due to their significant therapeutic effects, Mn-N-C NPs show great potential in fighting antibiotic-resistant bacteria.


Assuntos
Infecções Bacterianas , Nanopartículas , Humanos , Peróxido de Hidrogênio , Antioxidantes , Infecções Bacterianas/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
16.
Adv Mater ; 35(17): e2300054, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36744301

RESUMO

Synthetic photonic materials exploiting the quantum concept of parity-time (PT) symmetry lead to an emerging photonic paradigm-non-Hermitian photonics, which is revolutionizing the photonic sciences. The non-Hermitian photonics dealing with the interplay between gain and loss in PT synthetic photonic material systems offers a versatile platform for advancing microlaser technology. However, current PT-symmetric microcavity laser systems only manipulate imaginary parts of the refractive indices, suffering from limited laser spectral bandwidth. Here, an organic composite material system is proposed to synthesize reconfigurable PT-symmetric microcavities with controllable complex refractive indices for realizing tunable single-mode laser outputs. A grayscale electron-beam direct-writing technique is elaborately designed to process laser dye-doped polymer films in one single step into microdisk cavities with periodic gain and loss distribution, which enables thresholdless PT-symmetry breaking and single-mode laser operation. Furthermore, organic photoisomerizable compounds are introduced to reconfigure the PT-symmetric systems in real-time by tailoring the real refractive index of the polymer microresonators, allowing for a dynamically and continuously tunable single-mode laser output. This work fundamentally enhances the PT-symmetric photonic systems for innovative design of synthetic photonic materials and architectures.

17.
Adv Sci (Weinh) ; 10(24): e2302613, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37345586

RESUMO

Liver metastasis is the main cause of death in patients with colorectal cancer (CRC); thus, necessitating effective biomarkers and therapeutic targets for colorectal cancer liver metastasis (CRLM). Fibroblast growth factor 19 (FGF19) is a protumorigenic gene in numerous human malignancies. In this study, it is shown that FGF19 plays an indispensable role in CRLM. FGF19 expression and secretion are markedly correlated with liver metastasis and lower overall survival rates of patients with CRC. An in vivo metastasis model shows that FGF19 overexpression confers stronger liver-metastatic potential in CRC cells. Mechanistically, FGF19 exerts an immunomodulatory function that creates an environment conducive for metastasis in CRLM. FGF19 mediates the polarization of hepatic stellate cells to inflammatory cancer-associated fibroblasts (iCAFs) by activating the autocrine effect of IL-1α via the FGFR4-JAK2-STAT3 pathway. FGF19-induced iCAFs promote neutrophil infiltration and mediate neutrophil extracellular trap (NET) formation in liver metastatic niches via the production of complement C5a and IL-1ß, which in turn accelerates the liver colonization of CRC cells. Importantly, targeting FGF19 signaling with fisogatinib efficiently suppresses FGF19-induced liver metastasis in a mouse model. In summary, this study describes the mechanism by which FGF19 regulates CRLM, thereby providing a novel target for CRLM intervention.


Assuntos
Neoplasias Colorretais , Armadilhas Extracelulares , Neoplasias Hepáticas , Animais , Camundongos , Humanos , Armadilhas Extracelulares/metabolismo , Linhagem Celular Tumoral , Neoplasias Hepáticas/metabolismo , Transdução de Sinais , Neoplasias Colorretais/genética , Fatores de Crescimento de Fibroblastos/metabolismo
18.
Inquiry ; 60: 469580231182040, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37357725

RESUMO

The composition of influenza vaccines is updated annually. To ensure vaccine safety, the coverage and adverse events following immunization (AEFI) of 6 manufacturers of trivalent inactivated influenza vaccine (TIV3) need to be evaluated. In January 2022, we analyzed data from more than 1.59 million children in the Childhood Vaccination Information Management System and the AEFI Surveillance Information Management System and evaluated influenza vaccines for children aged 6 to 35 months in Guangzhou from 2016/17 to 2019/20 Vaccination rates and AEFI reporting rates. From 2016/17 to 2019/20, the 1-dose influenza vaccination rate was 25.0% (range: 20.7%-30.2%), and the 2-dose (full course) influenza vaccination rate was 21.6% (range: 17.7%-26.4%). The full vaccination coverage rate has trended down since 2017/2018 (2017/18: 26.0%; 2018/19: 8.3; 2019/20: 17.7%). Fifty-two cases (13.1/100 000) and 24 cases (6.9/100 000) received AEFI reports for 1 dose and 2 doses, respectively, mainly due to fever ≥38.6°C (39 cases for 1 dose, 9.8/100 000; 15 cases for 2 dose, 4.3/100 000) and allergic rash (9 cases with 1 dose, 2.3/100 000; 5 cases with 2 doses, 1.4/100 000). Patients who received A and F manufacturers were more likely to report side effects. The safety of influenza vaccines from 6 manufacturers is good, and it is necessary to improve the recommended information on influenza vaccines to dispel people's concerns and increase the vaccination rate.


Assuntos
Exantema , Vacinas contra Influenza , Influenza Humana , Cobertura Vacinal , Vacinas de Produtos Inativados , Criança , Humanos , Lactente , Exantema/induzido quimicamente , Imunização , Vacinas contra Influenza/efeitos adversos , Influenza Humana/prevenção & controle , Influenza Humana/epidemiologia , Vacinação , Vacinas de Produtos Inativados/efeitos adversos
19.
Adv Mater ; 34(9): e2107611, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34967981

RESUMO

Control over material architectures is essential to the performance of photonic devices and systems. Optical isolation of the photonic materials from substrates can significantly enhance their performance but suffers from complicated fabrication processes and limited applications. Here a differential polymer chain scission strategy is proposed to fabricate free-standing photonic structures based on one-step electron-beam direct writing on polymer bilayers (EOB). The polymer molecular mass-dependent sensitivity to electron beam enables differential patterning of the two layers of polymers, leading to the direct formation of suspended optical microcavities. The EOB technique features high materials compatibility and design flexibility for the optical microcavities, which significantly expands the application scope of the suspended optical microcavities. As well as providing a versatile strategy for building high-performance photonic materials, the results provide a promising platform for innovative applications of optical microstructures.

20.
ACS Appl Mater Interfaces ; 14(1): 1774-1782, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34968027

RESUMO

Owing to outstanding optoelectronic properties, halide perovskites are great candidates for novel laser display applications. However, the realization of their practical flat-panel display applications is challenging because of the incapacity to controllably assemble different halide perovskite microlaser arrays onto an identical substrate as pixelated full-color panels due to intrinsic fragile crystal lattices. Here, perovskite red-green-blue (RGB) microdisk arrays are reported, acting as flat-panels for full-color laser displays. A universal screen-overprinting technology is developed to integrate full-color perovskite microdisk arrays on a prepatterned template, which is on the basis of wet-solute-chemical dynamics involving a combination of surface tailoring and solvent selection. Via such an overprinting method, perovskite RGB microlaser matrices with precise localizations and well-defined dimensions were fabricated on an identical substrate, and each set of RGB microlaser served as a pixel for full-color display panels. On this basis, static and dynamic laser displays have been demonstrated with as-prepared full-color panels. These results will provide novel design concepts and device structures for future full-color laser display applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA