Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mol Psychiatry ; 27(7): 3056-3068, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35449296

RESUMO

Chronic social isolation stress during adolescence induces susceptibility for neuropsychiatric disorders. Here we show that 5-week post-weaning isolation stress induces sex-specific behavioral abnormalities and neuronal activity changes in the prefrontal cortex (PFC), basal lateral amygdala (BLA), and ventral tegmental area (VTA). Chemogenetic manipulation, optogenetic recording, and in vivo calcium imaging identify that the PFC to BLA pathway is causally linked to heightened aggression in stressed males, and the PFC to VTA pathway is causally linked to social withdrawal in stressed females. Isolation stress induces genome-wide transcriptional alterations in a region-specific manner. Particularly, the upregulated genes in BLA of stressed males are under the control of activated transcription factor CREB, and CREB inhibition in BLA normalizes gene expression and reverses aggressive behaviors. On the other hand, neuropeptide Hcrt (Hypocretin/Orexin) is among the top-ranking downregulated genes in VTA of stressed females, and Orexin-A treatment rescues social withdrawal. These results have revealed molecular mechanisms and potential therapeutic targets for stress-related mental illness.


Assuntos
Neuropeptídeos , Isolamento Social , Estresse Psicológico , Complexo Nuclear Basolateral da Amígdala/metabolismo , Feminino , Humanos , Masculino , Neuropeptídeos/metabolismo , Córtex Pré-Frontal/metabolismo , Estresse Psicológico/metabolismo , Área Tegmentar Ventral/metabolismo
2.
Int J Neuropsychopharmacol ; 25(10): 877-889, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-35907244

RESUMO

BACKGROUND: Microdeletion of the human 16p11.2 gene locus confers risk for autism spectrum disorders and intellectual disability. How 16p11.2 deletion is linked to these neurodevelopmental disorders and whether there are treatment avenues for the manifested phenotypes remain to be elucidated. Emerging evidence suggests that epigenetic aberrations are strongly implicated in autism. METHODS: We performed behavioral and electrophysiological experiments to examine the therapeutic effects of epigenetic drugs in transgenic mice carrying 16p11.2 deletion (16p11del/+). RESULTS: We found that 16p11del/+ mice exhibited a significantly reduced level of histone acetylation in the prefrontal cortex (PFC). A short (3-day) treatment with class I histone deacetylase (HDAC) inhibitor MS-275 or Romidepsin led to the prolonged (3-4 weeks) rescue of social and cognitive deficits in 16p11del/+ mice. Concomitantly, MS-275 treatment reversed the hypoactivity of PFC pyramidal neurons and the hyperactivity of PFC fast-spiking interneurons. Moreover, the diminished N-methyl-D-aspartate (NMDA) receptor-mediated synaptic currents and the elevated GABAA receptor-mediated synaptic currents in PFC pyramidal neurons of 16p11del/+ mice were restored to control levels by MS-275 treatment. CONCLUSIONS: Our results suggest that HDAC inhibition provides a highly effective therapeutic strategy for behavioral deficits and excitation/inhibition imbalance in 16p11del/+ mice, likely via normalization of synaptic function in the PFC.


Assuntos
Histona Desacetilases , N-Metilaspartato , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Inibidores de Histona Desacetilases/farmacologia , Histonas , Camundongos Transgênicos , Córtex Pré-Frontal , Receptores de GABA-A , Deleção Cromossômica
3.
Mol Psychiatry ; 26(6): 1967-1979, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32099100

RESUMO

The human 16p11.2 gene locus is a hot spot for copy number variations, which predispose carriers to a range of neuropsychiatric phenotypes. Microduplications of 16p11.2 are associated with autism spectrum disorder (ASD), intellectual disability (ID), and schizophrenia (SZ). Despite the debilitating nature of 16p11.2 duplications, the underlying molecular mechanisms remain poorly understood. Here we performed a comprehensive behavioral characterization of 16p11.2 duplication mice (16p11.2dp/+) and identified social and cognitive deficits reminiscent of ASD and ID phenotypes. 16p11.2dp/+ mice did not exhibit the SZ-related sensorimotor gating deficits, psychostimulant-induced hypersensitivity, or motor impairment. Electrophysiological recordings of 16p11.2dp/+ mice found deficient GABAergic synaptic transmission and elevated neuronal excitability in the prefrontal cortex (PFC), a brain region critical for social and cognitive functions. RNA-sequencing identified genome-wide transcriptional aberrance in the PFC of 16p11.2dp/+ mice, including downregulation of the GABA synapse regulator Npas4. Restoring Npas4 expression in PFC of 16p11.2dp/+ mice ameliorated the social and cognitive deficits and reversed GABAergic synaptic impairment and neuronal hyperexcitability. These findings suggest that prefrontal cortical GABAergic synaptic circuitry and Npas4 are strongly implicated in 16p11.2 duplication pathology, and may represent potential targets for therapeutic intervention in ASD.


Assuntos
Transtorno do Espectro Autista , Deleção Cromossômica , Animais , Transtorno do Espectro Autista/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Cromossomos Humanos Par 16/genética , Variações do Número de Cópias de DNA/genética , Humanos , Camundongos , Sinapses , Ácido gama-Aminobutírico
4.
Mol Psychiatry ; 25(10): 2641, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31520066

RESUMO

A correction to this paper has been published and can be accessed via a link at the top of the paper.

5.
Mol Psychiatry ; 25(10): 2517-2533, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-30659288

RESUMO

Many of the genes disrupted in autism are identified as histone-modifying enzymes and chromatin remodelers, most prominently those that mediate histone methylation/demethylation. However, the role of histone methylation enzymes in the pathophysiology and treatment of autism remains unknown. To address this, we used mouse models of haploinsufficiency of the Shank3 gene (a highly penetrant monogenic autism risk factor), which exhibits prominent autism-like social deficits. We found that histone methyltransferases EHMT1 and EHMT2, as well as histone lysine 9 dimethylation (specifically catalyzed by EHMT1/2), were selectively increased in the prefrontal cortex (PFC) of Shank3-deficient mice and autistic human postmortem brains. Treatment with the EHMT1/2 inhibitor UNC0642 or knockdown of EHMT1/2 in PFC induced a robust rescue of autism-like social deficits in Shank3-deficient mice, and restored NMDAR-mediated synaptic function. Activity-regulated cytoskeleton-associated protein (Arc) was identified as one of the causal factors underlying the rescuing effects of UNC0642 on NMDAR function and social behaviors in Shank3-deficient mice. UNC0642 treatment also restored a large set of genes involved in neural signaling in PFC of Shank3-deficient mice. These results suggest that targeting histone methylation enzymes to adjust gene expression and ameliorate synaptic defects could be a potential therapeutic strategy for autism.


Assuntos
Transtorno Autístico/tratamento farmacológico , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Proteínas dos Microfilamentos/deficiência , Proteínas do Tecido Nervoso/deficiência , Animais , Transtorno Autístico/genética , Modelos Animais de Doenças , Feminino , Haploinsuficiência , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Masculino , Metilação/efeitos dos fármacos , Camundongos , Proteínas dos Microfilamentos/genética , Proteínas do Tecido Nervoso/genética , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Quinazolinas/farmacologia
6.
Brain ; 142(3): 787-807, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30668640

RESUMO

Epigenetic dysregulation, which leads to the alteration of gene expression in the brain, is suggested as one of the key pathophysiological bases of ageing and neurodegeneration. Here we found that, in the late-stage familial Alzheimer's disease (FAD) mouse model, repressive histone H3 dimethylation at lysine 9 (H3K9me2) and euchromatic histone methyltransferases EHMT1 and EHMT2 were significantly elevated in the prefrontal cortex, a key cognitive region affected in Alzheimer's disease. Elevated levels of H3K9me2 were also detected in the prefrontal cortex region of post-mortem tissues from human patients with Alzheimer's disease. Concomitantly, H3K9me2 at glutamate receptors was increased in prefrontal cortex of aged FAD mice, which was linked to the diminished transcription, expression and function of AMPA and NMDA receptors. Treatment of FAD mice with specific EHMT1/2 inhibitors reversed histone hyper-methylation and led to the recovery of glutamate receptor expression and excitatory synaptic function in prefrontal cortex and hippocampus. Chromatin immunoprecipitation-sequencing (ChIP-seq) data indicated that FAD mice exhibited genome-wide increase of H3K9me2 enrichment at genes involved in neuronal signalling (including glutamate receptors), which was reversed by EHMT1/2 inhibition. Moreover, the impaired recognition memory, working memory, and spatial memory in aged FAD mice were rescued by the treatment with EHMT1/2 inhibitors. These results suggest that disrupted epigenetic regulation of glutamate receptor transcription underlies the synaptic and cognitive deficits in Alzheimer's disease, and targeting histone methylation enzymes may represent a novel therapeutic strategy for this prevalent neurodegenerative disorder.


Assuntos
Doença de Alzheimer/metabolismo , Antígenos de Histocompatibilidade/fisiologia , Histona-Lisina N-Metiltransferase/fisiologia , Animais , Deleção Cromossômica , Cognição/fisiologia , Transtornos Cognitivos/genética , Disfunção Cognitiva/metabolismo , Metilação de DNA/genética , Modelos Animais de Doenças , Epigênese Genética/genética , Hipocampo/metabolismo , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Humanos , Lisina/genética , Transtornos da Memória/genética , Metilação , Camundongos , Camundongos Transgênicos , Córtex Pré-Frontal/metabolismo , Sinapses/metabolismo
7.
J Neurosci ; 38(26): 5939-5948, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29853627

RESUMO

Microdeletion of the human 16p11.2 gene locus has been linked to autism spectrum disorder (ASD) and intellectual disability and confers risk for a number of other neurodevelopmental deficits. Transgenic mice carrying 16p11.2 deletion (16p11+/-) display phenotypes reminiscent of those in human patients with 16p11.2 deletion syndrome, but the molecular mechanisms and treatment strategies for these phenotypes remain unknown. In this study, we have found that both male and female 16p11+/- mice exhibit deficient NMDA receptor (NMDAR) function in the medial prefrontal cortex (mPFC), a brain region critical for high-level "executive" functions. Elevating the activity of mPFC pyramidal neurons with a CaMKII-driven Gq-DREADD (Gq-coupled designer receptors exclusively activated by designer drugs) led to the significant increase of NR2B subunit phosphorylation and the restoration of NMDAR function, as well as the amelioration of cognitive and social impairments in 16p11+/- mice. These results suggest that NMDAR hypofunction in PFC may contribute to the pathophysiology of 16p11.2 deletion syndrome and that restoring PFC activity is sufficient to rescue the behavioral deficits.SIGNIFICANCE STATEMENT The 16p11.2 deletion syndrome is strongly associated with autism spectrum disorder and intellectual disability. Using a mouse model carrying the 16p11.2 deletion, 16p11+/-, we identified NMDA receptor hypofunction in the prefrontal cortex (PFC). Elevating the activity of PFC pyramidal neurons with a chemogenetic tool, Gq-DREADD, led to the restoration of NMDA receptor function and the amelioration of cognitive and social impairments in 16p11+/- mice. These results have revealed a novel route for potential therapeutic intervention of 16p11.2 deletion syndrome.


Assuntos
Transtorno Autístico/metabolismo , Transtornos Cromossômicos/metabolismo , Deficiência Intelectual/metabolismo , Córtex Pré-Frontal/metabolismo , Células Piramidais/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Transtorno Autístico/fisiopatologia , Comportamento Animal/fisiologia , Deleção Cromossômica , Transtornos Cromossômicos/fisiopatologia , Cromossomos Humanos Par 16/metabolismo , Modelos Animais de Doenças , Feminino , Deficiência Intelectual/fisiopatologia , Masculino , Camundongos , Camundongos Transgênicos , Córtex Pré-Frontal/fisiopatologia
8.
Transl Psychiatry ; 11(1): 99, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542189

RESUMO

Autism spectrum disorder (ASD) is a lifelong developmental disorder characterized by social deficits and other behavioral abnormalities. Dysregulation of epigenetic processes, such as histone modifications and chromatin remodeling, have been implicated in ASD pathology, and provides a promising therapeutic target for ASD. Haploinsufficiency of the SHANK3 gene is causally linked to ASD, so adult (3-5 months old) Shank3-deficient male mice were used in this drug discovery study. We found that combined administration of the class I histone deacetylase inhibitor Romidepsin and the histone demethylase LSD1 inhibitor GSK-LSD1 persistently ameliorated the autism-like social preference deficits, while each individual drug alone was largely ineffective. Another behavioral abnormality in adult Shank3-deficient male mice, heightened aggression, was also alleviated by administration of the dual drugs. Furthermore, Romidepsin/GSK-LSD1 treatment significantly increased transcriptional levels of NMDA receptor subunits in prefrontal cortex (PFC) of adult Shank3-deficient mice, resulting in elevated synaptic expression of NMDA receptors and the restoration of NMDAR synaptic function in PFC pyramidal neurons. These results have offered a novel pharmacological intervention strategy for ASD beyond early developmental periods.


Assuntos
Transtorno do Espectro Autista , Histonas , Animais , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/genética , Modelos Animais de Doenças , Masculino , Camundongos , Proteínas dos Microfilamentos , Proteínas do Tecido Nervoso/metabolismo
9.
Neuropsychopharmacology ; 46(9): 1617-1626, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34007043

RESUMO

Large-scale genetic screening has identified KMT5B (SUV420H1), which encodes a histone H4 K20 di- and tri-methyltransferase highly expressed in prefrontal cortex (PFC), as a top-ranking high-risk gene for autism. However, the biological function of KMT5B in the brain is poorly characterized, and how KMT5B deficiency is linked to autism remains largely unknown. Here we knocked down Kmt5b in PFC and examined behavioral and electrophysiological changes, as well as underlying molecular mechanisms. Mice with Kmt5b deficiency in PFC display social deficits, a core symptom of autism, without the alteration of other behaviors. Kmt5b deficiency also produces deficits in PFC glutamatergic synaptic transmission, which is accompanied by the reduced synaptic expression of glutamate receptor subunits and associated proteins. Kmt5b deficiency-induced reduction of H4K20me2 impairs 53BP1-mediated DNA repair, leading to the elevation of p53 expression and its target gene Ddit4 (Redd1), which is implicated in synaptic impairment. RNA-sequencing data indicate that Kmt5b deficiency results in the upregulation of genes enriched in cellular stress response and ubiquitin-dependent protein degradation. Collectively, this study has revealed the functional role of Kmt5b in the PFC, and suggests that Kmt5b deficiency could cause autistic phenotypes by inducing synaptic dysfunction and transcriptional aberration.


Assuntos
Transtorno Autístico , Animais , Transtorno Autístico/genética , Reparo do DNA , Metiltransferases , Camundongos , Córtex Pré-Frontal , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA