RESUMO
Reproductive suppression is an adaptive strategy in animal reproduction. The mechanism of reproductive suppression has been studied in social animals, providing an essential basis for understanding the maintenance and development of population stability. However, little is known about it in solitary animals. The plateau zokor is a dominant, subterranean, solitary rodent in the Qinghai-Tibet Plateau. However, the mechanism of reproductive suppression in this animal is unknown. We perform morphological, hormonal, and transcriptomic assays on the testes of male plateau zokors in breeders, in non-breeders, and in the non-breeding season. We found that the testes of non-breeders are smaller in weight and have lower serum testosterone levels than those of breeders, and the mRNA expression levels of the anti-Müllerian hormone (AMH) and its transcription factors are significantly higher in non-breeder testes. Genes related to spermatogenesis are significantly downregulated in both meiotic and post-meiotic stages in non-breeders. Genes related to the meiotic cell cycle, spermatogenesis, flagellated sperm motility, fertilization, and sperm capacitation are significantly downregulated in non-breeders. Our data suggest that high levels of AMH may lead to low levels of testosterone, resulting in delayed testicular development, and physiological reproductive suppression in plateau zokor. This study enriches our understanding of reproductive suppression in solitary mammals and provides a basis for the optimization of managing this species.
Assuntos
Sêmen , Transcriptoma , Animais , Masculino , Sêmen/metabolismo , Motilidade dos Espermatozoides , Reprodução , Testículo/metabolismo , Espermatogênese/fisiologia , Testosterona/metabolismo , Hormônio Antimülleriano , Roedores/metabolismoRESUMO
Heavy metals, the main harmful substances in the sludge, are easily enriched, have adverse effects on the treatment and disposal of the sludge. In this study, two conditioners (modified corn-core powder, MCCP, and sludge-based biochar, SBB) were separately added and jointly added into municipal sludge to enhance sludge dewaterability. Meanwhile, diverse organics, such as extracellular polymeric substances (EPS), were released under pretreatment. The different organics had different effects on each heavy metal fraction and changed the toxicity and bioavailability of the treated sludge. The exchangeable fraction (F4) and carbonate fraction (F5) of heavy metal were nontoxic and nonbioavailable. When MCCP/SBB was used to pretreat the sludge, the ratio of metal-F4 and -F5 decreased, indicating that MCCP/SBB reduced the biological availability and ecological toxicity of the heavy metals in the sludge. These results were consistent with the calculation of the modified potential ecological risk index (MRI). To understand the detailed function of organics in the sludge network, the relationship between EPS, the secondary structure of the protein, and heavy metals was analyzed. The analyses revealed that the increasing proportion of ß-sheet in soluble EPS (S-EPS) generated more active sites in the sludge system, which enhanced the chelate or complex function among organics and heavy metals, thus reducing the migration risks.
Assuntos
Matriz Extracelular de Substâncias Poliméricas , Metais Pesados , Eliminação de Resíduos Líquidos , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Água/química , Zea maysRESUMO
Evaluating heavy metal pollution level in the soils and apportioning the source-specific health risk of heavy metals are critical for proposing environmental protection and remediation strategies to protection human health. This study explored heavy metal pollution and associated source-specific health risks in a typical rural industrial area, southwestern China. A total of 105 topsoil samples were collected and the concentrations of heavy metals, including As, Cd, Cr, Cu, Ni, Pb and Zn, were determined. Pollution load index and enrichment factors were used to evaluate the pollution level of heavy metals. Positive matrix factorization (PMF) model was applied to apportion the heavy metals and the associated source-specific health risks to adults and children were estimated via combining the PMF model with the health risk assessment. The results indicated that the soils were highly polluted by multiple heavy metals, especially for Cd, with the EF values of 24.94 and 22.55 in the upstream and downstream areas, respectively. Source apportionment results showed that atmospheric deposition, smelting activities, fertilizer and sewage application, and agrochemical utilization were the main anthropogenic sources, with the contributions of 37.11%, 23.69%, 19.69%, and 19.51%, respectively. Source-specific risk assessment identified atmospheric deposition as the priority source for the non-carcinogenic (NCR) and carcinogenic risks (CR) in the study area, with the contribution of 43.71% and 52.52% for adults, and 44.29% and 52.58% for children, respectively. Moreover, non-carcinogenic and carcinogenic risks posed to children (NCR: 2.84; CR: 1.31 × 10-4) from four sources was higher than those posed to adults (NCR: 0.29; CR: 5.86 × 10-5). The results of source-specific health risk assessment provided the valuable information on the priority sources for pollution preventing and risk controlling.
Assuntos
Metais Pesados , Poluentes do Solo , Adulto , Criança , Humanos , Solo , Monitoramento Ambiental , Cádmio/análise , Incerteza , Poluentes do Solo/análise , Metais Pesados/toxicidade , Metais Pesados/análiseRESUMO
The emergence of mutant strains such as Omicron has increased the uncertainty of COVID-19, and all countries have taken strict measures to prevent the spread of the disease. The spread of the disease between countries is of particular concern. However, most COVID-19 research focuses mainly on the country or community, and there is less research on the border areas between two countries. In this study, we analyzed changes in the total nighttime light intensity (TNLI) and total nighttime lit area (TNLA) along the Sino-Burma border and used the data to construct an epidemic pressure input index (PII) model in reference to the Shen potential model. The results show that, as the epidemic became more severe, TNLI on both sides of the border at the Ruili border port increased, while that in areas far from the port decreased. At the same time, increases and decreases in TNLA occurred in areas far from the port, and PII can indicate the areas where imported cases are likely to occur. Along the Sino-Burma border, the PII model showed low PII in the north and south and high PII in the central region. The areas between Dehong and Lincang, especially the Ruili, Wanding, Nansan, and Qingshuihe border ports, had high PII. The results of this study offer a reference for public health officials and decision makers when determining resource allocation and the implementation of stricter quarantine rules. With updated epidemic statistics, PII can be recalculated to support timely monitoring of COVID-19 in border areas.
RESUMO
BACKGROUND: Brood pollination mutualism is a special type of plant-pollinator interaction in which adult insects pollinate plants, and the plants provide breeding sites for the insects as a reward. To manifest such a mutualism between Stellera chamaejasme and flower thrips of Frankliniella intonsa, the study tested the mutualistic association of the thrips life cycle with the plant flowering phenology and determined the pollination effectiveness of adult thrips and their relative contribution to the host's fitness by experimental pollinator manipulation. RESULTS: The adult thrips of F. intonsa, along with some long-tongue Lepidoptera, could serve as efficient pollinators of the host S. chamaejasme. The thrips preferentially foraged half-flowering inflorescences of the plants and oviposited in floral tubes. The floral longevity was 11.8 ± 0.55 (mean ± se) days, which might precisely accommodate the thrips life cycle from spawning to prepupation. The exclusion of adult thrips from foraging flowers led to a significant decrease in the fitness (i.e., seed set) of host plants, with a corresponding reduction in thrips fecundity (i.e., larva no.) in the flowers. CONCLUSIONS: The thrips of F. intonsa and the host S. chamaejasme mutualistically interact to contribute to each other's fitness such that the thrips pollinate host plants and, as a reward, the plants provide the insects with brooding sites and food, indicating the coevolution of the thrips life cycle and the reproductive traits (e.g., floral longevity and morphology) of S. chamaejasme.
Assuntos
Flores/fisiologia , Polinização/fisiologia , Thymelaeaceae/fisiologia , Tisanópteros/fisiologia , Animais , Larva , SimbioseRESUMO
The heavy metal distributions in size-fractionated atmospheric particulate matters and the associated health risks were investigated in a typical mining and smelting area in Southwest China. The Cd, Cr, Cu, Pb, and Zn concentrations were 19.28, 44.48, 100.0, 554.0, and 601.8 ng/m3, respectively, in PM2.1; and 23.45, 60.99, 95.25, 559.3, and 813.7 ng/m3, respectively, in PM10. Enrichment factors of heavy metals indicated that anthropogenic sources of Cd, Cu, Pb, and Zn in the size-fractionated particles. The elevated concentrations of Cd, Cu, Pb, and Zn were dominantly enriched in submicron particles (DP < 1.1 µm), whereas Cr tended to be accumulated in coarse particles (2.1 < DP < 10 µm). The deposition concentrations for multiple heavy metals in the head airway region, tracheobronchial region, and alveolar regions were 321.07, 21.58, and 51.96 ng/h for children, and 634.49, 42.65, and 102.68 ng/h for adults, respectively. The coarse particles contributed the most to the deposition concentration of HMs in head region, whereas submicron particles had relative higher proportions in the alveolar region. Heavy metals, especially Pb, caused noncarcinogenic risk to the children as the hazard index was 4.45. Moreover, total carcinogenic risks of heavy metals (Cr, Cd, and Pb) were 4.33 × 10-5 and 7.58 × 10-5 for adults and children, respectively, indicating potential carcinogenic risks. Overall, the results of this study revealed high health risks to the residents living around the mining and smelting areas, especially the children. It was therefore urgent to control the emission of heavy metals in the atmosphere.
Assuntos
Poluentes Atmosféricos/análise , Exposição por Inalação/análise , Metais Pesados/análise , Material Particulado/análise , Adulto , Criança , China , Monitoramento Ambiental , Indústrias Extrativas e de Processamento , Humanos , Tamanho da Partícula , Medição de RiscoRESUMO
BACKGROUND: A number of studies have been conducted to investigate the association between serum surfactant protein D (SP-D) concentration and chronic obstructive pulmonary disease (COPD) risk. However, the results are inconsistent. This systematic review and meta-analysis aim to investigate whether serum SP-D concentration is a potential biomarker for COPD diagnosis. METHODS: We searched Web of Science, PubMed, China National Knowledge Infrastructure (CNKI), and Wanfang Database from inception through July 18, 2018. The standardized mean difference (SMD) with 95% confidence interval (CI) was used to investigate the effect sizes. RESULTS: Seventeen eligible studies from a total of 4,639 subjects were finally included in this systematic review and meta-analysis. The results indicated that serum SP-D levels in COPD patients were significantly higher than those in controls (SMD = 1.01, 95% CI = 0.62 - 1.41, p < 0.001). We also found that serum SP-D concentration in acute exacerbation of chronic obstructive pulmonary disease (AECOPD) patients was significantly higher than that in stable COPD patients (SMD = 1.50, 95% CI = 0.92 - 2.08, p < 0.001), and serum SP-D concentration was higher in smokers than in nonsmokers in healthy population (SMD = 1.50, 95% CI = 0.35 - 2.64, p = 0.025). CONCLUSIONS: The current systematic review and meta-analysis indicates that serum SP-D levels may be a promising biomarker for COPD. In particular, increased serum SP-D levels appear to be associated with acute exacerbation of COPD and smoking in healthy population.
Assuntos
Biomarcadores/sangue , Doença Pulmonar Obstrutiva Crônica/sangue , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Proteína D Associada a Surfactante Pulmonar/sangue , Humanos , Fumar/sangueRESUMO
Is there a common structural and functional cortical architecture that can be quantitatively encoded and precisely reproduced across individuals and populations? This question is still largely unanswered due to the vast complexity, variability, and nonlinearity of the cerebral cortex. Here, we hypothesize that the common cortical architecture can be effectively represented by group-wise consistent structural fiber connections and take a novel data-driven approach to explore the cortical architecture. We report a dense and consistent map of 358 cortical landmarks, named Dense Individualized and Common Connectivity-based Cortical Landmarks (DICCCOLs). Each DICCCOL is defined by group-wise consistent white-matter fiber connection patterns derived from diffusion tensor imaging (DTI) data. Our results have shown that these 358 landmarks are remarkably reproducible over more than one hundred human brains and possess accurate intrinsically established structural and functional cross-subject correspondences validated by large-scale functional magnetic resonance imaging data. In particular, these 358 cortical landmarks can be accurately and efficiently predicted in a new single brain with DTI data. Thus, this set of 358 DICCCOL landmarks comprehensively encodes the common structural and functional cortical architectures, providing opportunities for many applications in brain science including mapping human brain connectomes, as demonstrated in this work.
Assuntos
Mapeamento Encefálico , Córtex Cerebral/fisiologia , Fibras Nervosas Mielinizadas/fisiologia , Vias Neurais/fisiologia , Adolescente , Adulto , Fatores Etários , Idoso , Algoritmos , Atenção/fisiologia , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/irrigação sanguínea , Imagem de Difusão por Ressonância Magnética , Emoções/fisiologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , SemânticaRESUMO
To quantitatively analyze the impact of climate variability and human activities on grassland productivity of China's Qilian Mountain National Park, this study used Carnegic-Ames-Stanford Approach model (CASA) and Integrated Vegetation model improved by the Comprehensive and Sequential Classification System (CSCS) to assess the trends of grassland NPP from 2000 to 2015, the residual trend analysis method was used to quantify the impact of human activities and climate change on the grassland based on the NPP changes. The actual grassland NPP accumulation mainly occurred in June, July and August (autumn); the actual NPP showed a fluctuating upward trend with an average increase of 2.2 g C·m-2 a-1, while the potential NPP increase of 1.6 g C·m-2 a-1 and human-induced NPP decreased of 0.5 g C·m-2 a-1. The annual temperature showed a fluctuating upward trend with an average increase of 0.1°C 10a-1, but annual precipitation showed a fluctuating upward trend with an average annual increase of 1.3 mm a-1 from 2000 to 2015. The area and NPP of grassland degradation caused by climate variability was significantly greater than that caused by human activities and mainly distributed in the northwest and central regions, but area and NPP of grassland restored caused by human activities was significantly greater than that caused by climate variability and mainly distributed in the southeast regions. In conclusion, grassland in Qilian Mountain National Park showed a trend of degradation based on distribution area, but showed a trend of restoration based on actual NPP. Climate variability was the main cause of grassland degradation in the northwestern region of study area, and restoration of grassland in the eastern region was the result of the combined effects of human activities and climate variability. Under global climate change, the establishment of Qilian Mountain National Park was of great significance to the grassland's protection and the grasslands ecological restoration that have been affected by humans.
Assuntos
Mudança Climática , Pradaria , Atividades Humanas , Parques Recreativos , China , Humanos , Conservação dos Recursos Naturais , Clima , Ecossistema , TemperaturaRESUMO
Accurate prediction of spatial distribution of potentially toxic elements (PTEs) is crucial for soil pollution prevention and risk control. Achieving accurate prediction of spatial distribution of soil PTEs at a large scale using conventional methods presents significant challenges. In this study, machine learning (ML) models, specially artificial neural network (ANN), random forest (RF), and extreme gradient boosting (XGB), were used to predict spatial distribution of soil PTEs and identify associated key factors in mining and smelting area located in Yunnan Province, China, under the three scenarios: (1) natural + socioeconomic + spatial datasets (NS), (2) NS + irrigation pollution index (IPI) datasets, (3) NS + IPI + deposition (DEPO) datasets. The results highlighted the combination of NS+IPI+DEPO yielded the highest predictive accuracy across ML models. Particularly, XGB exhibited the highest performance for As (R2 =0.7939), Cd (R2 =0.6679), Cu (R2 =0.8519), Pb (R2 =0.8317), and Zn (R2 =0.7669), whereas RF performed the best for Ni (R2 =0.7146). The feature importance and Shapley additive explanation (SHAP) analysis revealed that DEPO and IPI were the pivotal factors influencing the distribution of soil PTEs. Our findings highlighted the important role of DEPO in spatial distribution prediction of soil PTEs, which has often been ignored in previous studies.
RESUMO
Biochar (BC) has a strong potential for activating arsenic (As) in soil; thus, the phytoremediation efficiency of As-polluted soils is enhanced with Pteris vittata L. A pot experiment was conducted to investigate the potential of BC to assist in phytoremediation with P. vittata. The effects of BC on physicochemical properties, available As, enzyme activities, and the bacterial community in the rhizosphere soil were investigated, and the biomass, physiology, and As uptake of P. vittata were analyzed. The results indicated that applying BC facilitated available As in the P. vittata rhizosphere soil, and the phytoremediation efficiency percentage increased in the As-polluted soils, such as 3.80% and 8.01% under the 2% and 5% BC treatments compared to the control, respectively. Phytoremediation with P. vittata and BC significantly improved soil organic matter content, available N, P, and K, enzyme activities, and the bacterial community. BC promoted Streptomyces (26.6-54.2%) and Sphingomonas (12.3-30.8%) abundance which regulated the growth and As uptake by P. vittata. Moreover, applying BC increased the biomass, and As uptake by P. vittata. Overall, BC strengthened the phytoremediation of As-polluted soils by improving soil pH, nutrient concentrations, enzyme activities, bacterial community structure, and soil arsenic activation, growth, and absorption by P. vittata.
Assuntos
Arsênio , Carvão Vegetal , Pteris , Poluentes do Solo , Arsênio/análise , Solo/química , Poluentes do Solo/análise , Biodegradação Ambiental , BactériasRESUMO
Soil aggregate stability and organic carbon ï¼SOCï¼ are important indicators of soil structure and quality and play a key role in the improvement of soil quality in temperate deserts. This study aimed to investigate the distribution patterns, stability of soil aggregates, and variation characteristics of the content of aggregate organic carbon in different grassland types in temperate deserts and their interrelationships. Four grassland types in a temperate desert ï¼Kalidium foliatum type, Reaumuria songarica type, Salsola passerina type, and Sympegma regelii typeï¼ in the Longzhong Loess Plateau as research objects, and the soil aggregate particle size distribution characteristics were determined using the wet sieving method. The stability of soil aggregates was analyzed by calculating aggregate stability indicators and the contribution of aggregate particle size SOC to bulk soil SOC content. Correlation analysis, principal component analysis, and linear fitting equations were used to reveal the relationship between the soil aggregate content and aggregate particle size SOC and aggregate stability. The results showed that the content of >0.25 mm aggregates ï¼R0.25ï¼, mean weight diameter ï¼MWDï¼, geometric mean diameter ï¼GMDï¼, and bulk soil SOC content in each soil layer ï¼0-10, 10-20, and 20-30 cmï¼ of the K. foliatum type grassland were significantly higher than that of the R. songarica type and S. regelii type ï¼P<0.05ï¼. The SOC content of 0.053-0.25 mm and <0.053 mm particle size in each soil layer of the K. foliatum type grassland were significantly higher than that of the S. regelii type ï¼P<0.05ï¼. Surface and subsurface soils ï¼0-10 cm and 10-20 cmï¼ had the significantly highest contribution of 0.25-2 mm particle size SOC to the bulk soil SOC content ï¼P<0.05ï¼. Additionally, as the soil layer deepened, the R0.25, MWD, GMD, bulk soil, and aggregate SOC contents of the K. foliatum type grassland showed a tendency to increase first and then decrease, with the highest contents from 10-20 cm. Kalidium foliatum type grassland aggregate content was dominated by 0.25-2 mm aggregates, whereas the other three grassland types were dominated by 0.053-0.25 mm aggregates. In addition, bulk soil SOC content was significantly correlated with R0.25, MWD, GMD, and ELT ï¼P<0.01ï¼, and the 0.25 mm aggregate was the critical size of positive and negative correlation. R0.25, MWD, GMD, and ELT values were the key factors influencing bulk soil SOC in grassland. The equation fitted to bulk soil SOC content, and GMD was the most suitable to describe the relationship between SOC content and the stability of soil aggregates. Therefore, compared with other grassland types, K. foliatum type grassland had a promoting effect on the soil aggregate stability and the improvement of soil quality.
RESUMO
Convoluted cortical folding and neuronal wiring are 2 prominent attributes of the mammalian brain. However, the macroscale intrinsic relationship between these 2 general cross-species attributes, as well as the underlying principles that sculpt the architecture of the cerebral cortex, remains unclear. Here, we show that the axonal fibers connected to gyri are significantly denser than those connected to sulci. In human, chimpanzee, and macaque brains, a dominant fraction of axonal fibers were found to be connected to the gyri. This finding has been replicated in a range of mammalian brains via diffusion tensor imaging and high-angular resolution diffusion imaging. These results may have shed some lights on fundamental mechanisms for development and organization of the cerebral cortex, suggesting that axonal pushing is a mechanism of cortical folding.
Assuntos
Axônios/ultraestrutura , Córtex Cerebral/ultraestrutura , Macaca/anatomia & histologia , Vias Neurais/ultraestrutura , Pan troglodytes/anatomia & histologia , Animais , Feminino , Humanos , Masculino , Especificidade da Espécie , Adulto JovemRESUMO
Studies have shown that energy consumption from economic development leads to an increase in carbon emissions. Emerging economies, as important sources of carbon emissions with high growth potential, play a crucial role in global decarbonisation efforts. However, the spatial pattern and evolution trend of carbon emissions in emerging economies have not been studied in depth. Therefore, this paper uses the improved gravitational model and carbon emission data from 2000 to 2018 to construct a spatial correlation network of carbon emissions in 30 emerging economies around the world, aiming to reveal the spatial characteristics and influencing factors of carbon emissions at the national level. The results show that the spatial network structure of carbon emissions in emerging economies is closely linked, forming a "big network" of interconnection. Amongst them, Argentina, Brazil, Russia, Estonia, etc. are at the centre of the network and play a leading role. Geographical distance, economic development level, population density, and scientific and technological level have a significant impact on the formation of spatial correlation between carbon emissions. Further use of GeoDetector shows that the explanatory power of two-factor interaction on centrality is greater than that of a single factor, indicating that a single economic development cannot well enhance the influence of countries in the carbon emission network, and needs to be combined with factors such as industrial structure and scientific and technological level. These results are helpful to understand the correlation between carbon emissions between countries from the perspective of the whole and part and provide a reference for optimizing the carbon emission network structure in the future.
Assuntos
Dióxido de Carbono , Carbono , Carbono/análise , Dióxido de Carbono/análise , Desenvolvimento Econômico , Tecnologia , Brasil , ChinaRESUMO
The gonads of seasonal breeding animals undergo periodic annual changes in morphology, physiological hormones, and gene expression levels. To clarify the regulatory mechanism of miRNAs in the seasonal testicular development and spermatogenesis of plateau zokors, the miRNA expression profiles in their testicles during breeding and non-breeding seasons were analyzed. In total, 447 miRNAs, including 366, 81, and 167 known, novel, and differentially expressed (DE) miRNAs, respectively, were determined in the testes. Compared to the non-breeding season, 90 DE miRNAs were upregulated and 77 DE miRNAs were downregulated during the breeding season. By analysing the miRNA and mRNA expression profiles, we predicted 2096 significant target mRNAs. According to the miRNA-mRNA interaction network, target mRNAs with DE miRNAs were related to testicular development and spermatogenesis. GO indicated that target mRNAs were enriched in spermatogenesis, cell differentiation, multicellular biological development, and flagellated sperm movement and were associated with regulating testicular development and spermatogenesis. KEGG suggested that target mRNAs were enriched in lipid and fructose metabolism and provided energy and material for spermatogenesis. The target mRNA of rno-miR-24-3p was determined to be Polyubiquitin-B (UBB). Our results provide a reference for revealing the mechanism by which miRNAs regulate testicular development and spermatogenesis in plateau zokors, which has important implications for understanding the regulation of seasonal reproduction in animals.
Assuntos
MicroRNAs , Testículo , Masculino , Animais , Testículo/metabolismo , Estações do Ano , Sêmen/metabolismo , MicroRNAs/genética , RNA Mensageiro/genéticaRESUMO
Pteris vittata L. (PV), an arsenic (As) hyperaccumulator, has a potential to extract As from As-polluted soils. Since available As in soils can be taken up by PV, As fraction variation associated rhizosphere environmental characteristics caused by municipal sewage sludge compost (MSSC) could provide possible to strengthen As phytoextraction by PV. In this study, the mechanism of phytoextraction of PV aided by MSSC was revealed from aspect of environmental characteristics of rhizosphere soils and physiological properties of PV. The effect of MSSC on available As in soils was investigated by soil incubation experiment. Furthermore, the influences of MSSC on enzymes activities, communities of soil bacteria and fungi, As concentrations, and As fraction in rhizosphere soils of PV were explored, and then the biomass and As accumulation of PV were examined by greenhouse pot experiments. After 90 days, available As in soil incubation experiment significantly increased by 32.63 %, 43.05 %, and 36.84 % under 2 %, 5 %, and 10 % treatment, respectively, compared with control treatment. Moreover, As concentrations in rhizosphere soils of PV under 2 %, 5 %, and 10 % treatment decreased by 4.62 %, 8.68 %, and 7.47 %, respectively, compared with control treatment. The available nutrients and enzyme activities in rhizosphere soils of PVs were improved under the MSSC treatment. Affected by MSSC, the dominant phylum and genus for both bacterial and fungal communities didn't change, but their relative abundance increased. Additionally, MSSC significantly increased biomass of PV with corresponding mean ranging from 2.82 to 3.42 g in shoot and 1.82 to 1.89 g in root, respectively. And the concentrations of As in shoot and root of PV treated by MSSC increased by 29.04 %-144.7 % and 26.34 %-81.78 %, respectively, in relative to control. The results of this study provided a basis for MSSC-strengthened phytoremediation for As-polluted soils.
Assuntos
Arsênio , Compostagem , Pteris , Poluentes do Solo , Arsênio/análise , Esgotos , Poluentes do Solo/análise , Biodegradação Ambiental , Solo , BactériasRESUMO
Introduction: Reproductive suppression is an adaptive strategy that affects the success rate and reproductive efficiency in animals, which in turn affects population continuation and evolution. However, no studies on the miRNAs in testicular development and spermatogenesis regulatory mechanisms under reproductive suppression have been reported. Methods: In this study, the differentially expressed (DE) miRNAs, miRNA-mRNA interaction network and function of the plateau zokor testicular cells of non-breeders and breeders during the breeding season were comprehensively analyzed by transcriptomics. Results: In total, 381 known and 94 novel miRNAs were determined. Compared with that in the breeders, 70 downregulated and 68 upregulated DE miRNAs were identified in the non-breeders. We predicted 1670 significant target mRNAs by analyzing the miRNA and mRNA expression profiles. According to the miRNA-mRNA interaction network, the target mRNAs of the DE miRNAs were related to testicular development and spermatogenesis. GO indicate that the target mRNAs were related to testicular development and spermatogenesis. KEGG indicate that pathways of target mRNAs enrichment related to testicular development, spermatogenesis, and energy metabolism. PROK2 was determined as the target mRNA of rno-miR-143-3p. Discussion: Our study offers a basis for the regulatory mechanisms of miRNAs in testicular development and spermatogenesis in plateau zokor under reproductive suppression and offers a reference for reproductive regulation.
RESUMO
Objectives: Paraquat (PQ), a highly effective and rapidly non-selective herbicide, mainly targets the lungs and causes acute lung injury (ALI). So far, the scarcity of effective drug candidates against PQ-induced ALI remains a big challenge. Andrographolide (Andro), with its anti-inflammatory and antioxidant activities, has been demonstrated to alleviate ALI. Nevertheless, whether Andro could alleviate the PQ-mediated ALI remains unknown. Therefore, this study will explore the effects as well as the possible mechanism of Andro against ALI caused by PQ. Materials and Methods: C57BL/6J mice were injected with 20 mg/kg PQ intraperitoneally to establish an ALI model. PQ-treated MLE-12 cells were applied to a vitro model. Nuclear factor erythroid like-2 (Nrf2) was knocked out to explore the specific effects of the Nrf2/ Heme oxygenase-1 (OH-1) pathway in the protection of Andro against ALI caused by PQ. Results: Andro significantly reduced lung damage and the ratio of Wet/Dry (W/D) weight, decreased MDA, IL-6, IL-1ß, and TNF-É levels, reversed the decrease of CAT and SOD levels, and inhibited apoptosis caused by PQ. Andro obviously increased the ratio of Bcl-2/Bax while reducing caspase-3 and cleaved caspase-3 levels. Furthermore, Andro dramatically elevated the antioxidant proteins Nrf2, NQO-1, and HO-1 levels compared with the PQ group. This experiment demonstrated that Andro reduced ROS and inhibited apoptosis, induced by PQ in MLE-12 cells, by inducing Nrf2/HO-1 pathway activation. Conclusion: Andro effectively ameliorates oxidant stress and apoptosis in ALI caused by PQ, possibly through inducing Nrf2/HO-1 pathway activation.
RESUMO
How environmental factors shape species morphology and distributions is a key issue in ecology, especially in similar environments. Species of Myospalacinae exhibit widespread distribution spanning the eastern Eurasian steppe and the extreme adaptation to the subterranean environment, providing an excellent opportunity for investigating species responses to environmental changes. At the national scale, we here use geometric morphometric and distributional data to assess the environmental and climatic drivers of morphological evolution and distribution of Myospalacinae species in China. Based on phylogenetic relationships of Myospalacinae species constructed using genomic data in China, we integrate geometric morphometrics and ecological niche models to reveal the interspecific variation of skull morphology, trace the ancestral state, and assess factors influencing interspecific variation. Our approach further allows us to project future distributions of Myospalacinae species throughout China. We found that the interspecific morphology variations were mainly concentrated in the temporal ridge, premaxillary-frontal suture, premaxillary-maxillary suture, and molars, and the skull morphology of the two current species in Myospalacinae followed the ancestral state; temperature and precipitation were important environmental variables influencing skull morphology. Elevation, temperature annual range, and precipitation of warmest quarter were identified as dominant factors affecting the distribution of Myospalacinae species in China, and their suitable habitat area will decrease in the future. Collectively, environmental and climate changes have an effect on skull phenotypes of subterranean mammals, highlighting the contribution of phenotypic differentiation in similar environments in the formation of species phenotypes. Climate change will further shrink their habitats under future climate assumptions in the short-term. Our findings provide new insights into effects of environmental and climate change on the morphological evolution and distribution of species as well as a reference for biodiversity conservation and species management.
Assuntos
Biodiversidade , Ecossistema , Animais , Filogenia , Mudança Climática , Mamíferos , FenótipoRESUMO
Segregation and integration are two general principles of the brain's functional architecture. Therefore, brain network analysis is of significant importance in understanding brain function. Critical to brain network construction and analysis is the identification of reliable, reproducible, and accurate network nodes, or Regions of Interest (ROIs). Task-based fMRI has been widely considered as a reliable approach to identify functionally meaningful ROIs in the brain. However, recent studies have shown that factors such as spatial smoothing could considerably shift the locations of detected activation peaks. As a result, structural and functional connectivity patterns can be significantly altered. Here, we propose a novel framework by which to optimize ROI sizes and locations, ensuring that differences between the structural connectivity profiles among a group of subjects is minimized. This framework is based on functional ROIs derived from task-based fMRI and diffusion tensor imaging (DTI) data. Accordingly, we present a new approach to describe and measure the fiber bundle similarity quantitatively within and across subjects which will facilitate the optimization procedure. Experimental results demonstrated that this framework improved the localizations of fMRI-derived ROIs. Through our optimization procedure, structural and functional connectivities were more consistent across different individuals. Overall, the ability to accurately localize network ROIs could facilitate many applications in brain imaging that rely on the accurate identification of ROIs.