Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Bioorg Med Chem Lett ; 26(18): 4513-4517, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27503684

RESUMO

Single-stranded silencing RNAs (ss siRNA), while not as potent as duplex RNAs, have the potential to become a novel platform technology in RNA interference based gene silencing by virtue of their simplicity and plausibly favorable characteristics in pharmacokinetics and biodistribution. Like other therapeutic pharmaceutical agents, ss siRNA can be optimized to achieve higher potency through a structure-activity based approach. Systematic chemical modification at each position of a 21-mer oligonucleotide identified 2',5'-linked 3'-deoxythymidine (3dT) at position 1 and locked nucleic acids (LNAs) at the seed region as key components to afford significant enhancement in knockdown activity both in vitro and in vivo. Further optimization by additional chemical modifications should enable ss siRNA as an alternative gene silencing modality.


Assuntos
Inativação Gênica , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , beta Catenina/genética , Células HEK293 , Humanos
2.
Mol Pharm ; 10(1): 397-405, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23210488

RESUMO

A primary consideration when developing lipid nanoparticle (LNP) based small interfering RNA (siRNA) therapeutics is formulation polydispersity or heterogeneity. The level of heterogeneity of physicochemical properties within a pharmaceutical batch could greatly affect the bioperformance, quality, and ability of a manufacturer to consistently control and reproduce the formulations. This article studied the heterogeneity in the size, composition, and in vitro performance of siRNA containing LNPs, by conducting preparative scale fractionation using a sephacryl S-1000 based size-exclusion chromatography (SEC) method. Eight LNPs with size in the range of 60-190 nm were first evaluated by the SEC method for size polydispersity characterization, and it was found that LNPs in the range of 60-150 nm could be well-resolved. Two LNPs (LNP A and LNP B) with similar bulk properties were fractionated, and fractions were studied in-depth for potential presence of polydispersity in size, composition, and in vitro silencing, as well as cytotoxicity. LNP A was deemed to be monodisperse following results of a semipreparative SEC fractionation that showed similar size, chemical composition, in vitro silencing activity, and cytotoxicity across the fractions. Therefore, LNP A represents a relatively homogeneous formulation and offers less of a challenge in its pharmaceutical development. In contrast, LNP B fractions were shown to be significantly more polydisperse in size distribution. Interestingly, LNP B SEC fractions also exhibited profound compositional variations (e.g., 5 fold difference in N/P ratio and 3 fold difference in lipid composition) along with up to 40 fold differences in the in vitro silencing activity. The impact of LNP size and formulation composition on in vitro performance is also discussed. The present results demonstrate the complexity and potential for presence of heterogeneity in LNP-based siRNA drug products. This underscores the need for tools that yield a detailed characterization of LNP formulations. This capability in tandem with the pursuit of improved formulation and process design can lead to more facile development of LNP-based siRNA pharmaceuticals of higher quality.


Assuntos
Lipídeos/química , Nanopartículas/química , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , Resinas Acrílicas/química , Química Farmacêutica/métodos , Cromatografia em Gel/métodos , Tamanho da Partícula
3.
RNA ; 16(12): 2553-63, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20940339

RESUMO

Effective small interfering RNA (siRNA)-mediated therapeutics require the siRNA to be delivered into the cellular RNA-induced silencing complex (RISC). Quantitative information of this essential delivery step is currently inferred from the efficacy of gene silencing and siRNA uptake in the tissue. Here we report an approach to directly quantify siRNA in the RISC in rodents and monkey. This is achieved by specific immunoprecipitation of the RISC from tissue lysates and quantification of small RNAs in the immunoprecipitates by stem-loop PCR. The method, expected to be independent of delivery vehicle and target, is label-free, and the throughput is acceptable for preclinical animal studies. We characterized a lipid-formulated siRNA by integrating these approaches and obtained a quantitative perspective on siRNA tissue accumulation, RISC loading, and gene silencing. The described methodologies have utility for the study of silencing mechanism, the development of siRNA therapeutics, and clinical trial design.


Assuntos
Técnicas de Transferência de Genes , RNA Interferente Pequeno/genética , Animais , Animais Geneticamente Modificados , Anticorpos/isolamento & purificação , Anticorpos/metabolismo , Anticorpos/farmacologia , Especificidade de Anticorpos , Proteínas Argonautas , Células Cultivadas , Fator de Iniciação 2 em Eucariotos/imunologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Estudos de Avaliação como Assunto , Feminino , Inativação Gênica/fisiologia , Marcação de Genes/métodos , Técnicas de Transferência de Genes/normas , Humanos , Imunoprecipitação/métodos , Imunoprecipitação/normas , Macaca mulatta , Camundongos , Camundongos Endogâmicos ICR , Ligação Proteica , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Roedores
4.
Antivir Chem Chemother ; 14(1): 49-59, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12790516

RESUMO

Nucleoside reverse transcriptase inhibitors (NRTIs) represent the cornerstone of highly active antiretroviral therapy when combined with non-nucleoside reverse transcriptase inhibitors (NNRTIs) or HIV-1 protease inhibitors (PIs). Unlike the NNRTIs and PIs, NRTIs must be successively phosphorylated by cellular kinases to a triphosphate form, which represents the active metabolite possessing antiviral activity. Emergence of viral resistance to NRTIs has severely hampered treatment options for persons infected with HIV-1. As such, there is an urgent need to develop NRTIs capable of suppressing NRTI-resistant strains of HIV-1. We have recently reported that the cytidine analogue D-d4FC (DPC817, Reverset) effectively inhibits clinically prevalent resistant strains of HIV-1. In this report, we have extended these findings and now describe a detailed resistance profile for this novel NRTI. By examining a panel of 50 viruses carrying RTs derived from HIV-1 clinical isolates displaying a wide range of NRTI resistance mutations, we report that the median fold increase in effective antiviral concentration for such a panel of viruses is 3.2, which is comparable to tenofovir (2.8-fold) and didanosine (2.4-fold). D-d4FC is highly effective at inhibiting subsets of lamivudine- and zidovudine-resistant variants but, like other NRTIs, seems less potent against multi-NRTI-resistant viruses, particularly those carrying the Q151M complex of mutations. Finally, in vitro selections for HIV-1 mutants capable of replicating in the presence of D-d4FC yielded a mutant carrying the RT K65R mutation. This mutation confers 5.3- to 8.7-fold resistance to D-d4FC in vitro. These findings suggest that D-d4FC may represent an alternative NRTI for the treatment of individuals infected with lamivudine- and zidovudine-resistant strains of HIV-1.


Assuntos
Adenina/análogos & derivados , Fármacos Anti-HIV/farmacologia , Citidina Trifosfato/farmacologia , Farmacorresistência Viral Múltipla , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/efeitos dos fármacos , Organofosfonatos , Inibidores da Transcriptase Reversa/farmacologia , Adenina/farmacologia , Linhagem Celular , Citidina Trifosfato/análogos & derivados , Citidina Trifosfato/análise , Didanosina/farmacologia , Farmacorresistência Viral Múltipla/genética , Genótipo , HIV-1/genética , HIV-1/isolamento & purificação , Humanos , Lamivudina/farmacologia , Mutação , Compostos Organofosforados/farmacologia , Especificidade da Espécie , Tenofovir , Transfecção , Zalcitabina/análogos & derivados , Zidovudina/farmacologia
5.
Antivir Chem Chemother ; 14(2): 81-90, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12856919

RESUMO

A series of 2',3'-dideoxy (D2) and 2',3'-didehydro-2',3'-dideoxy (D4) 5-fluorocytosine nucleosides modified with substituted benzoyl, heteroaromatic carbonyl, cycloalkylcarbonyl and alkanoyl at the N4-position were synthesized and evaluated for anti-human immunodeficiency virus type 1 (HIV-1) and anti-hepatitis B virus (HBV) activity in vitro. For most D2-nucleosides, N4-substitutions improved the anti-HIV-1 activity markedly without increasing the cytotoxicity. In the D4-nucleosides series, some of the substituents at the N4-position enhanced the anti-HIV-1 activity with a modest increase in the cytotoxicity. The most potent and selective N4-modified nucleoside for the D2-series was N4-p-iodobenzoyl-D2FC, which had a 46-fold increase in anti-HIV-1 potency in MT-2 cells compared to the parent nucleoside D-D2FC. In the D4-series, N4-p-bromobenzoyl-D4FC was 12-fold more potent in MT-2 cells compared to the parent nucleoside D-D4FC. All eight N4-p-halobenzoyl-substituted D2- and D4-nucleosides evaluated against HBV in HepAD38 cells demonstrated equal or greater potency than the two parental compounds, D-D2FC and D-D4FC. The N4-modification especially in the D2-nucleoside series containing the N4-nicotinoyl, o-nitrobenzoyl and n-butyryl showed a significant reduction in mitochondrial toxicity relative to the parent nucleoside analogue. Although the 5'-triphosphate of the parent compound (D-D4FC-TP) was formed from the N4-acyl-D4FC analogues in different cells, the levels of the 5'-triphosphate nucleotide did not correlate with the cell-derived 90% effective antiviral concentrations (EC90), suggesting that a direct interaction of the triphosphates of these N4-acyl nucleosides was involved in the antiviral activity.


Assuntos
Antivirais/farmacologia , Zalcitabina/farmacologia , Animais , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Antivirais/síntese química , Antivirais/química , Divisão Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Relação Dose-Resposta a Droga , HIV-1/efeitos dos fármacos , Vírus da Hepatite B/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Modelos Químicos , Células Vero , Zalcitabina/análogos & derivados , Zalcitabina/síntese química , Zalcitabina/química
6.
J Pharmacol Toxicol Methods ; 63(2): 168-73, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20884364

RESUMO

INTRODUCTION: Quantitative pharmacokinetic measurement of short nucleotide sequences in animal tissues is critical to the successful development of siRNA-based drugs. Stem-loop qRT-PCR is a sensitive and precise methodology, but the effect of biological matrix and purity of the input sample has yet to be investigated. RESULTS: The impact of lipid encapsulation, siRNA chemical modification and purity of the biological matrix on the stem-loop qRT-PCR assay was investigated. A comparison of siRNA standard curves in mouse liver homogenates before and after isolation of total RNA uncovered the potential for erroneous measurement due to significant loss of siRNA on purification columns. Recovery of chemically stabilized siRNA was improved by omission of the DNAse I digestion during RNA isolation. The stem-loop qRT-PCR method demonstrated excellent sensitivity and efficiency in mouse liver homogenates, plasma and whole blood. An optimized protocol based on these findings was used to quantitate siRNA in tissues after dosing mice with two different lipid nanoparticle formulations containing siRNA payloads. CONCLUSIONS: Assay of crude homogenates, whole blood or plasma is more accurate, less resource intensive and more amenable to clinical translation than measurement of column-purified total RNA.


Assuntos
RNA Interferente Pequeno/isolamento & purificação , RNA Interferente Pequeno/farmacocinética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Animais , Química Farmacêutica , Estudos de Avaliação como Assunto , Feminino , Lipossomos/administração & dosagem , Lipossomos/química , Camundongos , Nanopartículas/administração & dosagem , Nanopartículas/química , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/química
7.
Proc Natl Acad Sci U S A ; 102(41): 14759-64, 2005 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-16203977

RESUMO

HIV-1 entry into cells is mediated by the envelope glycoprotein receptor-binding (gp120) and membrane fusion-promoting (gp41) subunits. The gp41 heptad repeat 1 (HR1) domain is the molecular target of the fusion-inhibitor drug enfuvirtide (T20). The HR1 sequence is highly conserved and therefore considered an attractive target for vaccine development, but it is unknown whether antibodies can access HR1. Herein, we use gp41-based peptides to select a human antibody, 5H/I1-BMV-D5 (D5), that binds to HR1 and inhibits the assembly of fusion intermediates in vitro. D5 inhibits the replication of diverse HIV-1 clinical isolates and therefore represents a previously unknown example of a crossneutralizing IgG selected by binding to designed antigens. NMR studies and functional analyses map the D5-binding site to a previously identified hydrophobic pocket situated in the HR1 groove. This hydrophobic pocket was proposed as a drug target and subsequently identified as a common binding site for peptide and peptidomimetic fusion inhibitors. The finding that the D5 fusion-inhibitory antibody shares the same binding site suggests that the hydrophobic pocket is a "hot spot" for fusion inhibition and an ideal target on which to focus a vaccine-elicited antibody response. Our data provide a structural framework for the design of new immunogens and therapeutic antibodies with crossneutralizing potential.


Assuntos
Anticorpos Monoclonais/imunologia , Epitopos/imunologia , Proteína gp41 do Envelope de HIV/imunologia , HIV-1/imunologia , Modelos Moleculares , Sítios de Ligação de Anticorpos/genética , Sítios de Ligação de Anticorpos/imunologia , Epitopos/genética , Proteína gp41 do Envelope de HIV/genética , Humanos , Luciferases , Ressonância Magnética Nuclear Biomolecular , Reação em Cadeia da Polimerase , Ligação Proteica
8.
Antimicrob Agents Chemother ; 46(5): 1394-401, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11959574

RESUMO

Highly active antiretroviral therapy (HAART) is the standard treatment for infection with the human immunodeficiency virus (HIV). HAART regimens consist of protease inhibitors or nonnucleoside reverse transcriptase inhibitors combined with two or more nucleoside reverse transcriptase inhibitors (NRTIs). DPC 817, 2',3'-didehydro-2',3'-dideoxy-5-fluorocytidine (PSI 5582 D-D4FC) is a potent inhibitor of HIV type 1 replication in vitro. Importantly, DPC 817 retains activity against isolates harboring mutations in the reverse transcriptase gene that confer resistance to lamivudine (3TC) and zidovudine (AZT), which are frequent components of initial HAART regimens. DPC 817 combines this favorable resistance profile with rapid uptake and conversion to the active metabolite DPC 817-triphosphate, which has an intracellular half-life of 13 to 17 h. Pharmacokinetics in the rhesus monkey suggest low clearance of parent DPC 817 and a plasma half-life longer than that of either AZT or 3TC. Together, these properties suggest that DPC 817 may be useful as a component of HAART regimens in individuals with resistance to older NRTI agents.


Assuntos
Citidina/análogos & derivados , Citidina/farmacologia , Farmacorresistência Viral , HIV-1/efeitos dos fármacos , Zalcitabina/farmacologia , Animais , Fármacos Anti-HIV/farmacocinética , Fármacos Anti-HIV/farmacologia , Citidina/síntese química , Citidina/farmacocinética , Infecções por HIV/tratamento farmacológico , Transcriptase Reversa do HIV/efeitos dos fármacos , HIV-1/genética , Humanos , Lamivudina/farmacocinética , Lamivudina/farmacologia , Macaca mulatta , Nucleosídeos/síntese química , Nucleosídeos/química , Nucleosídeos/farmacocinética , Nucleosídeos/farmacologia , Inibidores da Transcriptase Reversa/farmacocinética , Inibidores da Transcriptase Reversa/farmacologia , Zalcitabina/análogos & derivados , Zalcitabina/síntese química , Zalcitabina/farmacocinética , Zidovudina/farmacocinética , Zidovudina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA