RESUMO
The seemly paradoxical Gq agonist-stimulated phosphoinositide production has long been known, but the underlying mechanism and its physiological significance are not known. In this study, we studied cardiac phosphoinositide levels in both cells and whole animals under the stimulation of norepinephrine (NE), angiotensin II (Ang II), and other physiologically relevant interventions. The results demonstrated that activation of membrane receptors related to NE or Ang II caused an initial increase and a later fall in phosphatidylinositol 4,5-bisphosphate (PIP2) levels in the primary cultured cardiomyocytes from adult rats. The possible mechanism underlying this increase in PIP2 was found to be through an enhanced activity of phosphatidylinositol 4-kinase IIIß, which was mediated by an up-regulated interaction between phosphatidylinositol 4-kinase IIIß and PKC; the increased activity of phosphatidylinositol 4-phosphate 5-kinase γ was also involved for NE-induced increase of PIP2. When the systolic functions of the NE/Ang II-treated cells were measured, a maintained or failed contractility was found to be correlated with a rise or fall in corresponding PIP2 levels. In two animal models of cardiac hypertrophy, PIP2 levels were significantly reduced in hypertrophic hearts induced by isoprenaline but not in those induced by swimming exercise. This study describes a novel mechanism for phosphoinositide metabolism and modulation of cardiac function.
Assuntos
Angiotensina II/fisiologia , Cardiomegalia/fisiopatologia , Norepinefrina/fisiologia , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositol 4-Fosfato 3-Quinase/fisiologia , Angiotensina II/farmacologia , Animais , Cardiomegalia/induzido quimicamente , Cardiomegalia/enzimologia , Modelos Animais de Doenças , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/fisiologia , Norepinefrina/farmacologia , Ratos , Ratos Sprague-DawleyRESUMO
BACKGROUND: Inflammatory bowel disease (IBD) encompasses Crohn's Disease and Ulcerative Colitis. Reports have highlighted the potential use of helminths or their byproducts as a possible treatment for IBD; however, the mechanisms underlying their ability to modulate inflammation remain incompletely understood. In the present study, we analyze the possible mechanism of a serine protease inhibitor from adult T. spiralis excretion-secretion products (rTsSPI) on the improvement of colitis. METHODS: The immune protective effect of rTsSPI was studied by using DSS or Salmonella-induced colitis in female C56BL/6 mice. The effect of rTsSPI on the immune and inflammatory responses, gut microbiota, permeability of colon epithelium and junction proteins was analyzed. RESULTS: Treating mice with rTsSPI induced type 2 immunity and significantly attenuated clinical symptoms, macroscopical and histological features of DSS or bacteria-induced colonic inflammation. This was accompanied by decreasing neutrophil recruitment in the colonic lamina propria, and reducing TNF-α mRNA levels in the colon; in contrast, the recruitment of M2 macrophages, the expression level of IL-10 and adhesion molecules increased in the colon tissue. Moreover, treatment with rTsSPI led to an improvement in gut microbiota diversity, as well as an increase in the abundance of the bacterial genera Bifidobacterium and Ruminclostridium 5. CONCLUSIONS: Collective findings suggest that pretreatment with rTsSPI can ameliorate colitis in mice by inducing a Th2-type response with M2 macrophages. Data also indicate that immunotherapy with rTsSPI represents an additional strategy to ameliorate inflammatory processes in IBD by enhancing probiotic colonization and maintaining intestinal epithelial barrier function.
Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Trichinella , Feminino , Animais , Camundongos , Função da Barreira Intestinal , Colite/induzido quimicamente , Colite/terapia , Inflamação , Colite Ulcerativa/patologia , Colo/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Camundongos Endogâmicos C57BLRESUMO
BACKGROUND: Fine particulate matter (PM2.5) exacerbates airway inflammation and hyperreactivity in patients with asthma, but the mechanism remains unclear. The aim of this study was to observe the effects of prolonged exposure to high concentrations of PM2.5on the pathology and airway hyperresponsiveness (AHR) of BALB/c mice undergoing sensitization and challenge with ovalbumin (OVA) and to observe the effects of apoptosis and T-cell immunoglobulin and mucin domain 1 (TIM-1) in this process. METHODS: Forty female BALB/c mice were divided into four groups: control group, OVA group, OVA/PM group, and PM group (n = 10 in each group). Mice in the control group were exposed to filtered clean air. Mice in the OVA group were sensitized and challenged with OVA. Mice in the OVA/PM group were sensitized and challenged as in the OVA group and then exposed to PM2.5for 4 h per day and 5 days per week for a total of 8 weeks using a nose-only "PM2.5online enrichment system" in The Second Hospital of Hebei Medical University. Mice in the PM group were exposed to the PM2.5 online enrichment system only. AHR was detected. Bronchoalveolar lavage fluid (BALF) was collected for cell classification. The levels of interleukin-4 (IL-4), IL-5, and IL-33 in BALF were measured using enzyme-linked immunosorbent assay. Changes in histological structures were examined by light microscopy, and changes in ultramicrostructures were detected by electron microscopy. Apoptosis was determined by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay in the lung tissues. Western blotting and immunohistochemistry were utilized to analyze the expression of Bcl-2, Bax, and TIM-1 in the lungs. RESULTS: The results showed that AHR in the OVA/PM group was significantly more severe than that in the OVA and PM groups (P < 0.05). AHR in the PM group was also considerably more severe than that in the control group (P < 0.05). The BALF of OVA/PM group (28.00 ± 6.08 vs. 12.33 ± 4.51, t = 4.631, P = 0.002) and PM group (29.00 ± 3.00 vs. 12.33 ± 4.51, t = 4.927, P = 0.001) had more lymphocytes than the BALF of the control group. The number of neutrophils in the BALF of the OVA/PM group (6.67 ± 1.53 vs. 3.33 ± 1.53, t = 2.886, P = 0.020) and PM group (6.67 ± 1.53 vs. 3.33 ± 1.53, t = 2.886, P = 0.020) was much higher than those in the BALF of OVA group (P < 0.05). TUNEL assays showed that the number of apoptotic cells in the OVA/PM group was significantly higher than that in the OVA group (Tunel immunohistochemical scores [IHS%], 1.20 ± 0.18 vs. 0.51 ± 0.03, t = 8.094, P < 0.001) and PM group (Tunel IHS%, 1.20 ± 0.18 vs. 0.51 ± 0.09, t = 8.094, P < 0.001), and that the number of apoptotic cells in the PM group was significantly higher than that in the control group (Tunel IHS%, 0.51 ± 0.09 vs. 0.26 ± 0.03, t = 2.894, P = 0.020). The concentrations of IL-4 (77.44 ± 11.19 vs. 48.02 ± 10.02 pg/ml, t = 4.595, P = 0.002) and IL-5 (15.65 ± 1.19 vs. 12.35 ± 0.95 pg/ml, t = 3.806, P = 0.005) and the Bax/Bcl-2 ratio (1.51 ± 0.18 vs. 0.48 ± 0.10, t = 9.654, P < 0.001) and TIM-1/ß-actin ratio (0.78 ± 0.11 vs. 0.40 ± 0.06, t = 6.818, P < 0.001) in the OVA/PM group were increased compared to those in the OVA group. The concentrations of IL-4 (77.44 ± 11.19 vs. 41.47 ± 3.40 pg/ml, t = 5.617, P = 0.001) and IL-5 (15.65 ± 1.19 vs. 10.99 ± 1.40 pg/ml, t = 5.374, P = 0.001) and the Bax/Bcl-2 ratio (1.51 ± 0.18 vs. 0.97 ± 0.16, t = 5.000, P = 0.001) and TIM-1/ß-actin ratio (0.78 ± 0.11 vs. 0.31 ± 0.06, t = 8.545, P < 0.001) in the OVA/PM group were increased compared to those in the PM group. The concentration of IL-4 (41.47 ± 3.40 vs. 25.46 ± 2.98 pg/ml, t = 2.501, P = 0.037) and the Bax/Bcl-2 ratio (0.97 ± 0.16 vs. 0.18 ± 0.03, t = 7.439, P < 0.001) and TIM-1/ß-actin ratio (0.31 ± 0.06 vs. 0.02 ± 0.01, t = 5.109, P = 0.001) in the PM group were also higher than those in the control group. CONCLUSIONS: Exacerbated AHR associated with allergic asthma caused by PM2.5is related to increased apoptosis and TIM-1 activation. These data might provide insights into therapeutic targets for the treatment of acute exacerbations of asthma induced by PM2.5.