Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 326(1): C60-C73, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38009194

RESUMO

Radiotherapy has long been a main treatment option for nasopharyngeal carcinoma (NPC). However, during clinical treatment, NPC is prone to developing radioresistance, resulting in treatment failure. This study aims to examine the role of histone methylation in the induction of radioresistance. It was found that the radioresistance of NPC cells was related to the increase of the level of histone H3 lysine 27 trimethylation (H3K27me3). Treatment of cells with histone methyltransferase inhibitor GSK126 increased the radiosensitivity of NPC cells by triggering Bcl2 apoptosis regulator/BCL2-associated X, apoptosis regulator (Bcl2/BAX) signaling pathway. Bioinformatics analysis indicated that the expression of 2'-5'-oligoadenylate synthetase 1 (OAS1) was reduced in the radioresistant cells but increased in the GSK126-treated cells. Chromatin immunoprecipitation assay confirmed that the decrease of OAS1 expression in radioresistant cells was mainly due to the enrichment of H3K27me3 in its promoter region. Furthermore, downregulation of OAS1 reduced apoptosis due to the inhibition of Bcl2/BAX pathway after irradiation, while OAS1 overexpression increased radiosensitivity. Our findings revealed for the first time that the increase of H3K27me3 level was associated with the decrease of OAS1 expression, leading to the inhibition of apoptosis and ultimately contributing to the radioresistance of NPC cells. Moreover, the histone methyltransferase inhibitor GSK126 could overcome the radioresistance and thus might be a potential therapeutic strategy for NPC.NEW & NOTEWORTHY Our findings revealed for the first time that the increase of H3K27me3 level was associated with the decrease of OAS1 expression, leading to the inhibition of apoptosis and ultimately contributing to the radioresistance of NPC cells. Moreover, we demonstrated that the histone methyltransferase inhibitor GSK126 could be a promising therapeutic strategy for NPC by overcoming radioresistance, providing valuable insights into the clinical treatment of NPC.


Assuntos
Carcinoma , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/radioterapia , Histonas/genética , Histonas/metabolismo , Carcinoma/metabolismo , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/radioterapia , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Histona Metiltransferases/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , 2',5'-Oligoadenilato Sintetase/metabolismo
2.
BMC Nurs ; 23(1): 54, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38238706

RESUMO

BACKGROUND: China is experiencing an aging population, leading to a significant demand for "Internet + nursing services" tailored for elderly individuals. However, there are many risk problems in the process of nurse service, which hinder the development of the service, and a scale is needed to assess the risk problems faced by nurses in "Internet + nursing services" for the elderly. OBJECTIVE: The purpose of this study is to develop an assessment scale for risk factors and outcomes related to nurses' involvement in the "Internet + Nursing Service" for the elderly and to assess its reliability and validity. METHODS: Based on literature analysis, focus group, the Delphi method, and a presurvey, we designed an initial scale. The initial scale comprised two sections: risk factors and risk outcomes for nurses. In January and February of 2023, nurses engaged in "Internet + nursing services" for the elderly in Shanxi Province were chosen through a convenience sampling technique for a questionnaire survey. Subsequently, item analysis and exploratory factor analysis were employed to refine and develop a test version of the scale further. A follow-up questionnaire survey was carried out in March and April 2023 using a similar approach. The reliability and validity of the scale were assessed through confirmatory factor analysis, culminating in the formation of the final scale. RESULTS: The initial survey yielded 244 valid responses. The cumulative variance contributions of the two segments from the exploratory factor analysis were 84.584% and 90.089%, respectively. A subsequent survey garnered 220 valid responses. The confirmatory factor analysis results indicated: χ2/df = 2.086, comparative fit index (CFI) = 0.918, normative fit index (NLI) = 0.855, root mean square of residuals (RMR) = 0.045, and root mean square of error of approximation (RMSEA) = 0.070. These results demonstrate good structural, convergent, and discriminant validity. The content validity index at the item level (I-CVI) ranged between 0.875 and 1.000, while the content validity index at the scale level (S-CVI/Ave) was 0.941. Cronbach's alpha coefficient for the entire scale stood at 0.970. Moreover, the scale exhibited a split-half reliability of 0.876 and a retest reliability of 0.980 (p < 0.01). CONCLUSION: The risk factors and risk outcomes associated with nurses involved in "Internet + nursing services" for elderly individuals, as developed in this study, demonstrate strong reliability and validity. They are well suited to the Chinese national context.

3.
J Transl Med ; 21(1): 314, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37161570

RESUMO

BACKGROUND: Interstitial lung diseases (ILDs) can be induced and even exacerbated by radiotherapy in thoracic cancer patients. The roles of immune responses underlying the development of these severe lung injuries are still obscure and need to be investigated. METHODS: A severe lung damage murine model was established by delivering 16 Gy X-rays to the chest of mice that had been pre-treated with bleomycin (BLM) and thus hold ILDs. Bioinformatic analyses were performed on the GEO datasets of radiation-induced lung injury (RILI) and BLM-induced pulmonary fibrosis (BIPF), and RNA-sequencing data of the severely damaged lung tissues. The screened differentially expressed genes (DEGs) were verified in lung epithelial cell lines by qRT-PCR assay. The injured lung tissue pathology was analyzed with H&E and Masson's staining, and immunohistochemistry staining. The macrophage chemotaxis and activity promoted by the stressed epithelial cells were determined by using a cell co-culture system. The expressions of p21 in MLE-12 and Beas-2B cells were detected by qRT-PCR, western blot, and immunofluorescence. The concentration of CCL7 in cell supernatant was measured by ELISA assay. In some experiments, Beas-2B cells were transfected with p21-siRNA or CCL7-siRNA before irradiation and/or BLM treatment. RESULTS: After the treatment of irradiation and/or BLM, the inflammatory and immune responses, chemokine-mediated signaling pathways were steadily activated in the severely injured lung, and p21 was screened out by the bioinformatic analysis and further verified to be upregulated in both mouse and human lung epithelial cell lines. The expression of P21 was positively correlated with macrophage infiltration in the injured lung tissues. Co-culturing with stressed Beas-2B cells or its conditioned medium containing CCL7 protein, U937 macrophages were actively polarized to M1-phase and their migration ability was obviously increased along with the damage degree of Beas-2B cells. Furthermore, knockdown p21 reduced CCL7 expression in Beas-2B cells and then decreased the chemotaxis of co-cultured macrophages. CONCLUSIONS: P21 promoted CCL7 release from the severely injured lung epithelial cell lines and contributed to the macrophage chemotaxis in vitro, which provides new insights for better understanding the inflammatory responses in lung injury.


Assuntos
Lesão Pulmonar , Humanos , Animais , Camundongos , Lesão Pulmonar/genética , Quimiotaxia , Bleomicina , Células Epiteliais , Pulmão , Quimiocina CCL7
4.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36769373

RESUMO

Radioresistance remains a serious obstacle encountered in the radiotherapy of nasopharyngeal carcinoma (NPC). Both mRNAs and non-coding RNAs (ncRNAs), including long ncRNA (lncRNA) and microRNA (miRNA), play essential roles in radiosensitivity. However, the comprehensive expression profiles and competing endogenous RNA (ceRNA) regulatory networks among lncRNAs, miRNAs, and mRNAs in NPC radioresistance are still bewildering. In this study, we performed an RNA-sequencing (RNA-seq) assay in the radioresistant NPC cells CNE2R and its parental cells CNE2 to identify the differentially expressed lncRNAs, miRNAs, and mRNAs. The ceRNA networks containing lncRNAs, miRNAs, and mRNAs were predicted on the basis of the Pearson correlation coefficients and authoritative miRanda databases. In accordance with bioinformatic analysis of the data of the tandem mass tag (TMT) assay of CNE2R and CNE2 cells and the gene chip assay of radioresistant NPC samples in pre- and post-radiotherapy, the radioresistance-related signaling network of lncRNA CASC19, miR-340-3p, and FKBP5 was screened and further verified using an RT-qPCR assay. CASC19 was positively associated with FKBP5 expression while negatively correlated with miR-340-3p, and the target binding sites of CASC19/miR-340-3p and miR-340-3p/FKBP5 were confirmed using a dual-luciferase reporter assay. Moreover, using an mRFP-GFP-LC3 maker, it was found that autophagy contributed to the radioresistance of NPC. MiR-340-3p inhibition or FKBP5 overexpression could rescue the suppression of autophagy and radioresistance induced by CASC19 knockdown in CNE2R cells. In conclusion, the CASC19/miR-340-3p/FKBP5 network may be instrumental in regulating NPC radioresistance by enhancing autophagy, which provides potential new therapeutic targets for NPC.


Assuntos
Carcinoma , MicroRNAs , Neoplasias Nasofaríngeas , RNA Longo não Codificante , Humanos , Carcinoma/genética , Carcinoma/radioterapia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/radioterapia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/radioterapia , Neoplasias Nasofaríngeas/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética
5.
Br J Cancer ; 127(10): 1760-1772, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36050447

RESUMO

BACKGROUND: Hypoxia-mediated radioresistance is a major reason for the adverse radiotherapy outcome of non-small cell lung cancer (NSCLC) in clinical, but the underlying molecular mechanisms are still obscure. METHODS: Cellular and exosomal ANGPTL4 proteins under different oxygen status were examined. Colony survival, lipid peroxidation and hallmark proteins were employed to determine the correlation between ferroptosis and radioresistance. Gene regulations, western blot and xenograft models were used to explore the underlying mechanisms of the role of ANGPTL4 in radioresistance. RESULTS: ANGPTL4 had a much higher level in hypoxic NSCLC cells compared to normoxic cells. Up- or down- regulation of ANGPTL4 positively interrelated to the radioresistance of NSCLC cells and xenograft tumours. GPX4-elicited ferroptosis suppression and lipid peroxidation decrease were authenticated to be involved in the hypoxia-induced radioresistance. ANGPTL4 encapsulated in the exosomes from hypoxic cells was absorbed by neighbouring normoxic cells, resulting in radioresistance of these bystander cells in a GPX4-dependent manner, which was diminished when ANGPTL4 was downregulated in the donor exosomes. CONCLUSION: Hypoxia-induced ANGPTL4 rendered radioresistance of NSCLC through at least two parallel pathways of intracellular ANGPTL4 and exosomal ANGPTL4, suggesting that ANGPTL4 might applicable as a therapeutic target to improve the therapeutic efficacy of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Ferroptose , Neoplasias Pulmonares , Humanos , Angiopoietinas , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Ferroptose/genética , Hipóxia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/metabolismo , Microambiente Tumoral/genética , Proteína 4 Semelhante a Angiopoietina/metabolismo
6.
Brain Behav Immun ; 102: 237-250, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35245678

RESUMO

Recent studies have reported that complement-related proteins modulate brain development through regulating synapse processes in the cortex. CSMD3 belongs to a group of putative complement control proteins. However, its role in the central nervous system and synaptogenesis remains largely unknown. Here we report that CSMD3 deleterious mutations occur frequently in patients with neurodevelopmental disorders (NDDs). Csmd3 is predominantly expressed in cortical neurons of the developing cortex. In mice, Csmd3 disruption induced retarded development and NDD-related behaviors. Csmd3 deficiency impaired synaptogenesis and neurogenesis, allowing fewer neurons reaching the cortical plate. Csmd3 deficiency also induced perturbed functional networks in the developing cortex, involving a number of downregulated synapse-associated genes that influence early synaptic organization and upregulated genes related to immune activity. Our study provides mechanistic insights into the endogenous regulation of complement-related proteins in synaptic development and supports the pathological role of CSMD3 in NDDs.


Assuntos
Transtornos do Neurodesenvolvimento , Neurogênese , Animais , Humanos , Camundongos , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , Sinapses/metabolismo
7.
Int J Mol Sci ; 23(18)2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36142823

RESUMO

Radiotherapy is one of the conventional methods for the clinical treatment of breast cancer. However, radioresistance has an adverse effect on the prognosis of breast cancer patients after radiotherapy. In this study, using bioinformatic analysis of GSE59732 and GSE59733 datasets in the Gene Expression Omnibus (GEO) database together with the prognosis database of breast cancer patients after radiotherapy, the GDF15 gene was screened out to be related to the poor prognosis of breast cancer after radiotherapy. Compared with radiosensitive parental breast cancer cells, breast cancer cells with acquired radioresistance exhibited a high level of GDF15 expression and enhanced epithelial-to-mesenchymal transition (EMT) properties of migration and invasion, as well as obvious stem-like traits, including the increases of mammosphere formation ability, the proportion of stem cells (CD44+ CD24- cells), and the expressions of stem cell-related markers (SOX2, NANOG). Moreover, knockdown of GDF15 sensitized the radioresistance cells to irradiation and significantly inhibited their EMT and stem-like traits, indicating that GDF15 promoted the radioresistance of breast cancer by enhancing the properties of EMT and stemness. Conclusively, GDF15 may be applicable as a novel prognosis-related biomarker and a potential therapeutic target for breast cancer radiotherapy.


Assuntos
Neoplasias da Mama , Biomarcadores , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/radioterapia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Feminino , Fator 15 de Diferenciação de Crescimento/genética , Fator 15 de Diferenciação de Crescimento/farmacologia , Humanos , Células-Tronco Neoplásicas/metabolismo , Tolerância a Radiação/genética
8.
Int J Mol Sci ; 22(3)2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573349

RESUMO

Nasopharyngeal carcinoma (NPC) is one of the most frequent head and neck malignant tumors and is majorly treated by radiotherapy. However, radiation resistance remains a serious obstacle to the successful treatment of NPC. The aim of this study was to discover the underlying mechanism of radioresistance and to elucidate novel genes that may play important roles in the regulation of NPC radiosensitivity. By using RNA-seq analysis of NPC cell line CNE2 and its radioresistant cell line CNE2R, lncRNA CASC19 was screened out as a candidate radioresistance marker. Both in vitro and in vivo data demonstrated that a high expression level of CASC19 was positively correlated with the radioresistance of NPC, and the radiosensitivity of NPC cells was considerably enhanced by knockdown of CASC19. The incidence of autophagy was enhanced in CNE2R in comparison with CNE2 and another NPC cell line HONE1, and silencing autophagy with LC3 siRNA (siLC3) sensitized NPC cells to irradiation. Furthermore, CASC19 siRNA (siCASC19) suppressed cellular autophagy by inhibiting the AMPK/mTOR pathway and promoted apoptosis through the PARP1 pathway. Our results revealed for the first time that lncRNA CASC19 contributed to the radioresistance of NPC by regulating autophagy. In significance, CASC19 might be a potential molecular biomarker and a new therapeutic target in NPC.


Assuntos
Autofagia/genética , Carcinoma Nasofaríngeo/radioterapia , Neoplasias Nasofaríngeas/radioterapia , RNA Longo não Codificante/metabolismo , Tolerância a Radiação/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose/genética , Autofagia/efeitos da radiação , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Poli(ADP-Ribose) Polimerase-1 , RNA Longo não Codificante/genética , RNA-Seq , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/metabolismo
9.
Int J Mol Sci ; 22(19)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34638754

RESUMO

Glioblastoma (GBM) is the most common and malignant primary brain tumor in adults. Radiotherapy has long been an important treatment method of GBM. However, the intrinsic radioresistance of GBM cells is a key reason of poor therapeutic efficiency. Recently, many studies have shown that using the histone deacetylase (HDAC) inhibitor suberoylanilide hydroxamic acid (SAHA) in radiotherapy may improve the prognosis of GBM patients, but the underlying molecular mechanisms remain unclear. In this study, Gene Expression Omnibus (GEO) datasets GSE153982 and GSE131956 were analyzed to evaluate radiation-induced changes of gene expression in GBM without or with SAHA treatment, respectively. Additionally, the survival-associated genes of GBM patients were screened using the Chinese Glioma Genome Atlas (CGGA) database. Taking the intersection of these three datasets, 11 survival-associated genes were discovered to be activated by irradiation and regulated by SAHA. The expressions of these genes were further verified in human GBM cell lines U251, T98G, and U251 homologous radioresistant cells (U251R) by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). It was found that MMP14 mRNA was considerably highly expressed in the radioresistant cell lines and was reduced by SAHA treatment. Transfection of MMP14 siRNA (siMMP14) suppressed cell survivals of these GBM cells after irradiation. Taken together, our results reveal for the first time that the MMP14 gene contributed to SAHA-induced radiosensitization of GBM.


Assuntos
Quimiorradioterapia , Bases de Dados de Ácidos Nucleicos , Glioblastoma , Inibidores de Histona Desacetilases/farmacologia , Metaloproteinase 14 da Matriz/metabolismo , Proteínas de Neoplasias/metabolismo , Tolerância a Radiação/efeitos dos fármacos , Vorinostat/farmacologia , Linhagem Celular Tumoral , Glioblastoma/enzimologia , Glioblastoma/genética , Glioblastoma/terapia , Humanos , Metaloproteinase 14 da Matriz/genética , Proteínas de Neoplasias/genética , Vorinostat/farmacocinética
10.
Int J Mol Sci ; 22(18)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34576128

RESUMO

Radiation-induced abscopal effect (RIAE) outside of radiation field is becoming more attractive. However, the underlying mechanisms are still obscure. This work investigated the deleterious effect of thoracic irradiation (Th-IR) on distant bone marrow and associated signaling factors by irradiating the right thorax of mice with fractionated doses (8 Gy × 3). It was found that this localized Th-IR increased apoptosis of bone marrow cells and micronucleus formation of bone marrow polychromatic erythrocytes after irradiation. Tandem mass tagging (TMT) analysis and ELISA assay showed that the concentrations of TNF-α and serum amyloid A (SAA) in the mice were significantly increased after Th-IR. An immunohistochemistry assay revealed a robust increase in SAA expression in the liver rather than in the lungs after Th-IR. In vitro experiments demonstrated that TNF-α induced SAA expression in mouse hepatoma Hepa1-6 cells, and these two signaling factors induced DNA damage in bone marrow mesenchymal stem cells (BMSCs) by increasing reactive oxygen species (ROS). On the other hand, injection with TNF-α inhibitor before Th-IR reduced the secretion of SAA and attenuated the abscopal damage in bone marrow. ROS scavenger NAC could also mitigated Th-IR/SAA-induced bone marrow damage in mice. Our findings indicated that Th-IR triggered TNF-α release from lung, which further promoted SAA secretion from liver in a manner of cascade reaction. Consequently, these signaling factors resulted in induction of abscopal damage on bone marrow of mice.


Assuntos
Células da Medula Óssea/metabolismo , Células da Medula Óssea/efeitos da radiação , Fracionamento da Dose de Radiação , Proteína Amiloide A Sérica/metabolismo , Tórax/efeitos da radiação , Fator de Necrose Tumoral alfa/metabolismo , Acetilcisteína/farmacologia , Animais , Proteínas Sanguíneas/metabolismo , Ciclo Celular/efeitos da radiação , Dano ao DNA , Sequestradores de Radicais Livres/farmacologia , Lesão Pulmonar/patologia , Masculino , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos da radiação , Camundongos Endogâmicos C57BL , Proteômica , Espécies Reativas de Oxigênio/metabolismo
11.
Biochem Biophys Res Commun ; 531(3): 328-334, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32800335

RESUMO

Radiotherapy combined with chemotherapy is a common modality in abdominal cancer treatment. However, intestinal syndrome induced by radiation is a main factor leading to the poor prognosis of radiotherapy. In this work, we found that miR-378a-3p was markedly up-regulated in the small intestines of mice after total abdominal irradiation. Knocking-down (or overexpression) of miR-378a-3p increased (or decreased) the radiosensitivity of the small intestine cells HIEC and FHs-74-Int. Comet assay and γ-H2AX staining demonstrated that miR-378a-3p exerted its radioprotective function by reducing the accumulation of DNA damage in the cells and tissues of the small intestines. Mechanistically, miR-378a-3p could interact with the 3' UTR of CDK6 through complementary sequences and thus inhibited CDK6 expression in the small intestine cells. Rescue experiments suggested that the repression of miR-378a-3p overexpression on cell radiosensitivity and DNA damage accumulation was abrogated by the forced expression of CDK6. In summary, our results revealed for the first time that miR-378a-3p regulated the radiosensitivity and DNA damage response of small intestines by targeting CDK6. MiR-378a-3p may serve as a promising biomarker and radioprotective target in abdominal cancer.


Assuntos
Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Intestinos/lesões , Intestinos/efeitos da radiação , MicroRNAs/metabolismo , Substâncias Protetoras/metabolismo , Radiação Ionizante , Animais , Sequência de Bases , Quinase 6 Dependente de Ciclina/metabolismo , Dano ao DNA , Regulação da Expressão Gênica/efeitos da radiação , Intestino Delgado/patologia , Intestino Delgado/efeitos da radiação , Intestinos/patologia , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Tolerância a Radiação/genética , Tolerância a Radiação/efeitos da radiação
12.
Mol Carcinog ; 59(6): 651-660, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32253787

RESUMO

Postoperative radiotherapy combined with chemotherapy is a commonly used treatment for glioblastoma (GBM) but radiotherapy often fails to achieve the expected results mainly due to tumor radioresistance. In this study, we established a radioresistant subline from human glioma cell line U251 and found that Cathepsin D (CTSD), a gene closely related to the clinical malignancy and prognosis in glioma, had higher expression level in radioresistant clones than that in parental cells, and knocking down CTSD by small interfering RNA (siRNA) or its inhibitor Pepstatin-A increased the radiosensitivity. The level of autophagy was enhanced in the radioresistant GBM cells compared with its parent cells, and silencing autophagy by light chain 3 (LC3) siRNA significantly sensitized GBM cells to ionizing radiation (IR). Moreover, the protein expression level of CTSD was positively correlated with the autophagy marker LC3 II/I and negatively correlated with P62 after IR in radioresistant cells. As expected, through the combination of Western blot and immunofluorescence assays, inhibition of CTSD increased the formation of autophagosomes, while decreased the formation of autolysosomes, which indicating an attenuated autophagy level, leading to radiosensitization ultimately. Our results revealed for the first time that CTSD regulated the radiosensitivity of glioblastoma by affecting the fusion of autophagosomes and lysosomes. In significance, CTSD might be a potential molecular biomarker and a new therapeutic target in glioblastoma.


Assuntos
Autofagia , Neoplasias Encefálicas/radioterapia , Catepsina D/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Glioblastoma/radioterapia , RNA Interferente Pequeno/genética , Tolerância a Radiação/genética , Apoptose , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Catepsina D/genética , Proliferação de Células , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Prognóstico , Radiação Ionizante , Taxa de Sobrevida , Células Tumorais Cultivadas
13.
Mol Cell Biochem ; 469(1-2): 77-87, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32297178

RESUMO

Lung cancer has been recognized as the leading cause of cancer-related death worldwide. Despite the improvements of treatment, the distant metastasis and recurrence of lung cancer caused by therapy resistance is the biggest challenge in clinical management. Extracellular vesicles named exosomes play crucial roles in intercellular communication as signaling mediators and are involved in tumor development. In this study, we isolated exosomes from irradiated lung cancer cells and co-cultured the exosomes with other lung cancer cells. It was found that cellular growth and motility of recipient cells were facilitated. High-throughput LC-MS/MS assay of exosomal proteins and Gene Ontology enrichment analyses indicated that the metabolic enzymes ALDOA and ALDH3A1 had potential contribution in exosome-enhanced motility of recipient cells, and clinical survival analysis demonstrated the close correlations between ALDOA or ALDH3A1 expression and poor prognosis of lung cancer patients. After co-culturing with exosomes derived from irradiated cancer cells, the expressions of these metabolic enzymes were elevated and the glycolytic activity was promoted in recipient cancer cells. In conclusion, our data suggested that exosomes from irradiated lung cancer cells regulated the motility of recipient cells by accelerating glycolytic process, where exosomal ALDOA and ALDH3A1 proteins were important signaling factors.


Assuntos
Aldeído Desidrogenase/metabolismo , Movimento Celular/genética , Proliferação de Células/genética , Exossomos/metabolismo , Frutose-Bifosfato Aldolase/metabolismo , Glicólise , Neoplasias Pulmonares/metabolismo , Recidiva Local de Neoplasia/metabolismo , Aldeído Desidrogenase/genética , Comunicação Celular/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Cromatografia Líquida , Técnicas de Cocultura , Exossomos/enzimologia , Exossomos/efeitos da radiação , Exossomos/ultraestrutura , Frutose-Bifosfato Aldolase/genética , Regulação Neoplásica da Expressão Gênica , Ontologia Genética , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Microscopia Eletrônica de Transmissão , Recidiva Local de Neoplasia/enzimologia , Recidiva Local de Neoplasia/genética , Prognóstico , Proteômica , Radiação , Espectrometria de Massas em Tandem
14.
Biochem Biophys Res Commun ; 514(3): 678-683, 2019 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-31078269

RESUMO

To investigate the thoracic irradiation induced abscopal effect on distal testes and the underlying inflammatory factors, the rats were irradiated on right thorax with fractionated doses. It was found the testes structures were damaged including disorder of spermatogenic cell arrangement and decrease of sperm number. Moreover, the expressions of caspase-3 and caspase-8 in testis tissue were enhanced, and the concentrations of TGF-ß and TNF-α in the rat serum were increased. When TM4 cells were treated with the conditioned medium (CS) collected from irradiated rat, the cellular ROS and apoptosis was significantly increased. When the CS was neutralized with anti-TGF-ß, its toxic effects were reduced. These results suggest that the thoracic irradiation-induced TGF-ß was involved in the above abscopal damage of testes, which reinforces the necessity of new prevention strategy development of radiotherapy in avoiding any abnormal genetic consequence.


Assuntos
Testículo/lesões , Testículo/efeitos da radiação , Tórax/efeitos da radiação , Fator de Crescimento Transformador beta/metabolismo , Animais , Anticorpos Neutralizantes/farmacologia , Linhagem Celular , Meios de Cultivo Condicionados/farmacologia , Citocinas/metabolismo , Masculino , Camundongos , Ratos Sprague-Dawley , Testículo/patologia , Fator de Crescimento Transformador beta/sangue , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/metabolismo
15.
Nat Genet ; 37(9): 945-52, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16056226

RESUMO

Human and mouse genetic and in vitro evidence has shown that canonical Wnt signaling promotes bone formation, but we found that mice lacking the canonical Wnt antagonist Dickkopf2 (Dkk2) were osteopenic. We reaffirmed the finding that canonical Wnt signaling stimulates osteogenesis, including the differentiation from preosteoblasts to osteoblasts, in cultured osteoblast differentiation models, but we also found that canonical Wnts upregulated the expression of Dkk2 in osteoblasts. Although exogenous overexpression of Dkk before the expression of endogenous canonical Wnt (Wnt7b) suppressed osteogenesis in cultures, its expression after peak Wnt7b expression induced a phenotype resembling terminal osteoblast differentiation leading to mineralization. In addition, osteoblasts from Dkk2-null mice were poorly mineralized upon osteogenic induction in cultures, and Dkk2 deficiency led to attenuation of the expression of osteogenic markers, which could be partially reversed by exogenous expression of Dkk2. Taken together with the finding that Dkk2-null mice have increased numbers of osteoids, these data indicate that Dkk2 has a role in late stages of osteoblast differentiation into mineralized matrices. Because expression of another Wnt antagonist, FRP3, differs from Dkk2 expression in rescuing Dkk2 deficiency and regulating osteoblast differentiation, the effects of Dkk2 on terminal osteoblast differentiation may not be entirely mediated by its Wnt signaling antagonistic activity.


Assuntos
Calcificação Fisiológica , Diferenciação Celular , Osteoblastos/citologia , Osteogênese/fisiologia , Proteínas/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Transporte/metabolismo , Células Cultivadas , Proteínas do Citoesqueleto , Feminino , Glicoproteínas/metabolismo , Corpos de Inclusão , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Camundongos , Camundongos Knockout , Proteínas Musculares/metabolismo , Osteoblastos/metabolismo , Proteínas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Wnt
17.
RSC Adv ; 13(5): 3155-3163, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36756444

RESUMO

Notwithstanding the rapid development of suture elastomers to meet the needs of practical surgery, utilizing the elastomers' self-healing function as a surgical suture to facilitate the healing of wounds has not been addressed. Here, a biodegradable aliphatic polycarbonate smart elastomer, mPEG113-b-PMBC n , was synthesized from aliphatic polycarbonate monomer with methoxy polyethylene glycol (mPEG113, 5.0 kDa) as initiator, which exhibited excellent mechanical properties, highly efficient self-repairing, and remarkable shape memory behavior. The polymers possess outstanding self-healing ability for 150 min. Meanwhile, after 46.33 ± 1.18 s, the temporary shape of the obtained polymer had been recovered. The results of biocompatibility tests reveal that the polymers have excellent biocompatibility and can be regarded as good biomedical materials. Then, in vivo experiments were used to prove the self-healing knotting ability of the polymers and quickly close a wound surface using a programmed shape at physiological temperature. The results demonstrated that the injury wound can be effectively healed compared with traditional sutures, which will offer new study suggestions for subsequent healing areas.

18.
ACS Nano ; 17(14): 13851-13860, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37440182

RESUMO

Machine learning (ML) algorithms will be enablers in revolutionizing traditional methods of materials optimization. Here, we broaden the use of ML to assist the construction of Fenton-like single-atom catalysts (SACs) by developing a methodology including model building, training, and prediction. Our approach can efficiently extract synthesis parameters that exert a substantial influence on Fenton activity and accurately predict the phenol degradation rate k of SACs with a mean error of ±0.018 min-1. The extended synthesis window with accelerated learning enables the realization that the heating temperatures during SAC synthesis significantly influence the Fe-N coordination number, which ultimately dictates their performance. Through ML-guided optimization, a highly efficient SAC dominated by Fe-N5 sites with exceptional Fenton activity (k = 0.158 min-1) is identified. Our work provides an example for ML-assisted optimization of single-atom coordination environments and illuminates the feasibility of ML in accelerating the development of high-performance catalysts.

19.
Autophagy ; 19(3): 839-857, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35913916

RESUMO

Glioblastoma multiforme (GBM) is the most common brain malignancy insensitive to radiotherapy (RT). Although macroautophagy/autophagy was reported to be a fundamental factor prolonging the survival of tumors under radiotherapeutic stress, the autophagic biomarkers coordinated to radioresistance of GBM are still lacking in clinical practice. Here we established radioresistant GBM cells and identified their protein profiles using tandem mass tag (TMT) quantitative proteomic analysis. It was found that SDC1 and TGM2 proteins were overexpressed in radioresistant GBM cells and tissues and they contributed to the poor prognosis of RT. Knocking down SDC1 and TGM2 inhibited the fusion of autophagosomes with lysosomes and thus enhanced the radiosensitivity of GBM cells. After irradiation, TGM2 bound with SDC1 and transported it from the cell membrane to lysosomes, and then bound to LC3 through its two LC3-interacting regions (LIRs), coordinating the encounter between autophagosomes and lysosomes, which should be a prerequisite for lysosomal EPG5 to recognize LC3 and subsequently stabilize the STX17-SNAP29-VAMP8 QabcR SNARE complex assembly. Moreover, when combined with RT, cystamine dihydrochloride (a TGM2 inhibitor) extended the lifespan of GBM-bearing mice. Overall, our findings demonstrated the EPG5 tethering mode with SDC1 and TGM2 during the fusion of autophagosomes with lysosomes, providing new insights into the molecular mechanism and therapeutic target underlying radioresistant GBM.Abbreviations: BafA1: bafilomycin A1; CQ: chloroquine; Cys-D: cystamine dihydrochloride; EPG5: ectopic P-granules 5 autophagy tethering factor; GBM: glioblastoma multiforme; GFP: green fluorescent protein; LAMP2: lysosomal associated membrane protein 2; LIRs: LC3-interacting regions; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; NC: negative control; RFP: red fluorescent protein; RT: radiotherapy; SDC1: syndecan 1; SNAP29: synaptosome associated protein 29; SQSTM1/p62: sequestosome 1; STX17: syntaxin 17; TGM2: transglutaminase 2; TMT: tandem mass tag; VAMP8: vesicle associated membrane protein 8; WT: wild type.


Assuntos
Autofagossomos , Glioblastoma , Camundongos , Animais , Autofagossomos/metabolismo , Autofagia , Glioblastoma/metabolismo , Cistamina/metabolismo , Proteômica , Lisossomos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Tolerância a Radiação , Fusão de Membrana , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Transporte Vesicular/metabolismo
20.
Theranostics ; 13(11): 3725-3743, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37441590

RESUMO

Rationale: Glioblastoma (GBM) is the most common and malignant primary brain tumor in adults. Radiotherapy has long been an important treatment for GBM. Despite recent advances in tumor radiotherapy, the prognosis of GBM remains poor due to radioresistance. Autophagy has been reported as a basic factor to prolong the survival of tumor under radiation stress, but the molecular mechanism of how autophagy contributes to GBM radioresistance was still lacking. Methods: We established radioresistant GBM cells and identified their protein profiles by Tandem mass tag (TMT) quantitative proteomic analysis, then chose the radioresistant genes based on the TMT analysis of GBM cells and differentially expressed genes (DEGs) analysis of GEO database. Colony formation, flow cytometry, qPCR, western blotting, mRFP-GFP-LC3, transmission electron microscopy, immunofluorescence, and co-IP assays were conducted to investigate the regulation mechanisms among these new-found molecules. Results: Syndecan 1 (SDC1) and Transglutaminase 2 (TGM2) were both overexpressed in the radioresistant GBM cells and tissues, contributing to the dismal prognosis of radiotherapy. Mechanically, after irradiation, SDC1 carried TGM2 from cell membrane into cytoplasm, and transported to lysosomes by binding to flotillin 1 (FLOT1), then TGM2 recognized the betaine homocysteine methyltransferase (BHMT) on autophagosomes to coordinate the encounter between autophagosomes and lysosomes. Conclusions: The SDC1-TGM2-FLOT1-BHMT copolymer, a novel member of the protein complexes involved in the fusion of lysosomes and autophagosomes, maintained the autophagic flux in the irradiated tumor cells and ultimately enhanced radioresistance of GBM, which provides new insights of the molecular mechanism and therapeutic targets of radioresistant GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Humanos , Glioblastoma/genética , Glioblastoma/radioterapia , Glioblastoma/metabolismo , Autofagossomos/metabolismo , Betaína-Homocisteína S-Metiltransferase/uso terapêutico , Linhagem Celular Tumoral , Sindecana-1/uso terapêutico , Proteína 2 Glutamina gama-Glutamiltransferase , Proteômica , Tolerância a Radiação/genética , Proteínas de Membrana , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/metabolismo , Autofagia , Lisossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA