Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Plant Physiol ; 194(4): 2249-2262, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38109500

RESUMO

Desiccation is typically fatal, but a small number of land plants have evolved vegetative desiccation tolerance (VDT), allowing them to dry without dying through a process called anhydrobiosis. Advances in sequencing technologies have enabled the investigation of genomes for desiccation-tolerant plants over the past decade. However, a dedicated and integrated database for these valuable genomic resources has been lacking. Our prolonged interest in VDT plant genomes motivated us to create the "Drying without Dying" database, which contains a total of 16 VDT-related plant genomes (including 10 mosses) and incorporates 10 genomes that are closely related to VDT plants. The database features bioinformatic tools, such as blast and homologous cluster search, sequence retrieval, Gene Ontology term and metabolic pathway enrichment statistics, expression profiling, co-expression network extraction, and JBrowser exploration for each genome. To demonstrate its utility, we conducted tailored PFAM family statistical analyses, and we discovered that the drought-responsive ABA transporter AWPM-19 family is significantly tandemly duplicated in all bryophytes but rarely so in tracheophytes. Transcriptomic investigations also revealed that response patterns following desiccation diverged between bryophytes and angiosperms. Combined, the analyses provided genomic and transcriptomic evidence supporting a possible divergence and lineage-specific evolution of VDT in plants. The database can be accessed at http://desiccation.novogene.com. We expect this initial release of the "Drying without Dying" plant genome database will facilitate future discovery of VDT genetic resources.


Assuntos
Briófitas , Dessecação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Genoma de Planta/genética , Transcriptoma/genética , Briófitas/genética
2.
Plant J ; 113(1): 75-91, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36416176

RESUMO

Soloist is a member of a distinct and small subfamily within the AP2/ERF transcriptional factor family that play important roles in plant biotic and abiotic stress responses. There are limited studies of Soloist genes and their functions are poorly understood. We characterized the abiotic and biotic stress tolerance function of the ScSoloist gene (designated as ScAPD1-like) from the desert moss Syntrichia caninervis. ScAPD1-like responded to multiple abiotic, biotic stresses and plant hormone treatments. ScAPD1-like protein located to the nucleus and bound to several DNA elements. Overexpression of ScAPD1-like in Arabidopsis did not alter abiotic stress resistance or inhibit Pseudomonas syringae pv. tomato (Pst) DC3000 infection. However, overexpression of ScAPD1-like significantly increased the resistance of transgenic Arabidopsis and S. caninervis to Verticillium dahliae infection, decreased reactive oxygen species accumulation and improved reactive oxygen species scavenging activity. ScAPD1-like overexpression plants altered the abundance of transcripts for lignin synthesis and promoted lignin accumulation in Arabidopsis. ScAPD1-like directly bind to RAV1, AC elements, and TATA-box in the promoters of AtPAL1 and AtC4H genes, respectively, in vitro. Chromatin immunoprecipitation-quantitative polymerase chain reaction assays demonstrated ScAPD1-like directly bound to PAL and C4H genes promoters in Arabidopsis and their homologs in S. caninervis. In S. caninervis, ScAPD1-like overexpression and RNAi directly regulated the abundance of ScPAL and ScC4H transcripts and modified the metabolites of phenylpropanoid pathway. We provide insight into the function of Soloist in plant defense mechanisms that likely occurs through activation of the phenylpropanoid biosynthesis pathway. ScAPD1-like is a promising candidate gene for breeding strategies to improve resistance to Verticillium wilt.


Assuntos
Arabidopsis , Ascomicetos , Briófitas , Bryopsida , Verticillium , Espécies Reativas de Oxigênio/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Lignina/metabolismo , Melhoramento Vegetal , Briófitas/metabolismo , Bryopsida/genética , Ascomicetos/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Resistência à Doença/genética , Doenças das Plantas/genética , Gossypium/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Plant Cell Physiol ; 64(11): 1419-1432, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37706231

RESUMO

Desiccation-tolerant (DT) plants can survive extreme dehydration and tolerate the loss of up to 95% of their water content, making them ideal systems to determine the mechanism behind extreme drought stress and identify potential approaches for developing drought-tolerant crops. The desert moss Syntrichia caninervis is an emerging model for extreme desiccation tolerance that has benefited from high-throughput sequencing analyses, allowing identification of stress-tolerant genes; however, its metabolic response to desiccation is unknown. A liquid chromatography-mass spectrometry analysis of S. caninervis at six dehydration-rehydration stages revealed 912 differentially abundant compounds, belonging to 93 metabolic classes. Many (256) metabolites accumulated during rehydration in S. caninervis, whereas only 71 accumulated during the dehydration period, in contrast to the pattern observed in vascular DT plants. During dehydration, nitrogenous amino acids (l-glutamic acid and cysteinylglycine), alkaloids (vinleurosine) and steroids (physalin D) accumulated, whereas glucose 6-phosphate decreased. During rehydration, γ-aminobutyric acid, glucose 6-phosphate and flavonoids (karanjin and aromadendrin) accumulated, as did the plant hormones 12-oxo phytodienoic acid (12-OPDA) and trans-zeatin riboside. The contents ofl-arginine, maltose, turanose, lactulose and sucrose remained high throughout dehydration-rehydration. Syntrichia caninervis thus accumulates antioxidants to scavenge reactive oxygen species, accumulating nitrogenous amino acids and cytoprotective metabolites and decreasing energy metabolism to enter a protective state from dehydration-induced damage. During subsequent rehydration, many metabolites rapidly accumulated to prevent oxidative stress and restore physiological activities while repairing cells, representing a more elaborate rehydration repair mechanism than vascular DT plants, with a faster and greater accumulation of metabolites. This metabolic kinetics analysis in S. caninervis deepens our understanding of its dehydration mechanisms and provides new insights into the different strategies of plant responses to dehydration and rehydration.


Assuntos
Briófitas , Bryopsida , Desidratação , Bryopsida/genética , Hidratação , Aminoácidos , Fosfatos , Glucose
4.
Environ Res ; 238(Pt 2): 117282, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37783329

RESUMO

Plant diseases pose a severe threat to modern agriculture, necessitating effective and lasting control solutions. Environmental factors significantly shape plant ecology. Human-induced greenhouse gas emissions have led to global temperature rise, impacting various aspects, including carbon dioxide (CO2) concentration, temperature, ozone (O3), and ultraviolet-B, all of which influence plant diseases. Altered pathogen ranges can accelerate disease transmission. This review explores environmental effects on plant diseases, with climate change affecting fungal biogeography, disease incidence, and severity, as well as agricultural production. Moreover, we have discussed how climate change influences pathogen development, host-fungal interactions, the emergence of new races of fungi, and the dissemination of emerging fungal diseases across the globe. The discussion about environment-mediated impact on pattern-triggered immunity (PTI), effector-triggered immunity (ETI), and RNA interference (RNAi) is also part of this review. In conclusion, the review underscores the critical importance of understanding how climate change is reshaping plant-fungal interactions. It highlights the need for continuous research efforts to elucidate the mechanisms driving these changes and their ecological consequences. As the global climate continues to evolve, it is imperative to develop innovative strategies for mitigating the adverse effects of fungal pathogens on plant health and food security.


Assuntos
Biodiversidade , Mudança Climática , Humanos , Temperatura , Plantas , Doenças das Plantas/microbiologia
5.
Sensors (Basel) ; 23(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37430818

RESUMO

Wind speed prediction is very important in the field of wind power generation technology. It is helpful for increasing the quantity and quality of generated wind power from wind farms. By using univariate wind speed time series, this paper proposes a hybrid wind speed prediction model based on Autoregressive Moving Average-Support Vector Regression (ARMA-SVR) and error compensation. First, to explore the balance between the computation cost and the sufficiency of the input features, the characteristics of ARMA are employed to determine the number of historical wind speeds for the prediction model. According to the selected number of input features, the original data are divided into multiple groups that can be used to train the SVR-based wind speed prediction model. Furthermore, in order to compensate for the time lag introduced by the frequent and sharp fluctuations in natural wind speed, a novel Extreme Learning Machine (ELM)-based error correction technique is developed to decrease the deviations between the predicted wind speed and its real values. By this means, more accurate wind speed prediction results can be obtained. Finally, verification studies are conducted by using real data collected from actual wind farms. Comparison results demonstrate that the proposed method can achieve better prediction results than traditional approaches.

6.
Int J Mol Sci ; 24(6)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36982895

RESUMO

The desert moss Syntrichia caninervis has proven to be an excellent plant material for mining resistance genes. The aldehyde dehydrogenase 21 (ScALDH21) gene from S. caninervis has been shown to confer tolerance to salt and drought, but it is unclear how the transgene ScALDH21 regulates tolerance to abiotic stresses in cotton. In the present work, we studied the physiological and transcriptome analyses of non-transgenic (NT) and transgenic ScALDH21 cotton (L96) at 0 day, 2 days, and 5 days after salt stress. Through intergroup comparisons and a weighted correlation network analysis (WGCNA), we found that there were significant differences between NT and L96 cotton in the plant hormone, Ca2+, and mitogen-activated protein kinase (MAPK) signaling pathways as well as for photosynthesis and carbohydrate metabolism. Overexpression of ScALDH21 significantly increased the expression of stress-related genes in L96 compared to NT cotton under both normal growth and salt stress conditions. These data suggest that the ScALDH21 transgene can scavenge more reactive oxygen species (ROS) in vivo relative to NT cotton and improve cotton resistance to salt stress by increasing the expression of stress-responsive genes, responding quickly to stress stimuli, enhancing photosynthesis and improving carbohydrate metabolism. Therefore, ScALDH21 is a promising candidate gene to improve resistance to salt stress, and the application of this gene in cotton provides new insights into molecular plant breeding.


Assuntos
Briófitas , Bryopsida , Transcriptoma , Tolerância ao Sal/genética , Briófitas/genética , Bryopsida/genética , Estresse Salino , Estresse Fisiológico/genética , Gossypium/genética , Gossypium/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37047111

RESUMO

Transcription factor (TF) families play important roles in plant stress responses. S. caninervis is a new model moss for plant desiccation tolerance studies. Here, we report a high-confidence identification and characterization of 591 TFs representing 52 families that covered all chromosomes in S. caninervis. GO term and KEGG pathway analysis showed that TFs were involved in the regulation of transcription, DNA-templated, gene expression, binding activities, plant hormone signal transduction, and circadian rhythm. A number of TF promoter regions have a mixture of various hormones-related cis-regulatory elements. AP2/ERF, bHLH, MYB, and C2H2-zinc finger TFs were the overrepresented TF families in S. caninervis, and the detailed classification of each family is performed based on structural features. Transcriptome analysis revealed the transcript abundances of some ScAP2/ERF, bHLH, MYB, and C2H2 genes were accumulated in the treated S. caninervis under cold, dehydration, and rehydration stresses. The RT-qPCR results strongly agreed with RNA-seq analysis, indicating these TFs might play a key role in S. caninervis response to abiotic stress. Our comparative TF characterization and classification provide the foundations for functional investigations of the dominant TF genes involved in S. caninervis stress response, as well as excellent stress tolerance gene resources for plant stress resistance breeding.


Assuntos
Bryopsida , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Estresse Fisiológico/genética , Bryopsida/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
Plant J ; 105(5): 1339-1356, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33277766

RESUMO

With global climate change, water scarcity threatens whole agro/ecosystems. The desert moss Syntrichia caninervis, an extremophile, offers novel insights into surviving desiccation and heat. The sequenced S. caninervis genome consists of 13 chromosomes containing 16 545 protein-coding genes and 2666 unplaced scaffolds. Syntenic relationships within the S. caninervis and Physcomitrella patens genomes indicate the S. caninervis genome has undergone a single whole genome duplication event (compared to two for P. patens) and evidence suggests chromosomal or segmental losses in the evolutionary history of S. caninervis. The genome contains a large sex chromosome composed primarily of repetitive sequences with a large number of Copia and Gypsy elements. Orthogroup analyses revealed an expansion of ELIP genes encoding proteins important in photoprotection. The transcriptomic response to desiccation identified four structural clusters of novel genes. The genomic resources established for this extremophile offer new perspectives for understanding the evolution of desiccation tolerance in plants.


Assuntos
Briófitas/genética , Dessecação , Genômica/métodos , Estresse Fisiológico , Transcriptoma/genética
9.
Int J Mol Sci ; 23(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36361686

RESUMO

C2H2 zinc finger protein (C2H2-ZFP) plays an important role in regulating plant growth, development, and response to abiotic stress. To date, there have been no analyses of the C2H2-ZFP family in desiccation-tolerant moss. In this study, we identified 57 BaZFP transcripts across the Bryum argenteum (B. argenteum) transcriptome. The BaZFP proteins were phylogenetically divided into four groups (I-IV). Additionally, we studied the BaZFP1 gene, which is a nuclear C2H2-ZFP and acts as a positive regulator of growth and development in both moss and Arabidopsis thaliana. The complete coding sequence of the BaZFP1 gene was isolated from B. argenteum cDNA, which showed a high expression level in a dehydration-rehydration treatment process. The overexpression of the BaZFP1 gene in the Physcomitrium patens and B. argenteum promoted differentiation and growth of gametophytes. Heterologous expression in Arabidopsis regulated the whole growth and development cycle. In addition, we quantitatively analyzed the genes related to growth and development in transgenic moss and Arabidopsis, including HLS1, HY5, ANT, LFY, FT, EIN3, MUS, APB4, SEC6, and STM1, and found that their expression levels changed significantly. This study may pave the way for substantial insights into the role of C2H2-ZFPs in plants as well as suggest appropriate candidate genes for crop breeding.


Assuntos
Arabidopsis , Briófitas , Bryopsida , Arabidopsis/genética , Arabidopsis/metabolismo , Briófitas/metabolismo , Dessecação , Melhoramento Vegetal , Bryopsida/metabolismo , Desenvolvimento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
10.
BMC Genomics ; 22(1): 681, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34548013

RESUMO

BACKGROUND: Freezing temperatures are an abiotic stress that has a serious impact on plant growth and development in temperate regions and even threatens plant survival. The wild apple tree (Malus sieversii) needs to undergo a cold acclimation process to enhance its freezing tolerance in winter. Changes that occur at the molecular level in response to low temperatures are poorly understood in wild apple trees. RESULTS: Phytohormone and physiology profiles and transcriptome analysis were used to elaborate on the dynamic response mechanism. We determined that JA, IAA, and ABA accumulated in the cold acclimation stage and decreased during freezing stress in response to freezing stress. To elucidate the molecular mechanisms of freezing stress after cold acclimation, we employed single molecular real-time (SMRT) and RNA-seq technologies to study genome-wide expression profiles in wild apple. Using the PacBio and Illumina platform, we obtained 20.79G subreads. These reads were assembled into 61,908 transcripts, and 24,716 differentially expressed transcripts were obtained. Among them, 4410 transcripts were differentially expressed during the whole process of freezing stress, and these were examined for enrichment via GO and KEGG analyses. Pathway analysis indicated that "plant hormone signal transduction", "starch and sucrose metabolism", "peroxisome" and "photosynthesis" might play a vital role in wild apple responses to freezing stress. Furthermore, the transcription factors DREB1/CBF, MYC2, WRKY70, WRKY71, MYB4 and MYB88 were strongly induced during the whole stress period. CONCLUSIONS: Our study presents a global survey of the transcriptome profiles of wild apple trees in dynamic response to freezing stress after two days cold acclimation and provides insights into the molecular mechanisms of freezing adaptation of wild apple plants for the first time. The study also provides valuable information for further research on the antifreezing reaction mechanism and genetic improvement of M. sieversii after cold acclimation.


Assuntos
Malus , Aclimatação/genética , Temperatura Baixa , Congelamento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Malus/genética , Transcriptoma
11.
BMC Genomics ; 22(1): 52, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446096

RESUMO

BACKGROUND: Valsa canker is a serious disease in the stem of Malus sieversii, caused by Valsa mali. However, little is known about the global response mechanism in M. sieversii to V. mali infection. RESULTS: Phytohormone jasmonic acid (JA) and salicylic acid (SA) profiles and transcriptome analysis were used to elaborate on the dynamic response mechanism. We determined that the JA was initially produced to respond to the necrotrophic pathogen V. mali infection at the early response stage, then get synergistically transduced with SA to respond at the late response stage. Furthermore, we adopted Pacific Biosciences (PacBio) full-length sequencing to identify differentially expressed transcripts (DETs) during the canker response stage. We obtained 52,538 full-length transcripts, of which 8139 were DETs. Total 1336 lncRNAs, 23,737 alternative polyadenylation (APA) sites and 3780 putative transcription factors (TFs) were identified. Additionally, functional annotation analysis of DETs indicated that the wild apple response to the infection of V. mali involves plant-pathogen interaction, plant hormone signal transduction, flavonoid biosynthesis, and phenylpropanoid biosynthesis. The co-expression network of the differentially expressed TFs revealed 264 candidate TF transcripts. Among these candidates, the WRKY family was the most abundant. The MsWRKY7 and MsWRKY33 were highly correlated at the early response stage, and MsWRKY6, MsWRKY7, MsWRKY19, MsWRKY33, MsWRKY40, MsWRKY45, MsWRKY51, MsWRKY61, MsWRKY75 were highly correlated at the late stage. CONCLUSIONS: The full-length transcriptomic analysis revealed a series of immune responsive events in M. sieversii in response to V. mali infection. The phytohormone signal pathway regulatory played an important role in the response stage. Additionally, the enriched disease resistance pathways and differentially expressed TFs dynamics collectively contributed to the immune response. This study provides valuable insights into a dynamic response in M. sieversii upon the necrotrophic pathogen V. mali infection, facilitates understanding of response mechanisms to canker disease for apple, and provides supports in the identification of potential resistance genes in M. sieversii.


Assuntos
Malus , Ascomicetos , Mali , Malus/genética , Doenças das Plantas/genética , Transcriptoma
12.
Small ; 16(9): e1903916, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31663295

RESUMO

Exosomes are secreted by most cell types and circulate in body fluids. Recent studies have revealed that exosomes play a significant role in intercellular communication and are closely associated with the pathogenesis of disease. Therefore, exosomes are considered promising biomarkers for disease diagnosis. However, exosomes are always mixed with other components of body fluids. Consequently, separation methods for exosomes that allow high-purity and high-throughput separation with a high recovery rate and detection techniques for exosomes that are rapid, highly sensitive, highly specific, and have a low detection limit are indispensable for diagnostic applications. For decades, many exosome separation and detection techniques have been developed to achieve the aforementioned goals. However, in most cases, these two techniques are performed separately, which increases operation complexity, time consumption, and cost. The emergence of microfluidics offers a promising way to integrate exosome separation and detection functions into a single chip. Herein, an overview of conventional and microfluidics-based techniques for exosome separation and detection is presented. Moreover, the advantages and drawbacks of these techniques are compared.


Assuntos
Técnicas e Procedimentos Diagnósticos , Exossomos , Microfluídica , Transporte Biológico , Biomarcadores/metabolismo , Técnicas e Procedimentos Diagnósticos/tendências , Exossomos/metabolismo
13.
J Therm Biol ; 89: 102469, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32364963

RESUMO

We conducted laboratory experiments to determine the lethal temperatures of the shoots of dried Bryum argenteum and to determine how this restoration species responds to extreme environments. We specifically assessed changes in gene expression levels in the shoots of dried B. argenteum plants that were subjected to sudden heat shock (control (20 ± 2°C), 80°C, 100°C, 110°C or 120°C) followed by exposure to heat for an additional 10, 20, 30 or 60 min. After they were exposed to heat, the samples were placed in wet sand medium, and their survival and regeneration abilities were evaluated daily for 56 days. The results showed that lethal temperatures significantly reduced the shoot regeneration potential, delayed both shoot and protonemal emergence times and reduced the protonemal emergence area. In addition, the expression of nine genes (HSF3, HSP70, ERF, LEA, ELIP, LHCA, LHCB, Tr288 and DHN) was induced by temperature stress, as assessed after 30 min of exposure. Additionally, a new thermal tolerance level for dried B. argenteum - 120°C for 20 min - was determined, which was the highest temperature recorded for this moss; this tolerance exceeded the previous record of 110°C for 10 min. These findings help elucidate the survival mechanism of this species under heat shock stress and facilitate the recovery and restoration of destroyed ecosystems.


Assuntos
Briófitas/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Termotolerância , Briófitas/genética , Briófitas/metabolismo , Secas , Calor Extremo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Transcriptoma
14.
Int J Mol Sci ; 21(4)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32093042

RESUMO

The early light-induced proteins (ELIPs) are postulated to act as transient pigment-binding proteins that protect the chloroplast from photodamage caused by excessive light energy. Desert mosses such as Syntrichia caninervis, that are desiccation-tolerant and homoiochlorophyllous, are often exposed to high-light conditions when both hydrated and dry ELIP transcripts are accumulated in response to dehydration. To gain further insights into ELIP gene function in the moss S. caninervis, two ELIP cDNAs cloned from S. caninervis, ScELIP1 and ScELIP2 and both sequences were used as the basis of a transcript abundance assessment in plants exposed to high-light, UV-A, UV-B, red-light, and blue-light. ScELIPs were expressed separately in an Arabidopsis ELIP mutant Atelip. Transcript abundance for ScELIPs in gametophytes respond to each of the light treatments, in similar but not in identical ways. Ectopic expression of either ScELIPs protected PSII against photoinhibition and stabilized leaf chlorophyll content and thus partially complementing the loss of AtELIP2. Ectopic expression of ScELIPs also complements the germination phenotype of the mutant and improves protection of the photosynthetic apparatus of transgenic Arabidopsis from high-light stress. Our study extends knowledge of bryophyte photoprotection and provides further insight into the molecular mechanisms related to the function of ELIPs.


Assuntos
Briófitas/metabolismo , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Células Germinativas Vegetais/metabolismo , Proteínas de Plantas/metabolismo , Estresse Fisiológico/efeitos da radiação , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Briófitas/genética , Clorofila/química , Clorofila/metabolismo , Clorofila/efeitos da radiação , Cloroplastos/efeitos da radiação , Dessecação , Genótipo , Células Germinativas Vegetais/efeitos da radiação , Germinação/genética , Germinação/efeitos da radiação , Luz , Fenótipo , Fotossíntese/genética , Fotossíntese/fisiologia , Fotossíntese/efeitos da radiação , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Plântula/efeitos da radiação , Estresse Fisiológico/genética , Raios Ultravioleta
15.
Int J Mol Sci ; 20(12)2019 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-31234595

RESUMO

Gene expression profiles are powerful tools for investigating mechanisms of plant stress tolerance. Betula platyphylla (birch) is a widely distributed tree, but its drought-tolerance mechanism has been little studied. Using RNA-Seq, we identified 2917 birch genes involved in its response to drought stress. These drought-responsive genes include the late embryogenesis abundant (LEA) family, heat shock protein (HSP) family, water shortage-related and ROS-scavenging proteins, and many transcription factors (TFs). Among the drought-induced TFs, the ethylene responsive factor (ERF) and myeloblastosis oncogene (MYB) families were the most abundant. BpERF2 and BpMYB102, which were strongly induced by drought and had high transcription levels, were selected to study their regulatory networks. BpERF2 and BpMYB102 both played roles in enhancing drought tolerance in birch. Chromatin immunoprecipitation combined with qRT-PCR indicated that BpERF2 regulated genes such as those in the LEA and HSP families, while BpMYB102 regulated genes such as Pathogenesis-related Protein 1 (PRP1) and 4-Coumarate:Coenzyme A Ligase 10 (4CL10). Multiple genes were regulated by both BpERF2 and BpMYB102. We further characterized the function of some of these genes, and the genes that encode Root Primordium Defective 1 (RPD1), PRP1, 4CL10, LEA1, SOD5, and HSPs were found to be involved in drought tolerance. Therefore, our results suggest that BpERF2 and BpMYB102 serve as transcription factors that regulate a series of drought-tolerance genes in B. platyphylla to improve drought tolerance.


Assuntos
Betula/fisiologia , Secas , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Fatores de Terminação de Peptídeos/genética , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Adaptação Biológica , Perfilação da Expressão Gênica , Fatores de Terminação de Peptídeos/metabolismo , Fenótipo , Plantas Geneticamente Modificadas , Fatores de Transcrição/metabolismo , Transcriptoma
16.
BMC Plant Biol ; 18(1): 256, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30367626

RESUMO

BACKGROUND: Facilitated by the rapid progress of sequencing technology, comparative genomic studies in plants have unveiled recurrent whole genome duplication (i.e. polyploidization) events throughout plant evolution. The evolutionary past of plant genes should be analyzed in a background of recurrent polyploidy events in distinctive plant lineages. The Vascular Plant One Zinc-finger (VOZ) gene family encode transcription factors associated with a number of important traits including control of flowering time and photoperiodic pathways, but the evolutionary trajectory of this gene family remains uncharacterized. RESULTS: In this study, we deciphered the evolutionary history of the VOZ gene family by analyses of 107 VOZ genes in 46 plant genomes using integrated methods: phylogenic reconstruction, Ks-based age estimation and genomic synteny comparisons. By scrutinizing the VOZ gene family phylogeny the core eudicot γ event was well circumscribed, and relics of the precommelinid τ duplication event were detected by incorporating genes from oil palm and banana. The more recent T and ρ polyploidy events, closely coincident with the species diversification in Solanaceae and Poaceae, respectively, were also identified. Other important polyploidy events captured included the "salicoid" event in poplar and willow, the "early legume" and "soybean specific" events in soybean, as well as the recent polyploidy event in Physcomitrella patens. Although a small transcription factor gene family, the evolutionary history of VOZ genes provided an outstanding record of polyploidy events in plants. The evolutionary past of VOZ gene family demonstrated a close correlation with critical plant polyploidy events which generated species diversification and provided answer to Darwin's "abominable mystery". CONCLUSIONS: We deciphered the evolutionary history of VOZ transcription factor family in plants and ancestral polyploidy events in plants were recapitulated simultaneously. This analysis allowed for the generation of an idealized plant gene tree demonstrating distinctive retention and fractionation patterns following polyploidy events.


Assuntos
Evolução Molecular , Genoma de Planta , Proteínas de Plantas/genética , Poliploidia , Fatores de Transcrição/genética , Duplicação Gênica , Filogenia , Proteínas de Plantas/classificação , Solanaceae/genética , Especificidade da Espécie , Fatores de Transcrição/classificação
17.
Int J Mol Sci ; 19(11)2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-30463185

RESUMO

Bryum argenteum is a desert moss which shows tolerance to the desert environment and is emerging as a good plant material for identification of stress-related genes. AP2/ERF transcription factor family plays important roles in plant responses to biotic and abiotic stresses. AP2/ERF genes have been identified and extensively studied in many plants, while they are rarely studied in moss. In the present study, we identified 83 AP2/ERF genes based on the comprehensive dehydrationrehydration transcriptomic atlas of B. argenteum. BaAP2/ERF genes can be classified into five families, including 11 AP2s, 43 DREBs, 26 ERFs, 1 RAV, and 2 Soloists. RNA-seq data showed that 83 BaAP2/ERFs exhibited elevated transcript abundances during dehydration⁻rehydration process. We used RT-qPCR to validate the expression profiles of 12 representative BaAP2/ERFs and confirmed the expression trends using RNA-seq data. Eight out of 12 BaAP2/ERFs demonstrated transactivation activities. Seven BaAP2/ERFs enhanced salt and osmotic stress tolerances of yeast. This is the first study to provide detailed information on the identification, classification, and functional analysis of the AP2/ERFs in B. argenteum. This study will lay the foundation for the further functional analysis of these genes in plants, as well as provide greater insights into the molecular mechanisms of abiotic stress tolerance of B. argenteum.


Assuntos
Bryopsida/genética , Clima Desértico , Genes de Plantas , Família Multigênica , Filogenia , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequência Conservada , Desidratação , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/química , Domínios Proteicos , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Estresse Fisiológico/genética , Ativação Transcricional/genética , Transformação Genética
18.
BMC Genomics ; 16: 416, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-26016800

RESUMO

BACKGROUND: The desiccation-tolerant moss Bryum argenteum is an important component of the Biological Soil Crusts (BSCs) found in the Gurbantunggut desert. Desiccation tolerance is defined as the ability to revive from the air dried state. To elucidate the molecular mechanisms related to desiccation tolerance, we employed RNA-Seq and digital gene expression (DGE) technologies to study the genome-wide expression profiles of the dehydration and rehydration processes in this important desert plant. RESULTS: We applied a two-step approach to investigate the gene expression profile upon rehydration in the moss Bryum argenteum using Illumina HiSeq2000 sequencing platform. First, a total of 57,247 transcript assembly contigs (TACs) were obtained from 54.79 million reads by de novo assembly, with an average length of 863 bp and N50 of 1,372 bp. Among the reconstructed TACs, 36,916 (64.5%) revealed similarity with existing protein sequences in the public databases. 23,509 and 21,607 TACs were assigned GO and KEGG annotation information, respectively. Second, samples were taken from 3 hydration stages: desiccated (Dry), rehydrated 2 h (R2) and rehydrated 24 h (R24), and DEG libraries were constructed for Differentially Expressed Genes (DEGs) discovery. 4,081 and 6,709 DEGs were identified in R2 and R24, compared with Dry, respectively. Compared to the desiccated sample, up-regulated genes after two hours of hydration are primarily related to stress responses. GO function enrichment network, EKGG metabolic pathway and MapMan analysis supports the idea of the rapid recovery of photosynthesis after 24 h of rehydration. We identified 770 transcription factors (TFs) which were classified into 50 TF families. 142 TF transcripts were up-regulated upon rehydration including 23 members of the ERF family. CONCLUSIONS: In this study, we constructed a pioneering, high-quality reference transcriptome in B. argenteum and generated three DGE libraries to elucidate the changes of gene expression upon rehydration. Expression profiles consistent with the rapid recovery of photosynthesis (at R2) and the re-establishment of a positive carbon balance following rehydration (at R24) were observed. Our study will extend our knowledge of bryophyte transcriptomes and provide further insight into the molecular mechanisms related to rehydration and desiccation-tolerance.


Assuntos
Bryopsida/genética , Perfilação da Expressão Gênica/métodos , Proteínas de Plantas/genética , Transcriptoma , Bryopsida/fisiologia , Dessecação , Regulação da Expressão Gênica de Plantas , Fotossíntese , Análise de Sequência de RNA/métodos
19.
BMC Plant Biol ; 14: 44, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24506952

RESUMO

BACKGROUND: Dehydration-Responsive Element-Binding Protein2 (DREB2) is a transcriptional factor which regulates the expression of several stress-inducible genes. DREB2-type proteins are particularly important in plant responses to drought, salt and heat. DREB2 genes have been identified and characterized in a variety of plants, and DREB2 genes are promising candidate genes for the improvement of stress tolerance in plants. However, little is known about these genes in plants adapted to water-limiting environments. RESULTS: In this study, we describe the characterization of EsDREB2B, a novel DREB2B gene identified from the desert plant Eremosparton songoricum. Phylogenetic analysis and motif prediction indicate that EsDREB2B encodes a truncated DREB2 polypeptide that belongs to a legume-specific DREB2 group. In E. songoricum, EsDREB2B transcript accumulation was induced by a variety of abiotic stresses, including drought, salinity, cold, heat, heavy metal, mechanical wounding, oxidative stress and exogenous abscisic acid (ABA) treatment. Consistent with the predicted role as a transcription factor, EsDREB2B was targeted to the nucleus of onion epidermal cells and exhibited transactivation activity of a GAL4-containing reporter gene in yeast. In transgenic yeast, overexpression of EsDREB2B increased tolerance to multiple abiotic stresses. Our findings indicate that EsDREB2B can enhance stress tolerance in other plant species. Heterologous expression of EsDREB2B in tobacco showed improved tolerance to multiple abiotic stresses, and the transgenic plants exhibited no reduction in foliar growth. We observed that EsDREB2B is a functional DREB2-orthologue able to influence the physiological and biochemical response of transgenic tobacco to stress. CONCLUSIONS: Based upon these findings, EsDREB2B encodes an abiotic stress-inducible, transcription factor which confers abiotic stress-tolerance in yeast and transgenic tobacco.


Assuntos
Fabaceae/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Ácido Abscísico/farmacologia , Fabaceae/efeitos dos fármacos , Fabaceae/genética , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Nicotiana/efeitos dos fármacos , Nicotiana/genética
20.
Physiol Plant ; 152(1): 84-97, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24479715

RESUMO

Ethylene-responsive factor (ERF) family is one of the largest families of plant-specific transcription factor that can positively or negatively regulate abiotic stress tolerance. However, their functions in regulating abiotic stress tolerance are still not fully understood. In this study, we characterized the functions of an ERF gene from Tamarix hispida, ThERF1, which can negatively regulate abiotic stress tolerance. The expression of ThERF1 was induced by salinity, PEG-simulated drought and abscisic acid (ABA) treatments. ThERF1 can specifically bind to GCC-box and DRE motifs. Overexpression of ThERF1 in transgenic Arabidopsis plants showed inhibited seed germination, and decreased fresh weight gain and root growth compared with wild-type (WT) plants. In addition, the transcript levels of several superoxide dismutase (SOD) and peroxidase (POD) genes in transgenic plants were significantly inhibited compared with in WT plants, resulting in decreased SOD and POD activities in transgenic plants under salt and drought stress conditions. Furthermore, the reactive oxygen species (ROS) levels, malondialdehyde (MDA) contents and cell membrane damage in ThERF1-transformed plants were all highly increased relative to WT plants. Our results suggest that ThERF1 negatively regulates abiotic stress tolerance by strongly inhibiting the expression of SOD and POD genes, leading to decreased ROS-scavenging ability.


Assuntos
Arabidopsis/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Estresse Fisiológico , Tamaricaceae/genética , Fatores de Transcrição/metabolismo , Ácido Abscísico/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Arabidopsis/genética , Secas , Etilenos/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Modelos Biológicos , Dados de Sequência Molecular , Peroxidases/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas , Espécies Reativas de Oxigênio/metabolismo , Sementes/genética , Sementes/fisiologia , Alinhamento de Sequência , Superóxido Dismutase/metabolismo , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA