Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 61(35): 14102-14114, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36006394

RESUMO

The oxygen-deficient bismuth oxide, Bi2O4, synthesized by a typical hydrothermal method using commercial NaBiO3·2H2O as a raw material only has a relatively low concentration of surface oxygen vacancies (OVs). How to improve the visible light photocatalytic performance of Bi2O4 via tuning its surface OV concentration is still a huge challenge. In this study, improving the surface OVs of Bi2O4 was successfully realized through the pretreatment of commercial NaBiO3·2H2O, including thermal treatment in air and hydrothermal treatment in 10 M NaOH solution, forming NaBiO3·xH2O intermediate products first, and then hydrothermal preparation of Bi2O4 target products using NaBiO3·xH2O instead of commercial NaBiO3·2H2O as the precursor. The enhanced surface OV content not only narrows the band gap of Bi2O4 and thus extends its optical response range but also captures more photoexcited electrons and thus increases the charge carriers' separation efficiency and prolongs the charge carriers' lifetime of Bi2O4. Among the above-mentioned two pretreatment methods, the effects of the hydrothermal pretreatment are superior to those of the thermal treatment, involving the increase of surface OVs, the optical harvesting capacity, and the charge carriers' separation efficiency. Accordingly, Bi2O4 prepared by the hydrothermal pretreatment route exhibits the optimal visible light catalytic performance toward the removal of methyl orange (MO) and phenol due to its most abundant surface OV concentration, which is 2.59 times and 4.26 times higher than that of Bi2O4 synthesized directly by the commercial NaBiO3·2H2O route, respectively. Holes (h+) and superoxide radicals (•O2-) are identified as the main active species, while singlet oxygen (1O2) and hydroxyl radicals (•OH) are verified as the second and third important active species for organic pollutant removal, respectively. This work has developed a novel strategy to promote the catalytic performance of single Bi2O4 induced by the enhanced surface OV concentration through the pretreatment of the precursor, commercial NaBiO3·2H2O.

2.
J Colloid Interface Sci ; 576: 291-301, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32438103

RESUMO

As a promising visible-light photocatalyst, Bi2O4 has the advantage of broadband spectral response range. However, the high recombination rate of photoexcited charge carriers induced by the submicrorod morphology of pure Bi2O4 greatly restricts its visible-light photocatalytic performance. Herein, a novel nanosized Bi2O4/Bi2O3 p-n junction was developed by a dilute HCl acid etching and subsequent hydrothermal method, using NaBiO3·2H2O as the sole bismuth precursor. A product of NaBiO3·2H2O@BiOCl was formed firstly when NaBiO3·2H2O was partially reduced by insufficient dilute HCl aqueous solution. Then, BiOCl reacted with NaBiO3·2H2O during the following hydrothermal reaction process, resulting in the formation of Bi2O4 nanoparticles (NPs) anchored on the surface of plate-like Bi2O3. The content of Bi2O3 in the junction can be easily controlled by changing the added amount of dilute HCl acid. This strategy could not only realize the NPs-sized Bi2O4 but also construct nanometered Bi2O4/Bi2O3 p-n junction simultaneously, which remarkably improves the separation efficiency of charge carriers. Furthermore, the obtained Bi2O4/Bi2O3 heterojunctions have larger specific surface areas than Bi2O4 alone. Due to these advantages, the photocatalytic removal rate of methyl orange (MO) and phenol for the optimal Bi2O4/Bi2O3 heterostructure increased respectively by 5.06 and 2.16 times under visible light, when compared with single Bi2O4. The results of active species trapping experiment and electron spin resonance (ESR) spectra indicate that holes (h+) and superoxide radicals (O2-) are the primary and secondary reactive active species during the photocatalytic degradation process, respectively. This work provides a novel perspective for the design and preparation of high performance Bi2O4-based photocatalyst.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA