RESUMO
MADS-box transcription factors have crucial functions in numerous physiological and biochemical processes during plant growth and development. Previous studies have reported that two MADS-box genes, SlMBP21 and SlMADS1, play important regulatory roles in the sepal development of tomato, respectively. However, the functional relationships between these two genes are still unknown. In order to investigate this, we simultaneously studied these two genes in tomato. Phylogenetic analysis showed that they were classified into the same branch of the SEPALLATA (SEP) clade. qRT-PCR displayed that both SlMBP21 and SlMADS1 transcripts are preferentially accumulated in sepals, and are increased with flower development. During sepal development, SlMBP21 is increased but SlMADS1 is decreased. Using the RNAi, tomato plants with reduced SlMBP21 mRNA generated enlarged and fused sepals, while simultaneous inhibition of SlMBP21 and SlMADS1 led to larger (longer and wider) and fused sepals than that in SlMBP21-RNAi lines. qRT-PCR results exhibited that the transcripts of genes relating to sepal development, ethylene, auxin and cell expansion were dramatically changed in SlMBP21-RNAi sepals, especially in SlMBP21-SlMADS1-RNAi sepals. Yeast two-hybrid assay displayed that SlMBP21 can interact with SlMBP21, SlAP2a, TAGL1 and RIN, and SlMADS1 can interact with SlAP2a and RIN, respectively. In conclusion, SlMBP21 and SlMADS1 cooperatively regulate sepal development in tomato by impacting the expression or activities of other related regulators or via interactions with other regulatory proteins.
Assuntos
Proteínas de Domínio MADS , Solanum lycopersicum , Proteínas de Domínio MADS/genética , Flores/genética , Filogenia , Proteínas de Plantas/genética , Fatores de Transcrição/metabolismoRESUMO
In the original publication [...].
RESUMO
The acidic electrocatalytic conversion of CO2 to multi-carbon (C2+) oxygenates is of great importance in view of enhancing carbon utilization efficiency and generating products with high energy densities, but suffering from low selectivity and activity. Herein, we synthesized Ag-Cu alloy catalyst with highly rough surface, by which the selectivity to C2+ oxygenates can be greatly improved. In a strongly acidic condition (pH=0.75), the maximum C2+ products Faradaic efficiency (FE) and C2+ oxygenates FE reach 80.4 % and 56.5 % at -1.9â V versus reversible hydrogen electrode, respectively, with a ratio of FEC2+ oxygenates to FEethylene up to 2.36. At this condition, the C2+ oxygenates partial current density is as high as 480â mA cm-2. The in situ spectra, control experiments and theoretical calculations indicate that the high generation of C2+ oxygenates over the catalyst originates from its large surface roughness and Ag alloying.
RESUMO
n-propanol is an important pharmaceutical and pesticide intermediate. To produce n-propanol by electrochemical reduction of CO2 is a promising way, but is largely restricted by the very low selectivity and activity. How to promote the coupling of *C1 and *C2 intermediates to form the *C3 intermediate for n-propanol formation is challenging. Here, we propose the construction of bicontinuous structure of Cu2O/Cu electrocatalyst, which consists of ultra-small Cu2O nanodomains, Cu nanodomains and large amounts of grain boundaries between Cu2O and Cu nanodomains. The n-propanol current density is as high as 101.6â mA cm-2 at the applied potential of -1.1â V vs. reversible hydrogen electrode in flow cell, with the Faradaic efficiency up to 12.1 %. Moreover, the catalyst keeps relatively stable during electrochemical CO2 reduction process. Experimental studies and theoretical calculations reveal that the bicontinuous structure of Cu2O/Cu can facilitate the *CO formation, *CO-*CO coupling and *CO-*OCCO coupling for the final generation of n-propanol.
RESUMO
Electrochemical reduction of CO2 to multicarbon (C2+) products using renewable energy sources is an important route to storing sustainable energy and achieving carbon neutrality. It remains a challenge to achieve high C2+ product faraday efficiency (FE) at ampere-level current densities. Herein, we propose the immobilization of an alkaline ionic liquid on copper for promoting the deep reduction of CO2. By this strategy, a C2+ FE of 81.4% can be achieved under a current density of 0.9 A·cm-2 with a half-cell energy conversion efficiency of 47.4% at -0.76 V vs reversible hydrogen electrode (RHE). Particularly, when the current density is as high as 1.8 A·cm-2, the C2+ FE reaches 71.6% at an applied potential of -1.31 V vs RHE. Mechanistic studies demonstrate that the alkaline ionic liquid plays multiple roles of improving the accumulation of CO2 molecules on the copper surface, promoting the activation of the adsorbed CO2, reducing the energy barrier of CO dimerization, stabilizing intermediates, and facilitating the C2+ product formation.
RESUMO
Large-current electrolysis of CO2 to multi-carbon (C2+) products is critical to realize the industrial application of CO2 conversion. However, the poor binding strength of *CO intermediates on the catalyst surface induces multiple competing pathways, which hinder the C2+ production. Herein, we report that p-d orbital hybridization induced by Ga-doped Cu (CuGa) could promote efficient CO2 electrocatalysis to C2+ products at ampere-level current density. It was found that CuGa exhibited the highest C2+ productivity with a remarkable Faradaic efficiency (FE) of 81.5% at a current density of 0.9 A/cm2, and the potential at such a high current density was -1.07 V versus reversible hydrogen electrode. At 1.1 A/cm2, the catalyst still maintained a high C2+ productivity with an FE of 76.9%. Experimental and theoretical studies indicated that the excellent performance of CuGa results from the p-d hybridization of Cu and Ga, which not only enriches reactive sites but also enhances the binding strength of the *CO intermediate and facilitates C-C coupling. The p-d hybridization strategy can be extended to other p-block metal-doped Cu catalysts, such as CuAl and CuGe, to boost CO2 electroreduction for C2+ production. As far as we know, this is the first work to promote electrochemical CO2 reduction reaction to generate the C2+ product by p-d orbital hybridization interaction using a p-block metal-doped Cu catalyst.
RESUMO
Low-dimensional metal-organic frameworks (MOFs) exhibit enhanced properties compared with three-dimensional (3D) geometry MOFs in many fields. In this work, we demonstrate the synthesis of Cu3(BTC)2 (BTC = benzene-1,3,5-tricarboxylate) nanoflakes in a binary solvent of ionic liquid (IL) and water. Such a MOF architecture has a high surface area and abundant unsaturated coordination metal sites, making them attractive for adsorption and catalysis. For example, in catalyzing the oxidation reactions of a series of alcohols, the Cu3(BTC)2 nanoflakes exhibit a high performance that is superior to Cu3(BTC)2 microparticles synthesized in a conventional solvent. Experimental and theoretical studies reveal that the IL accelerates the crystallization of Cu3(BTC)2, while water plays a role in stripping the Cu3(BTC)2 blocks that are formed at an early stage through its attack on the crystal plane of Cu3(BTC)2. Such an in situ crystallization-exfoliation process that uses an IL/water solvent opens a new route for producing low-dimensional MOFs.
RESUMO
Electrochemical conversion of CO2 to valuable fuels is appealing for CO2 fixation and energy storage. The Cu-based catalysts feature unique superiorities, but achieving high ethylene selectivity is still restricted. In this study, we propose the anchoring of an ionic liquid (IL) on a Cu electrocatalyst for improving the electrochemical CO2 reduction to ethylene. In a water-based electrolyte and a commonly used H-type cell, a high ethylene Faradaic efficiency of 77.3 % was achieved at -1.49â V (vs. RHE). Experimental and theoretical studies reveal that an IL can modify the electronic structure of a Cu catalyst through its interaction with Cu, making it more conducive to *CO dimerization for ethylene formation.
RESUMO
Pickering emulsion is a heterogeneous system consisting of at least two immiscible liquids, which are stabilized by solid particles, in which organic solvent or water is dispersed into other phase in form of micrometre-sized droplets. Compared to traditional emulsions stabilized by surfactant, solids are cheap and can be easily separated and recycled by centrifugation or filtration after use. Moreover, the properties of Pickering emulsions can be adjusted by using different types of solid particles. Up to now, Pickering emulsions have been applied in a wide range of areas such as material science and catalysis. Here we review recent studies on Pickering emulsions stabilized by metal-organic framework, graphitic carbon nitride and graphene oxide.
RESUMO
The electrochemical synthesis of chemicals from carbon dioxide, which is an easily available and renewable carbon resource, is of great importance. However, to achieve high product selectivity for desirable C2 products like ethylene is a big challenge. Here we design Cu nanosheets with nanoscaled defects (2-14 nm) for the electrochemical production of ethylene from carbon dioxide. A high ethylene Faradaic efficiency of 83.2% is achieved. It is proved that the nanoscaled defects can enrich the reaction intermediates and hydroxyl ions on the electrocatalyst, thus promoting C-C coupling for ethylene formation.
RESUMO
AGAMOUS (AG) MADS-box transcription factors have been shown to play crucial roles in floral organ and fruit development in angiosperms. Here, we isolated a tomato (Solanum lycopersicum) AG MADS-box gene SlMBP3 and found that it is preferentially expressed in flowers and during early fruit developmental stages in the wild-type (WT), and in the Nr (never ripe) and rin (ripening inhibitor) mutants. Its transcripts are notably accumulated in the pistils; transcripts abundance decrease during seed and placental development, increasing again during flower development. SlMBP3-RNAi tomato plants displayed fleshy placenta without locular gel and extremely malformed seeds with no seed coat, while SlMBP3-overexpressing plants exhibited advanced liquefaction of the placenta and larger seeds. Enzymatic activities related to cell wall modification, and the contents of cell wall components and pigments were dramatically altered in the placentas of SlMBP3-RNAi compared with the WT. Alterations in these physiological features were also observed in the placentas of SlMBP3-overexpressing plants. The lignin content of mature seeds in SlMBP3-RNAi lines was markedly lower than that in the WT. RNA-seq and qRT-PCR analyses revealed that genes involved in seed development and the biosynthesis of enzymes related to cell wall modification, namely gibberellin, indole-3-acetic acid, and abscisic acid were down-regulated in the SlMBP3-RNAi lines. Taking together, our results demonstrate that SlMBP3 is involved in the regulation of placenta and seed development in tomato.
Assuntos
Frutas/crescimento & desenvolvimento , Proteínas de Domínio MADS/genética , Proteínas de Plantas/genética , Sementes/crescimento & desenvolvimento , Solanum lycopersicum/genética , Sequência de Aminoácidos , Frutas/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Proteínas de Domínio MADS/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Interferência de RNA , Sementes/genética , Alinhamento de SequênciaRESUMO
MADS-box family genes encode transcription factors that are involved in multiple developmental processes in plants, especially in floral organ specification, fruit development, and ripening. However, a comprehensive analysis of tomato MADS-box family genes, which is an important model plant to study flower fruit development and ripening, remains obscure. To gain insight into the MADS-box genes in tomato, 131 tomato MADS-box genes were identified. These genes could be divided into five groups (Mα, Mß, Mγ, Mδ, and MIKC) and were found to be located on all 12 chromosomes. We further analyzed the phylogenetic relationships among Arabidopsis and tomato, as well as the protein motif structure and exon-intron organization, to better understand the tomato MADS-box gene family. Additionally, owing to the role of MADS-box genes in floral organ identification and fruit development, the constitutive expression patterns of MADS-box genes at different stages in tomato development were identified. We analyzed 15 tomato MADS-box genes involved in floral organ identification and five tomato MADS-box genes related to fruit development by qRT-PCR. Collectively, our study provides a comprehensive and systematic analysis of the tomato MADS-box genes and would be valuable for the further functional characterization of some important members of the MADS-box gene family.
Assuntos
Genoma de Planta , Genômica , Proteínas de Domínio MADS/genética , Família Multigênica , Solanum lycopersicum/genética , Fatores de Transcrição/genética , Motivos de Aminoácidos , Mapeamento Cromossômico , Sequência Conservada , Frutas/genética , Frutas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Estudo de Associação Genômica Ampla , Genômica/métodos , Solanum lycopersicum/metabolismo , Proteínas de Domínio MADS/metabolismo , Especificidade de Órgãos , Filogenia , Desenvolvimento Vegetal/genética , Fatores de Transcrição/metabolismoRESUMO
Ovarian cancer is a very insidious malignant tumor. In order to detect ovarian cancer cells early, the classification and recognition of ovarian cancer cells is mainly studied by two-dimensional light scattering technology. Firstly, a single-cell two-dimensional light scattering pattern acquisition platform based on single-mode optical fiber illumination is designed to collect a certain number of two-dimensional light scattering patterns of ovarian cancer cells and normal ovarian cells. Then, the HOG (Histogram of Oriented Gradient) algorithm is used to extract shaving anisotropy feature of two-dimensional light scattering pattern. The results show that the accuracy of classification and identification of ovarian cancer cells by two-dimensional light scattering technology is 90.81%, which suggests that the specificity of cancer cells and normal cells can be characterized by two-dimensional light scattering technology.
Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Imagem Óptica/métodos , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/patologia , Algoritmos , Anisotropia , Linhagem Celular Tumoral , Feminino , Humanos , Sensibilidade e EspecificidadeRESUMO
The synthesis of methionine is critical for most bacteria. It is known that cellular methionine has a feedback effect on the expression of met genes involved in de novo methionine biosynthesis. Previous studies revealed that Gram-negative bacteria control met gene expression at the transcriptional level by regulator proteins, while most Gram-positive bacteria regulate met genes at post-transcriptional level by RNA regulators (riboregulators) located in the 5'UTR of met genes. However, despite its importance, the methionine biosynthesis pathway in the Gram-negative Xanthomonas genus that includes many important plant pathogens is completely uncharacterized. Here, we address this issue using the crucifer black rot pathogen Xanthomonas campestris pv. campestris (Xcc), a model bacterium in microbe-plant interaction studies. The work identified an operon (met) involved in de novo methionine biosynthesis in Xcc. Disruption of the operon resulted in defective growth in methionine-limited media and in planta. Western blot analysis revealed that the expression of the operon is dependent on methionine levels. Further molecular analyses demonstrated that the 5'UTR, but not the promoter of the operon, is involved in feedback regulation on operon expression in response to methionine availability, providing an example of a Gram-negative bacterium utilizing a 5'UTR region to control the expression of the genes involved in methionine biosynthesis.
Assuntos
Regiões 5' não Traduzidas , Retroalimentação Fisiológica , Regulação Bacteriana da Expressão Gênica , Metionina/biossíntese , Xanthomonas campestris/metabolismo , Deleção de Genes , Perfilação da Expressão Gênica , Óperon , Xanthomonas campestris/genética , Xanthomonas campestris/crescimento & desenvolvimentoRESUMO
Electrochemical reduction of CO2 to CH3 OH is of great interest. Aerogels have fine inorganic superstructure with high porosity and are known to be exceptional materials. Now a Pd-Cu bimetallic aerogel electrocatalyst has been developed for conversion of CO2 into CH3 OH. The current density and Faradaic efficiency of CH3 OH can be as high as 31.8â mA cm-2 and 80.0 % over the Pd83 Cu17 aerogel at a very low overpotential (0.24â V). The superior performance of the electrocatalyst results from efficient adsorption and stabilization of the CO2 radical anion, high Pd0 /PdII and CuI +Cu0 /CuII ratios, and sufficient Pd/Cu grain boundaries of aerogel nanochains.
RESUMO
Here, we propose to modify the hydrophilicity of metal-organic framework (MOF) particles by an interfacial assembling route, which is based on the surface-active nature of MOF particles. It was found that hydrophilic UiO-66-NH2 particles can be converted to hydrophobic particles through an oil-water interfacial assembling route. The underlying mechanism for the conversion of UiO-66-NH2 was investigated by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. It was revealed that the close assembly of UiO-66-NH2 particles at the oil-water interface strengthens the coordination between organic ligands and metal ions, which results in a decrease in the proportion of hydrophilic groups on UiO-66-NH2 particle surfaces. Hydrophobic UiO-66-NH2 particles show improved adsorption capacity for dyes in organic solvents compared with pristine UiO-66-NH2 particles. It is expected that the interfacial assembling route can be applied to the synthesis of different kinds of MOF materials with tunable hydrophilicity or hydrophobicity required for diverse applications.
RESUMO
Herein we demonstrate the formation of a novel kind of Pickering emulsion that is stabilized by a Zr-based metal-organic framework (Zr-MOF) and graphene oxide (GO). It was found that the Zr-BDC-NO2 and GO solids assembling at the oil/water interface can effectively stabilize the oil droplets that are dispersed in the water phase. Such a Pickering emulsion offers a facile route for fabricating Zr-MOF/GO composite materials. After removing water and oil by freeze drying from Pickering emulsions, the Zr-MOF/GO composites were obtained and their morphologies, structures and interaction properties were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and Fourier transform infrared spectrometry, respectively. The influences of the concentration of GO and Zr-MOF on the emulsion microstructures and the properties of the MOF/GO composites were studied. Based on experimental results, the mechanisms for the emulsion formation by Zr-MOF and GO and the as-synthesized superstructures of the Zr-MOF/GO composite were proposed. It is expected that this facile and tunable route can be applied to the synthesis of different kinds of MOF-based or GO-based composite materials.
RESUMO
Herein we propose an interfacial assembly and hydrolysis route for fabricating TiO2/UiO-67 composites. The UiO-67 assembles at the water-oil interface serving as a stabilizer of the emulsion. TiO2 nanoparticles are loaded on UiO-67 by hydrolysis of the precursor TBT (tetra-n-butyl titanate) at the water-oil interface. By such a strategy, hollow capsules structured by UiO-67 and decorated by ultra-small TiO2 nanoparticles were produced. The newly-constructed composite combines the CO2 adsorption properties of UiO-67 and the photocatalytic activity of TiO2, showing high activity for the photocatalytic reduction of CO2 to formic acid. Such a composite with a novel structure provides a promising route for the preparation of new compound materials.
RESUMO
KEY MESSAGE: Silencing SlAGL6 in tomato leads to fused sepal and green petal by influencing the expression of A-, B-class genes. AGAMOUS-LIKE6 (AGL6) lineage is an important clade MADS-box transcription factor and plays essential roles in various developmental programs especially in flower meristem and floral organ development. Here, we isolated a tomato AGL6 lineage gene SlAGL6 and successfully obtained several RNA interference (RNAi) lines. Silencing SlAGL6 led to abnormal fused sepals and light green petals with smaller size. The total chlorophyll content in transgenic petals increased and the morphology of epidermis cells altered. Further analysis showed that A-class gene MACROCALYX (MC) participating in sepal development and a NAC-domain gene GOBLET involving in boundary establishment were down-regulated in transgenic lines. In transgenic petals, two chlorophyll synthesis genes, Golden2-like1 (SlGLK1) and Golden2-like2 (SlGLK2), two photosystem-related genes, ribulose bisphosphate carboxylase small chain 3B (SlrbcS3B) and chlorophyll a/b-binding protein 7 (SlCab-7) were induced and three B-class genes TM6, TAP3 and SlGLO1 were repressed. These results suggest that SlAGL6 involves in tomato sepal and petal development.
Assuntos
Flores/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Solanum lycopersicum/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
The emulsification of metal-organic frameworks (MOFs) for the two immiscible phases of water and ionic liquid (IL) was investigated for the first time. It was found that Ni-BDC (BDC = 1,4-dicarboxybenzene) can emulsify water and ILs and favor the formation of high internal phase emulsions (HIPEs) under certain experimental conditions. The microstructures of the HIPEs were characterized by confocal laser scanning microscopy using a fluorescent dye Rhodamine B, which proves that the HIPEs are the IL-in-water type. Further results reveal that the HIPE forms during the IL-in-water to water-in-IL emulsion inversion. The possibilities of the HIPE formation by other MOFs (Cu-BDC and Zn-BDC) were explored and the mechanism for HIPE formation was discussed. The MOF-stabilized HIPE was applied to the in situ synthesis of a MOF/polymer composite by HIPE polymerization. The macroporous MOF/polyacrylamide network and MOF/polystyrene microspheres were obtained from the HIPEs, respectively.