Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Bull (Beijing) ; 66(9): 937-946, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36654241

RESUMO

Although CRISPR/Cas9-mediated gene editing is widely applied to mimic human disorders, whether acute manipulation of disease-causing genes in the brain leads to behavioral abnormalities in non-human primates remains to be determined. Here we induced genetic mutations in MECP2, a critical gene linked to Rett syndrome (RTT) and autism spectrum disorders (ASD), in the hippocampus (DG and CA1-4) of adolescent rhesus monkeys (Macaca mulatta) in vivo via adeno-associated virus (AAV)-delivered Staphylococcus aureus Cas9 with small guide RNAs (sgRNAs) targeting MECP2. In comparison to monkeys injected with AAV-SaCas9 alone (n = 4), numerous autistic-like behavioral abnormalities were identified in the AAV-SaCas9-sgMECP2-injected monkeys (n = 7), including social interaction deficits, abnormal sleep patterns, insensitivity to aversive stimuli, abnormal hand motions, and defective social reward behaviors. Furthermore, some aspects of ASD and RTT, such as stereotypic behaviors, did not appear in the MECP2 gene-edited monkeys, suggesting that different brain areas likely contribute to distinct ASD symptoms. This study showed that acute manipulation of disease-causing genes via in vivo gene editing directly led to behavioral changes in adolescent primates, paving the way for the rapid generation of genetically engineered non-human primate models for neurobiological studies and therapeutic development.

2.
Genet Test Mol Biomarkers ; 23(12): 829-836, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31821092

RESUMO

Background: Pancreatic adenocarcinoma (PAAD) is an aggressive and invasive tumor with poor prognosis. Identifying prognostic biomarkers of PAAD will provide crucial information for developing treatment plans. Methods: In this analysis, a gene-expression dataset, containing RNA-sequencing data recalculated into transcripts per million, was obtained from the UCSC Xena platform. Three thousand nine hundred and seventy six differentially expressed genes were obtained with analysis of variance. Using these data a co-expression network was constructed using weighted gene co-expression network analysis, from which we obtained eight modules. Results: The blue module included 497 genes and demonstrated significant negative correlation with overall survival. Furthermore, pathway analyses demonstrated the involvement of many of these genes in the tight junction pathway, which plays a critical role in PAAD. In addition, we identified six genes in common (i.e., ANXA2 [annexin A2], EPHA2 [erythropoietin-producing hepatocellular class A2], ITGB4 [integrin beta 4], KRT19 [keratin type I cytoskeletal 19], LGALS3 [galectin-3], and S100A14 [S100 calcium binding protein A14]) between the protein-protein interaction and gene co-expression networks that may have critical functions in PAAD. These hub genes were not only highly expressed at the RNA level but also exhibited high expression in the immunohistological data in the Human Protein Atlas Database. Conclusion: Thus, this research clarified the framework of co-expressed gene modules in PAAD and highlighted potential prognostic biomarkers for the clinical diagnosis of PAAD.


Assuntos
Neoplasias Pancreáticas/genética , Junções Íntimas/genética , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Humanos , Neoplasias Pancreáticas/metabolismo , Prognóstico , RNA/genética , Junções Íntimas/metabolismo , Transcriptoma/genética , Neoplasias Pancreáticas
4.
Zool Res ; 38(2): 88-95, 2017 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-28409504

RESUMO

Viral vector transfection systems are among the simplest of biological agents with the ability to transfer genes into the central nervous system. In brain research, a series of powerful and novel gene editing technologies are based on these systems. Although many viral vectors are used in rodents, their full application has been limited in non-human primates. To identify viral vectors that can stably and effectively express exogenous genes within non-human primates, eleven commonly used recombinant adeno-associated viral and lentiviral vectors, each carrying a gene to express green or red fluorescence, were injected into the parietal cortex of four rhesus monkeys. The expression of fluorescent cells was used to quantify transfection efficiency. Histological results revealed that recombinant adeno-associated viral vectors, especially the serotype 2/9 coupled with the cytomegalovirus, human synapsin I, or Ca2+/calmodulin-dependent protein kinase II promoters, and lentiviral vector coupled with the human ubiquitin C promoter, induced higher expression of fluorescent cells, representing high transfection efficiency. This is the first comparison of transfection efficiencies of different viral vectors carrying different promoters and serotypes in non-human primates (NHPs). These results can be used as an aid to select optimal vectors to transfer exogenous genes into the central nervous system of non-human primates.


Assuntos
Adenoviridae/fisiologia , Encéfalo/virologia , Lentivirus/fisiologia , Macaca mulatta/virologia , Transfecção/veterinária , Adenoviridae/genética , Animais , Engenharia Genética , Vetores Genéticos , Humanos , Lentivirus/genética , Masculino , Transfecção/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA