Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Anal Chem ; 96(21): 8221-8233, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38740384

RESUMO

Compared with traditional "lock-key mode" biosensors, a sensor array consists of a series of sensing elements based on intermolecular interactions (typically hydrogen bonds, van der Waals forces, and electrostatic interactions). At the same time, sensor arrays also have the advantages of fast response, high sensitivity, low energy consumption, low cost, rich output signals, and imageability, which have attracted widespread attention from researchers. Nanozymes are nanomaterials which own enzyme-like properties. Because of the adjustable activity, high stability, and cost effectiveness of nanozymes, they are potential candidates for construction of sensor arrays to output different signals from analytes through the chemoresponse of colorants, which solves the shortcomings of traditional sensors that they cannot support multiple detection and lack universality. Recently, a sensor array based on nanozymes as nonspecific recognition receptors has attracted much more attention from researchers and has been applied to precise recognition of proteins, bacteria, and heavy metals. In this perspective, attention is given to nanozymes and the regulation of their enzyme-like activity. Particularly, the building principles and methods for sensor arrays based on nanozymes are analyzed, and the applications are summarized. Finally, the approaches to overcome the challenges and perspectives are also presented and analyzed for facilitating further research and development of nanozyme sensor arrays. This perspective should be helpful for gaining insight into research ideas within the field of nanozyme sensor arrays.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Nanoestruturas/química , Enzimas/metabolismo , Enzimas/química
2.
Small ; : e2400139, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38497843

RESUMO

The oxygen evolution reaction (OER) performance of NiCo LDH electrocatalysts can be improved through fluorine doping. The roles of Ni and Co active sites in such catalysts remain ambiguous and controversial. In addressing the issue, this study draws upon the molecular orbital theory and proposes the active center competitive mechanism between Ni and Co. The doped F-atoms can directly impact the valence state of metal atoms or exert an indirect influence through the dehydrogenation, thereby modulating the active center. As the F-atoms are progressively aggregate, the eg orbitals of Ni and Co transition from e2 g to e1 g , and subsequently to e0 g . The corresponding valence state elevates from +2 to +3, and then to +4, signifying an initial increase followed by a subsequent decrease in the electrocatalytic performance. Furthermore, a series of F-NiCo LDH catalysts are synthesized to verify the eg orbital occupancy analysis, and the catalytic OER overpotentials are 303, 243, 240, and 246 mV at the current density of 10 mA cm-2 , respectively, which coincides well with the theoretical prediction. This investigation not only provides novel mechanistic insights into the transition and competition of Ni and Co in F-NiCo LDH catalysts but also establishes a foundation for the design of high-performance catalysts.

3.
Small ; : e2404470, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934337

RESUMO

The uncontrollable growth of lithium dendrites and the flammability of electrolytes are the direct impediments to the commercial application of high-energy-density lithium metal batteries (LMBs). Herein, this study presents a novel approach that combines microencapsulation and electrospinning technologies to develop a multifunctional composite separator (P@AS) for improving the electrochemical performance and safety performance of LMBs. The P@AS separator forms a dense charcoal layer through the condensed-phase flame retardant mechanism causing the internal separator to suffocate from lack of oxygen. Furthermore, it incorporates a triple strategy promoting the uniform flow of lithium ions, facilitating the formation of a highly ion-conducting solid electrolyte interface (SEI), and encouraging flattened lithium deposition with active SiO2 seed points, considerably suppressing lithium dendrites growth. The high Coulombic efficiency of 95.27% is achieved in Li-Cu cells with additive-free carbonate electrolyte. Additionally, stable cycling performance is also maintained with a capacity retention rate of 93.56% after 300 cycles in LFP//Li cells. Importantly, utilizing P@AS separator delays the ignition of pouch batteries under continuous external heating by 138 s, causing a remarkable reduction in peak heat release rate and total heat release by 23.85% and 27.61%, respectively, substantially improving the fire safety of LMBs.

4.
Small ; 20(7): e2305817, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37814379

RESUMO

Complete ethanol oxidation reaction (EOR) in C1 pathway with 12 transferred electrons is highly desirable yet challenging in direct ethanol fuel cells. Herein, PtRh jagged nanowires synthesized via a simple wet-chemical approach exhibit exceptional EOR mass activity of 1.63 A mgPt-1 and specific activity of 4.07 mA cm-2 , 3.62-fold and 4.28-folds increments relative to Pt/C, respectively. High proportions of 69.33% and 73.42% of initial activity are also retained after chronoamperometric test (80 000 s) and 1500 consecutive potential cycles, respectively. More importantly, it is found that PtRh jagged nanowires possess superb anti-CO poisoning capability. Combining X-ray absorption spectroscopy, X-ray photoelectron spectroscopy as well as density functional theory calculations unveil that the remarkable catalytic activity and CO tolerance stem from both the Rh-induced electronic effect and geometric effect (manifested by shortened Pt─Pt bond length and shrinkage of lattice constants), which facilitates EOR catalysis in C1 pathway and improves reaction kinetics by reducing energy barriers of rate-determining steps (such as *CO → *COOH). The C1 pathway efficiency of PtRh jagged nanowires is further verified by the high intensity of CO2 relative to CH3 COOH/CH3 CHO in infrared reflection absorption spectroscopy.

5.
Chemistry ; 30(3): e202303211, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37909248

RESUMO

Aqueous zinc-ion batteries (AZIBs) have attracted considerable attention. However, due to the uneven distribution of charge density at Zn anode-electrolyte interface, severe dendrites and corrosion are generated during cycling. In this work, a facile and scalable strategy to address the above-mentioned issues has been proposed through regulating the charge density at Zn anode-electrolyte interface. As a proof of concept, amidinothiourea (ATU) with abundant lone-pair electrons is employed as an interfacial charge modifier for Zn anode-electrolyte interface. The uniform and increased interfacial charge distribution on Zn anode-electrolyte interface has been obtained. Moreover, the unique Zn-bond constructed between N atoms and Zn2+ as well as the hydrogen bonds are formed among ATU and Ac- anion/active H2 O, which promote the migration and desolvation behavior of Zn2+ at anode-electrolyte interface. Accordingly, at a trace concentration of 0.01 mg mL-1 ATU, these features endow Zn anode with a long cycling life (more than 800 h), and a high average Columbic efficiency (99.52 %) for Zn||Cu batteries. When pairing with I2 cathode, the improved cycling ability (5000 cycles) with capacity retention of 77.9 % is achieved. The fundamental understanding on the regulation of charge density at anode-electrolyte interface can facilitate the development of AZIBs.

6.
Chem Rev ; 122(23): 17155-17239, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36239919

RESUMO

The ever-increasing demand for flexible and portable electronics has stimulated research and development in building advanced electrochemical energy devices which are lightweight, ultrathin, small in size, bendable, foldable, knittable, wearable, and/or stretchable. In such flexible and portable devices, semi-solid/solid electrolytes besides anodes and cathodes are the necessary components determining the energy/power performances. By serving as the ion transport channels, such semi-solid/solid electrolytes may be beneficial to resolving the issues of leakage, electrode corrosion, and metal electrode dendrite growth. In this paper, the fundamentals of semi-solid/solid electrolytes (e.g., chemical composition, ionic conductivity, electrochemical window, mechanical strength, thermal stability, and other attractive features), the electrode-electrolyte interfacial properties, and their relationships with the performance of various energy devices (e.g., supercapacitors, secondary ion batteries, metal-sulfur batteries, and metal-air batteries) are comprehensively reviewed in terms of materials synthesis and/or characterization, functional mechanisms, and device assembling for performance validation. The most recent advancements in improving the performance of electrochemical energy devices are summarized with focuses on analyzing the existing technical challenges (e.g., solid electrolyte interphase formation, metal electrode dendrite growth, polysulfide shuttle issue, electrolyte instability in half-open battery structure) and the strategies for overcoming these challenges through modification of semi-solid/solid electrolyte materials. Several possible directions for future research and development are proposed for going beyond existing technological bottlenecks and achieving desirable flexible and portable electrochemical energy devices to fulfill their practical applications. It is expected that this review may provide the readers with a comprehensive cross-technology understanding of the semi-solid/solid electrolytes for facilitating their current and future researches on the flexible and portable electrochemical energy devices.


Assuntos
Fontes de Energia Elétrica , Eletrólitos , Eletrodos , Eletrônica , Software
7.
Anal Chem ; 95(29): 10844-10858, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37438259

RESUMO

Natural enzymes are crucial in biological systems and widely used in biology and medicine, but their disadvantages, such as insufficient stability and high-cost, have limited their wide application. Since Fe3O4 nanoparticles were found to show peroxidase-like activity, researchers have designed and developed a growing number of nanozymes that mimic the activity of natural enzymes. Nanozymes can compensate for the defects of natural enzymes and show higher stability with lower cost. Iron, a nontoxic and low-cost transition metal, has been used to synthesize a variety of iron-based nanozymes with unique structural and physicochemical properties to obtain different enzymes mimicking catalytic properties. In this perspective, catalytic mechanisms, activity modulation, and their recent research progress in sensing, tumor therapy, and antibacterial and anti-inflammatory applications are systematically presented. The challenges and perspectives on the development of iron-based nanozymes are also analyzed and discussed.


Assuntos
Nanopartículas , Nanoestruturas , Ferro , Catálise , Antibacterianos , Nanoestruturas/química
8.
Small ; 19(29): e2300411, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37029576

RESUMO

The introduction of electrolyte additives is one of the most potential strategies to improve the performance of potassium metal batteries (PMBs). However, designing an additive that can alter the K+ solvation shell and essentially inhibit K dendrite remains a challenge. Herein, the amyl-triphenyl-phosphonium bromide was introduced as an additive to build a stable solid electrolyte interphase layer. The amyl-TPP cations can form a cation shielding layer on the metal surface during the nucleation stage, preventing K+ from gathering at the tip to form K dendrites. Besides, the cations can be preferentially reduced to form Kx Py with fast K+ transport kinetics. The Br- anions, as Lewis bases with strong electronegativity, can not only coordinate the Lewis acid pentafluoride to inhibit the formation of HF, but also change the K+ solvation structure to reduce solvent molecules in the first solvation structure. Therefore, the symmetrical battery exhibits a low deposition overpotential of 123 mV at 0.1 mA cm-2 over 4200 h cycle life. The full battery, paried with a perylene-tetracarboxylic dianhydride (PTCDA) cathode, possesses a cycle life of 250 cycles at 2 C and 81.9% capacity retention. This work offers a reasonable electrolyte design to obtain PMBs with long-term stablity and safety.

9.
Small ; 19(32): e2300854, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37060230

RESUMO

The construction of conductive scaffolds is demonstrated to be an ideal strategy to alleviate the volume expansion and dendrite growth of K metal anodes. Nevertheless, the heterogeneous top-bottom deposition behavior caused by incompatible electronic/ionic conductivity of three-dimensional (3D) skeleton severely hinders its application. Here, a K2 Se/Cu conducting layer is fabricated on the Cu foam so as to enhance ionic transport and weaken electronic conductivity of the skeleton. Then, an excellent simultaneous deposition behavior of K metal inside the host is obtained for the first time via tuning fast ionic transport and low electronic conductivity. The simultaneous deposition mode can not only utilize the entire 3D structure to accommodate the volume expansion during K deposition but also avoid the formation of K dendrites at high current and ultra-low temperature. Consequently, the symmetric cells present a long cycle lifespan over 1000 h with a low deposition overpotential of 80 mV at 1 mA cm-2 . Furthermore, the full cell matching with the perylene-tetracarboxylic dianhydride (PTCDA) cathode presents an outstanding cycle lifespan over 600 cycles at 5 C at -20°C. The proposed simultaneous deposition strategy provides a new design direction for the construction of dendrite-free K metal anodes.

10.
Small ; 19(2): e2205257, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36344428

RESUMO

Nickel based materials are promising electrocatalysts to produce hydrogen from water in alkaline media. However, the stability is of great challenge, limiting its practical material functions. Herein, a new technique for electro-deposition flower-like NiCo2 S4 nanosheets on carbon-cloth (CC@NiCo2 S4 ) is proposed for energy-saving production of H2 from water/methanol coelectrolysis at high current density by constructing array architectures and regulating surface magnetism. The optimized and fine-tuned magnetism on the surface of the electrochemical in situ grown CC@NiCo2 S4 nanosheet array result in (0 1 -1) surface universally exposed, high catalytic activity for methanol electrooxidation, and long-term stability at high current density. X-ray photoelectron spectroscopy in combination of density functional theory calculations confirm the valence electron states and spin of d electrons for the surface of NiCo2 S4 , which enhance the surface stability of catalysts. This technology may be utilized to alter the surface magnetism and increase the stability of Ni-based electrocatalytic materials in general.

11.
Small ; 19(29): e2300042, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37046185

RESUMO

Modifying sulfur cathodes with lithium polysulfides (LiPSs) adsorptive and electrocatalytic host materials is regarded as one of the most effective approaches to address the challenging problems in lithium-sulfur (Li-S) batteries. However, because of the high operating voltage window of Li-S batteries from 1.7 to 2.8 V, most of the host materials cannot participate in the sulfur redox reactions within the same potential region, which exhibit fixed or single functional property, hardly fulfilling the requirement of the complex and multiphase process. Herein, Chevrel phase Mo6 S8 nanosheets with high electronic conductivity, fast ion transport capability, and strong polysulfide affinity are introduced to sulfur cathode. Unlike most previous inactive hosts with a fixed affinity or catalytic ability toward LiPSs, the reaction involving Mo6 S8 is intercalative and the adsorbability for LiPSs as well as the ionic conductivity can be dynamically enhanced via reversible electrochemical lithiation of Mo6 S8 to Li-ion intercalated Lix Mo6 S8 , thereby suppressing the shuttling effect and accelerating the conversion kinetics. Consequently, the Mo6 S8 nanosheets act as an effective dynamic-phase promoter in Li-S batteries and exhibit superior cycling stability, high-rate capability, and low-temperature performance. This study opens a new avenue for the development of advanced hosts with dynamic regulation activity for high performance Li-S batteries.

12.
Angew Chem Int Ed Engl ; 62(21): e202302950, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36946249

RESUMO

Converting carbon-based molecular fuels into electricity efficiently and cleanly without emitting CO2 remains a challenge. Conventional fuel cells using noble metals as anode catalysts often suffer performance degradation due to CO poisoning and a host of problems associated with CO2 production. This study provides a CO2 -emission-free direct formaldehyde fuel cell. It enables a flow of electricity while producing H2 and valuable formate. Unlike conventional carbon-based molecules electrooxidation, formaldehyde 1-electron oxidation is performed on the Cu anode with high selectivity, thus generating formate and H2 without undergoing CO2 pathway. In addition, the fuel cell produces 0.62 Nm3 H2 and 53 mol formate per 1 kWh of electricity generated, with an open circuit voltage of up to 1 V and a peak power density of 350 mW cm-2 . This study puts forward a zero-carbon solution for the efficient utilization of carbon-based molecule fuels that generates electricity, hydrogen and valuable chemicals in synchronization.

13.
Angew Chem Int Ed Engl ; 62(29): e202303875, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37085953

RESUMO

Transition-metal phosphides (TMPs) as typical conversion-type anode materials demonstrate extraordinary theoretical charge storage capacity for sodium ion batteries, but the unavoidable volume expansion and irreversible capacity loss upon cycling represent their long-standing limitations. Herein we report a stress self-adaptive structure with ultrafine FeP nanodots embedded in dense carbon microplates skeleton (FeP@CMS) via the spatial confinement of carbon quantum dots (CQDs). Such an architecture delivers a record high specific capacity (778 mAh g-1 at 0.05 A g-1 ) and ultra-long cycle stability (87.6 % capacity retention after 10 000 cycles at 20 A g-1 ), which outperform the state-of-the-art literature. We decode the fundamental reasons for this unprecedented performance, that such an architecture allows the spontaneous stress transfer from FeP nanodots to the surrounding carbon matrix, thus overcomes the intrinsic chemo-mechanical degradation of metal phosphides.

14.
Anal Chem ; 94(3): 1499-1509, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35014271

RESUMO

Nanozymes are a kind of nanomaterial mimicking enzyme catalytic activity, which has aroused extensive interest in the fields of biosensors, biomedicine, and climate and ecosystems management. However, due to the complexity of structures and composition of nanozymes, atomic scale active centers have been extensively investigated, which helps with in-depth understanding of the nature of the biocatalysis. Single atom nanozymes (SANs) cannot only significantly enhance the activity of nanozymes but also effectively improve the selectivity of nanozymes owing to the characteristics of simple and adjustable coordination environment and have been becoming the brightest star in the nanozyme spectrum. The SANs based sensors have also been widely investigated due to their definite structural features, which can be helpful to study the catalytic mechanism and provide ways to improve catalytic activity. This perspective presents a comprehensive understanding on the advances and challenges on SANs based sensors. The catalytic mechanisms of SANs and then the sensing application from the perspectives of sensing technology and sensor construction are thoroughly analyzed. Finally, the major challenges, potential future research directions, and prospects for further research on SANs based sensors are also proposed.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Catálise , Ecossistema , Nanoestruturas/química
15.
Small ; 18(40): e2204100, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35996763

RESUMO

Pt-Co electrocatalysts have attracted significant attention because of their excellent performance in many electrochemical reactions. This review focuses on Pt-Co electrocatalysts designed and prepared for electrocatalytic applications. First, the various synthetic methods and synthesis mechanisms are systematically summarized; typical examples and core synthesis parameters are discussed for regulating the morphology and structure. Then, starting with the design and structure-activity relationship of catalysts, the research progress of the morphologies and structures of Pt-Co electrocatalysts obtained based on various strategies, the structure-activity relationship between them, and their properties are summarized. In addition, the important electrocatalytic applications and mechanisms of Pt-Co catalysts, including electrocatalytic oxidation/reduction and bifunctional catalytic reactions, are described and summarized, and their high catalytic activities are discussed on the basis of their mechanism and active sites. Moreover, the advanced electrochemical in situ characterization techniques are summarized, and the challenges and direction concerning the development of high-performance Pt-Co catalysts in electrocatalysis are discussed.


Assuntos
Técnicas Eletroquímicas , Catálise , Técnicas Eletroquímicas/métodos , Oxirredução
16.
Small ; 18(5): e2105568, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34850549

RESUMO

Resin derived hard carbons (HCs) generally demonstrate remarkable electrochemical performance for both sodium ion batteries (SIBs) and potassium-ion batteries (KIBs), but their practical applications are hindered by their high price and high temperature pyrolysis (≈1500 °C). Herein, low-cost pitch is coated on the resin surface to compromise the cost, and meanwhile manipulate the microstructure at a relatively low pyrolysis temperature (1000 °C). HC-0.2P-1000 has a large number of short graphitic layer structures and a relatively large interlayer spacing of 0.3743 nm, as well as ≈1 nm sized nanopores suitable for sodium storage. Consequently, the as produced material demonstrates a superior reversible capacity (349.9 mAh g-1 for SIBs and 321.9 mAh g-1 for KIBs) and excellent rate performance (145.1 mAh g-1 at 20 A g-1 for SIBs, 48.5 mAh g-1 at 20 A g-1 for KIBs). Furthermore, when coupled with Na3 V2 (PO4 )3 as cathode, the full cell exhibits a high energy density of 251.1 Wh kg-1 and excellent stability with a capacity retention of 73.3% after 450 cycles at 1 A g-1 .


Assuntos
Grafite , Sódio , Carbono , Eletrodos , Íons
17.
Chem Soc Rev ; 50(2): 1138-1187, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33245736

RESUMO

High temperature proton exchange membrane fuel cells (HT-PEMFCs) are one type of promising energy device with the advantages of fast reaction kinetics (high energy efficiency), high tolerance to fuel/air impurities, simple plate design, and better heat and water management. They have been expected to be the next generation of PEMFCs specifically for application in hydrogen-fueled automobile vehicles and combined heat and power (CHP) systems. However, their high-cost and low durability interposed by the insufficient performance of key materials such as electrocatalysts and membranes at high temperature operation are still the challenges hindering the technology's practical applications. To develop high performance HT-PEMFCs, worldwide researchers have been focusing on exploring new materials and the related technologies by developing novel synthesis methods and innovative assembly techniques, understanding degradation mechanisms, and creating mitigation strategies with special emphasis on catalysts for oxygen reduction reaction, proton exchange membranes and bipolar plates. In this paper, the state-of-the-art development of HT-PEMFC key materials, components and device assembly along with degradation mechanisms, mitigation strategies, and HT-PEMFC based CHP systems is comprehensively reviewed. In order to facilitate further research and development of HT-PEMFCs toward practical applications, the existing challenges are also discussed and several future research directions are proposed in this paper.

18.
Anal Chem ; 93(3): 1221-1231, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33371664

RESUMO

Single-atom nanozymes (SANs) are one of the newest generations of nanozymes, which have been greatly developed in the past few years and exploited widely for many applications, such as biosensing, disease diagnosis and therapy, bioimaging, and so on. SANs, possessing dispersed single-atom structures and a well-defined coordination environment, exhibit remarkable catalytic performance with both high activity and stability. In this paper, the most recent progress in SANs is reviewed in terms of their advanced synthesis, characterization, functional mechanisms, performance validation/optimization, and biomedical applications. Several technical challenges hindering practical applications of SANs are analyzed, and possible research directions are also proposed for overcoming the challenges.


Assuntos
Pesquisa Biomédica , Materiais Biomiméticos/química , Técnicas Biossensoriais , Nanoestruturas/química
19.
Angew Chem Int Ed Engl ; 60(1): 181-185, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-32935443

RESUMO

A zinc-based single-atom catalyst has been recently explored with distinguished stability, of which the fully occupied Zn2+ 3d10 electronic configuration is Fenton-reaction-inactive, but the catalytic activity is thus inferior. Herein, we report an approach to manipulate the s-band by constructing a B,N co-coordinated Zn-B/N-C catalyst. We confirm both experimentally and theoretically that the unique N2 -Zn-B2 configuration is crucial, in which Zn+ (3d10 4s1 ) can hold enough delocalized electrons to generate suitable binding strength for key reaction intermediates and promote the charge transfer between catalytic surface and ORR reactants. This exclusive effect is not found in the other transition-metal counterparts such as M-B/N-C (M=Mn, Fe, Co, Ni and Cu). Consequently, the as-obtained catalyst demonstrates impressive ORR activity, along with remarkable long-term stability in both alkaline and acid media. This work presents a new concept in the further design of electrocatalyst.

20.
Angew Chem Int Ed Engl ; 60(37): 20535-20542, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34288301

RESUMO

The Co-based electrocatalyst is among the most promising candidates for electrochemical oxidation of 5-hydroxymethylfurfural (HMF). However, the intrinsic active sites and detailed mechanism of this catalyst remains unclear. We combine experimental evidence and a theoretical study to show that electrogenerated Co3+ and Co4+ species act as chemical oxidants but with distinct roles in selective HMF oxidation. It is found that Co3+ is only capable of oxidizing formyl group to produce carboxylate while Co4+ is required for the initial oxidation of hydroxyl group with significantly faster kinetics. As a result, the product distribution shows explicit dependence on the Co oxidation states and selective production of 5-hydroxymethyl-2-furancarboxylic acid (HMFCA) and 2,5-furandicarboxylic acid (FDCA) are achieved by tuning the applied potential. This work offers essential mechanistic insight on Co-catalyzed organic oxidation reactions and might guide the design of more efficient electrocatalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA