Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 150: 109622, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38740227

RESUMO

The voltage-dependent anion channel 2 (VDAC2) is the abundant protein in the outer mitochondrial membrane. Opening VDAC2 pores leads to the induction of mitochondrial energy and material transport, facilitating interaction with various mitochondrial proteins implicated in essential processes such as cell apoptosis and proliferation. To investigate the VDAC2 in lower vertebrates, we identified Lr-VDAC2, a homologue of VDAC2 found in lamprey (Lethenteron reissneri), sharing a sequence identity of greater than 50 % with its counterparts. Phylogenetic analysis revealed that the position of Lr-VDAC2 aligns with the lamprey phylogeny, indicating its evolutionary relationship within the species. The Lr-VDAC2 protein was primarily located in the mitochondria of lamprey cells. The expression of the Lr-VDAC2 protein was elevated in high energy-demanding tissues, such as the gills, muscles, and myocardial tissue in normal lampreys. Lr-VDAC2 suppressed H2O2 (hydrogen peroxide)-induced 293 T cell apoptosis by reducing the expression levels of Caspase 3, Caspase 9, and Cyt C (cytochrome c). Further research into the mechanism indicated that the Lr-VDAC2 protein inhibited the pro-apoptotic activity of BAK (Bcl-2 antagonist/killer) protein by downregulating its expression at the protein translational level, thus exerting an anti-apoptotic function similar to the role of VDAC2 in humans.


Assuntos
Apoptose , Regulação para Baixo , Proteínas de Peixes , Peróxido de Hidrogênio , Lampreias , Canal de Ânion 2 Dependente de Voltagem , Proteína Killer-Antagonista Homóloga a bcl-2 , Animais , Canal de Ânion 2 Dependente de Voltagem/genética , Apoptose/efeitos dos fármacos , Lampreias/genética , Lampreias/imunologia , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Humanos , Regulação para Baixo/efeitos dos fármacos , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Células HEK293 , Regulação da Expressão Gênica/efeitos dos fármacos , Filogenia , Alinhamento de Sequência/veterinária , Sequência de Aminoácidos , Perfilação da Expressão Gênica/veterinária
2.
Small ; 19(42): e2301834, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37340579

RESUMO

Understanding the mechanism of the rate-dependent electrochemical performance degradation in cathodes is crucial to developing fast charging/discharging cathodes for Li-ion batteries. Here, taking Li-rich layered oxide Li1.2 Ni0.13 Co0.13 Mn0.54 O2 as the model cathode, the mechanisms of performance degradation at low and high rates are comparatively investigated from two aspects, the transition metal (TM) dissolution and the structure change. Quantitative analyses combining spatial-resolved synchrotron X-ray fluorescence (XRF) imaging, synchrotron X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques reveal that low-rate cycling leads to gradient TM dissolution and severe bulk structure degradation within the individual secondary particles, and especially the latter causes lots of microcracks within secondary particles, and becomes the main reason for the fast capacity and voltage decay. In contrast, high-rate cycling leads to more TM dissolution than low-rate cycling, which concentrates at the particle surface and directly induces the more severe surface structure degradation to the electrochemically inactive rock-salt phase, eventually causing a faster capacity and voltage decay than low-rate cycling. These findings highlight the protection of the surface structure for developing fast charging/discharging cathodes for Li-ion batteries.

3.
Small ; 19(39): e2300802, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37259273

RESUMO

Stable cycling of LiCoO2 (LCO) cathode at high voltage is extremely challenging due to the notable structural instability in deeply delithiated states. Here, using the sol-gel coating method, LCO materials (LMP-LCO) are obtained with bulk Mg-doping and surface LiMgPO4 /Li3 PO4 (LMP/LPO) coating. The experimental results suggest that the simultaneous modification in the bulk and at the surface is demonstrated to be highly effective in improving the high-voltage performance of LCO. LMP-LCO cathodes deliver 149.8 mAh g-1 @4.60 V and 146.1 mAh g-1 @4.65 V after 200 cycles at 1 C. For higher cut-off voltages, 4.70 and 4.80 V, LMP-LCO cathodes still achieve 144.9 mAh g-1 after 150 cycles and 136.8 mAh g-1 after 100 cycles at 1 C, respectively. Bulk Mg-dopants enhance the ionicity of CoO bond by tailoring the band centers of Co 3d and O 2p, promoting stable redox on O2- , and thus enhancing stable cycling at high cut-off voltages. Meanwhile, LMP/LPO surface coating suppresses detrimental surface side reactions while allowing facile Li-ion diffusion. The mechanism of high-voltage cycling stability is investigated by combining experimental characterizations and theoretical calculations. This study proposes a strategy of surface-to-bulk simultaneous modification to achieve superior structural stability at high voltages.

4.
Molecules ; 28(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37110564

RESUMO

Eucommia ulmoides gum (EUG) is a natural polymer predominantly consisting of trans-1,4-polyisoprene. Due to its excellent crystallization efficiency and rubber-plastic duality, EUG finds applications in various fields, including medical equipment, national defense, and civil industry. Here, we devised a portable pyrolysis-membrane inlet mass spectrometry (PY-MIMS) approach to rapidly, accurately, and quantitatively identify rubber content in Eucommia ulmoides (EU). EUG is first introduced into the pyrolyzer and pyrolyzed into tiny molecules, which are then dissolved and diffusively transported via the polydimethylsiloxane (PDMS) membrane before entering the quadrupole mass spectrometer for quantitative analysis. The results indicate that the limit of detection (LOD) for EUG is 1.36 µg/mg, and the recovery rate ranges from 95.04% to 104.96%. Compared to the result of pyrolysis-gas chromatography (PY-GC), the average relative error is 1.153%, and the detection time was reduced to less than 5 min, demonstrating that the procedure was reliable, accurate, and efficient. The method has the potential to be employed to precisely identify the rubber content of natural rubber-producing plants such as Eucommia ulmoides, Taraxacum kok-saghyz (TKS), Guayule, and Thorn lettuce.


Assuntos
Eucommiaceae , Borracha , Eucommiaceae/química , Baías , Pirólise , Cromatografia Gasosa-Espectrometria de Massas
5.
Angew Chem Int Ed Engl ; 62(10): e202218595, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36592112

RESUMO

The cathode materials work as the host framework for both Li+ diffusion and electron transport in Li-ion batteries. The Li+ diffusion property is always the research focus, while the electron transport property is less studied. Herein, we propose a unique strategy to elevate the rate performance through promoting the surface electric conductivity. Specifically, a disordered rock-salt phase was coherently constructed at the surface of LiCoO2 , promoting the surface electric conductivity by over one magnitude. It increased the effective voltage (Veff ) imposed in the bulk, thus driving more Li+ extraction/insertion and making LiCoO2 exhibit superior rate capability (154 mAh g-1 at 10 C), and excellent cycling performance (93 % after 1000 cycles at 10 C). The universality of this strategy was confirmed by another surface design and a simulation. Our findings provide a new angle for developing high-rate cathode materials by tuning the surface electron transport property.

6.
Small ; 18(6): e2103499, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34850552

RESUMO

Lithium-excess manganese layered oxide Li2 MnO3 , attracts much attention as a cathode in Li-ion batteries, due to the low cost and the ultrahigh theoretical capacity (≈460 mA h g-1 ). However, it delivers a low reversible practical capacity (<200 mA h g-1 ) due to the irreversible oxygen redox at high potentials (>4.5 V). Herein, heavy fluorination (9.5%) is successfully implemented in the layered anionic framework of a Li-Mn-O-F (LMOF) cathode through a unique ion-exchange route. F substitution with O stabilizes the layered anionic framework, completely inhibits the O2 evolution during the first cycle, and greatly enhances the reversibility of oxygen redox, delivering an ultrahigh reversible capacity of 389 mA h g-1 , which is 85% of the theoretical capacity of Li2 MnO3 . Moreover, it also induces a thin spinel shell coherently forming on the particle surface, which greatly improves the surface structure stability, making LMOF exhibit a superior cycling stability (a capacity retention of 91.8% after 120 cycles at 50 mA g-1 ) and excellent rate capability. These findings stress the importance of stabilizing the anionic framework in developing high-performance low-cost cathodes for next-generation Li-ion batteries.

7.
Chem Soc Rev ; 50(19): 10743-10763, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34605826

RESUMO

Understanding the bulk and interfacial behaviors during the operation of batteries (e.g., Li-ion, Na-ion, Li-O2 batteries, etc.) is of great significance for the continuing improvement of the performance. Electrochemical quartz crystal microbalance (EQCM) is a powerful tool to this end, as it enables in situ investigation into various phenomena, including ion insertion/deinsertion within electrodes, solid nucleation from the electrolyte, interphasial formation/evolution and solid-liquid coordination. As such, EQCM analysis helps to decipher the underlying mechanisms both in the bulk and at the interface. This tutorial review will present the recent progress in mechanistic studies of batteries achieved by the EQCM technology. The fundamentals and unique capability of EQCM are first discussed and compared with other techniques, and then the combination of EQCM with other in situ techniques is also covered. In addition, the recent studies utilizing EQCM technologies in revealing phenomena and mechanisms of various batteries are reviewed. Perspectives regarding the future application of EQCM in battery studies are given at the end.

8.
Nat Mater ; 19(10): 1088-1095, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32424371

RESUMO

In the synthesis of inorganic materials, reactions often yield non-equilibrium kinetic byproducts instead of the thermodynamic equilibrium phase. Understanding the competition between thermodynamics and kinetics is a fundamental step towards the rational synthesis of target materials. Here, we use in situ synchrotron X-ray diffraction to investigate the multistage crystallization pathways of the important two-layer (P2) sodium oxides Na0.67MO2 (M = Co, Mn). We observe a series of fast non-equilibrium phase transformations through metastable three-layer O3, O3' and P3 phases before formation of the equilibrium two-layer P2 polymorph. We present a theoretical framework to rationalize the observed phase progression, demonstrating that even though P2 is the equilibrium phase, compositionally unconstrained reactions between powder precursors favour the formation of non-equilibrium three-layered intermediates. These insights can guide the choice of precursors and parameters employed in the solid-state synthesis of ceramic materials, and constitutes a step forward in unravelling the complex interplay between thermodynamics and kinetics during materials synthesis.

9.
Inorg Chem ; 60(10): 7070-7081, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33884866

RESUMO

Four new triazole-decorated silver(I)-based cationic metal-organic frameworks (MOFs), {[Ag(L1)](BF4)}n (1), {[Ag(L1)](NO3)}n (2), {[Ag(L2)](BF4)}n (3), and {[Ag(L2)](NO3)}n (4), have been synthesized using two newly designed ligands, 3-fluoro-5-(4H-1,2,4-triazol-4-yl)pyridine (L1) and 3-(4H-1,2,4-triazol-4-yl)-5-(trifluoromethyl)pyridine (L2). When the fluorine atom was changed to a trifluoromethyl group at the same position, tremendous enhancement in the MOF dimensionality was achieved [two-dimensional to three-dimensional (3D)]. However, changing the metal salt (used for the synthesis) had no effect. The higher electron-withdrawing tendency of the trifluoromethyl group in L2 aided in the formation of higher-dimensional MOFs with different properties compared with those of the fluoro derivatives. The fluoride group was introduced in the ligand to make highly electron-deficient pores inside the MOFs that can accelerate the anion-exchange process. The concept was proved by density functional theory calculation of the MOFs. Both 3D cationic MOFs were used for dye adsorption, and a remarkable amount of dye was adsorbed in the MOFs. In addition, owing to their cationic nature, the MOFs selectively removed anionic dyes from a mixture of anionic, cationic, and neutral dyes in the aqueous phase. Interestingly, the present MOFs were also highly effective for the removal of oxoanions (MnO4- and Cr2O72-) from water.

10.
Inorg Chem ; 60(15): 11048-11057, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34279097

RESUMO

Self-assembly of [Hg(SeCN)4]2- tetrahedral building blocks, iron(II) ions, and a series of bis-monodentate pyridyl-type bridging ligands has afforded the new heterobimetallic HgII-FeII coordination polymers {Fe[Hg(SeCN)3]2(4,4'-bipy)2}n (1), {Fe[Hg(SeCN)4](tvp)}n (2), {Fe[Hg(SeCN)3]2(4,4'-azpy)2}n (3), {Fe[Hg(SeCN)4](4,4'-azpy)(MeOH)}n (4), {Fe[Hg(SeCN)4](3,3'-bipy)}n (5) and {Fe[Hg(SeCN)4](3,3'-azpy)}n (6) (4,4-bipy = 4,4'-bipyridine, tvp = trans-1,2-bis(4-pyridyl)ethylene, 4,4'-azpy = 4,4'-azobispyridine, 3,3-bipy = 3,3'-bipyridine, 3,3'-azpy = 3,3'-azobispyridine). Single-crystal X-ray analyses show that compounds 1 and 3 display a two-dimensional robust sheet structure made up of infinite linear [(FeL)n]2n+ (L = 4,4'-bipy or 4,4'-azpy) chains linked by in situ formed {[Hg(L)(SeCN)3]2}2- anionic dimeric bridges. Complexes 2 and 4-6 define three-dimensional networks with different topological structures, indicating, in combination with complexes 1 and 3, that the polarity, length, rigidity, and conformation of the bridging organic ligand play important roles in the structural nature of the products reported here. The magnetic properties of complexes 1 and 2 show the occurrence of temperature- and light-induced spin crossover (SCO) properties, while complexes 4-6 are in the high-spin state at all temperatures. The current results provide a new route for the design and synthesis of new SCO functional materials with non-Hofmann-type traditional structures.

11.
Phys Chem Chem Phys ; 23(7): 4255-4261, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33586751

RESUMO

From first-principles calculations, the magnetism and electronic structures of bilayer bismuth (stannum) films at the monolayer CrI3 (CrBr3) interface are studied. The Curie temperature (TC) of CrX3 (X = Br, I) can be enhanced by coupling bilayer bismuth (Bi) with van der Waals (vdW) heterostructures. The n-doping of CrX3, induced by interlayer charge-transfer from the Bi film, leads to the enhancement of TC. The quantum spin Hall phases of bilayer bismuth and stannum films are destroyed by the magnetic substrate. Although the interface system of the bilayer stannum (Sn) film on a CrBr3 monolayer shows a band gap (57 meV), the inexistence of edge states with valence and conduction bands connected across the insulating gap is a manifestation of the trivial state without the feature of quantized anomalous Hall effect in the interface. The percentage reduction of the corresponding work function is 22.6%, 12.7%, 25.4% and 16.5% for Bi/CrI3, Sn/CrI3, Bi/CrBr3 and Sn/CrBr3 interface systems, respectively. Our findings demonstrate that the Bi(Sn)-CrI3(CrBr3) interface system with vdW engineering is an efficient way to tune magnetism and electronic structures, which is of importance for future applications in spintronics and nanoelectronics devices.

12.
J Am Chem Soc ; 140(39): 12484-12492, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30165740

RESUMO

Metal (M) oxides are one of the most interesting and widely used solids, and many of their properties can be directly correlated to the local structural ordering within basic building units (BBUs). One particular example is the high-Ni transition metal layered oxides, potential cathode materials for Li-ion batteries whose electrochemical activity is largely determined by the cationic ordering in octahedra (e.g., the BBUs in such systems). Yet to be firmly established is how the BBUs are inherited from precursors and subsequently evolve into the desired ordering during synthesis. Herein, a multimodal in situ X-ray characterization approach is employed to investigate the synthesis process in preparing LiNi0.77Mn0.13Co0.10O2 from its hydroxide counterpart, at scales varying from the long-range to local individual octahedral units. Real-time observation corroborated by first-principles calculations reveals a topotactic transformation throughout the entire process, during which the layered framework is retained; however, due to preferential oxidation of Co and Mn over Ni, significant changes happen locally within NiO6 octahedra. Specifically, oxygen loss and the associated symmetry breaking occur in NiO6; as a consequence, Ni2+ ions become highly mobile and tend to mix with Li, causing high cationic disordering upon formation of the layered oxides. Only through high-temperature heat treatment, Ni is further oxidized, thereby inducing symmetry reconstruction and, concomitantly, cationic ordering within NiO6 octahedra. Findings from this study shed light on designing high-Ni layered oxide cathodes and, more broadly, various functional materials through synthetic control of the constituent BBUs.

13.
Cell Physiol Biochem ; 47(5): 2046-2055, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29969781

RESUMO

BACKGROUND/AIMS: Hepatocellular carcinoma (HCC) is one of the most common human malignant diseases in the world, and the mechanisms underlying HCC carcinogenesis and progression need further investigation. MicroRNAs play important roles in the development of cancer, and miR-500a is suggested to be deregulated in some types of cancer. However, the underlying molecular mechanisms of miR-500a in HCC remain unknown. METHODS: The expression of miR-500a in HCC was analyzed in The Cancer Genome Atlas (TCGA) database and examined in 33 pairs of HCC tissues and matched nontumor tissues. The correlation between miR-500a expression and prognosis of HCC patients was analyzed from the survival data in TCGA. The mechanism of miR-500a upregulation in HCC was detected using chromatin immunoprecipitation-quantitative real-time PCR. The roles of miR-500a in HCC development were examined using a cell counting kit-8 assay in vitro and growth of transplanted tumors in nude mice in vivo. Apoptosis of HCC was detected using Annexin V/propidium iodide staining. The expression of BH3-interacting death agonist (BID) protein was examined using western blot analysis. RESULTS: miR-500a expression was upregulated in HCC tissues, and high miR-500a expression was significantly correlated with the poor prognosis of HCC patients. Histone modifications in the promoter region of miR-500a may be responsible for its increased expression. Inhibition of miR-500a in HCC cell lines significantly promoted apoptosis, as well as inhibiting the proliferation of HCC cells and growth of transplanted tumors in nude mice. miR-500a directly targeted the 3' untranslated region of BID mRNA, and inhibition of miR-500a-promoted apoptosis was almost completely abolished by the administration of ABT-199 via the BID-mitochondria pathway. CONCLUSION: Our results suggest that histone modifications in the promoter region of miR-500a may be responsible for the increased expression of miR-500a in HCC, which promotes cancer progression by targeting BID, indicating that miR-500a may be a potential prognostic predictor and therapeutic target for HCC patients.


Assuntos
Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Carcinoma Hepatocelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/metabolismo , MicroRNAs/metabolismo , Proteínas de Neoplasias/metabolismo , RNA Neoplásico/metabolismo , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Células HEK293 , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , MicroRNAs/genética , Proteínas de Neoplasias/genética , RNA Neoplásico/genética
14.
Chemistry ; 23(46): 10978-10982, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28685879

RESUMO

To develop new mid-infrared (MIR) nonlinear optical (NLO) materials, which can overcome the low laser damage threshold (LDT) of the commercial MIR-NLO crystals (AgGaS2 , AgGaSe2 and ZnGeP2 ) and simultaneously keep the large NLO susceptibility, is necessary for high-power MIR laser frequency conversion technology. To improve the LDT, a new strategy of increasing lattice stability was adopted. Here, the strongly covalent structural unit of the PS4 tetrahedron was introduced into AgGaS2 (AGS), and that led to the isolation of the first compound in AgI -GaIII -PV -S system, namely, AgGa2 PS6 (Cc). It retains a large SHG efficiency (1.0×AGS) with phase-matchable ability, and also exhibits an improved LDT (5.1×AGS), indicating AgGa2 PS6 is a new promising MIR-NLO crystal. Moreover, a novel 3D framework of [Ga2 PS6 ]- , with triangular-shaped channels, as well as interesting single triangular geometry of AgS3 -both of which are very rare in reported sulfides-was discovered in AgGa2 PS6 . Furthermore, theoretical calculations, and lattice energy and thermal expansions analyses suggest that the PS4 group makes a large contribution to the large SHG efficiency and high LDT.

15.
Neurochem Res ; 42(11): 3233-3244, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28758176

RESUMO

Preliminary studies conducted in our laboratory have confirmed that Bacopaside I (BS-I), a saponin compound isolated from Bacopa monnieri, displayed antidepressant-like activity in the mouse behavioral despair model. The present investigation aimed to verify the antidepressant-like action of BS-I using a mouse model of behavioral deficits induced by chronic unpredictable mild stress (CUMS) and further probe its underlying mechanism of action. Mice were exposed to CUMS for a period of 5 consecutive weeks to induce depression-like behavior. Then, oral gavage administrations with vehicle (model group), fluoxetine (12 mg/kg, positive group) or BS-I (5, 15, 45 mg/kg, treated group) once daily were started during the last two weeks of CUMS procedure. The results showed that BS-I significantly ameliorated CUMS-induced depression-like behaviors in mice, as characterized by an elevated sucrose consumption in the sucrose preference test and reduced immobility time without affecting spontaneous locomotor activity in the forced swimming test, tail suspension test and open field test. It was also found that BS-I treatment reversed the increased level of plasma corticosterone and decreased mRNA and protein expressions of glucocorticoid receptor induced by CUMS exposure, indicating that hypothalamic-pituitary-adrenal (HPA) axis hyperactivity of CUMS-exposed mice was restored by BS-I treatment. Furthermore, chronic administration of BS-I elevated expression levels of brain-derived neurotrophic factor (BDNF) (mRNA and protein) and activated the phosphorylation of extracellular signal-regulated kinase and cAMP response element-binding protein in the hippocampus and prefrontal cortex in mice subjected to CUMS procedure. Taken together, these results indicated that BS-I exhibited an obvious antidepressant-like effect in mouse model of CUMS-induced depression that was mediated, at least in part, by modulating HPA hyperactivity and activating BDNF signaling pathway.


Assuntos
Antidepressivos/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Depressão/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Saponinas/uso terapêutico , Estresse Psicológico/metabolismo , Triterpenos/uso terapêutico , Animais , Antidepressivos/farmacologia , Doença Crônica , Depressão/tratamento farmacológico , Depressão/psicologia , Relação Dose-Resposta a Droga , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Saponinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/psicologia , Resultado do Tratamento , Triterpenos/farmacologia
16.
Inorg Chem ; 56(2): 962-973, 2017 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-28055200

RESUMO

Quaternary metal thiophosphates containing second-order Jahn-Teller distorted d10 Ag+ and lone-pair cations, Ag3Bi(PS4)2 (1), Ag7Sn(PS4)3 (2), and Ag7Pb(PS4)3 (3), were obtained by solid-state synthesis. The structural frameworks of 2 and 3 feature an infinite 1-D interchiral double helix ∞1(Ag3P2S11), which is rare in inorganic compounds. Compound 3 undergoes a significant first-order structural phase transition from monoclinic to hexagonal at ∼204 °C. This can be ascribed to the significant mismatch in the expansion coefficients between Pb-S (Ag-S) and P-S bonds evaluated by bond valence theory. The three compounds are Ag+ ionic conductors, and Ag+ ion migration pathways are proposed by calculating maps of low bond valence mismatch. Moreover, the optical properties of the three compounds were studied, and electronic structure calculations were performed. The combination of second-order Jahn-Teller distorted d10 cation and lone-pair cation provides a new strategy to explore new metal thiophosphates with interesting structures and promising properties.

17.
Nano Lett ; 16(2): 1218-23, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26736028

RESUMO

Thin film solar cells, due to the low cost, high efficiency, long-term stability, and consumer applications, have been widely applied for harvesting green energy. All of these thin film solar cells generally adopt various metal thin films as the back electrode, like Mo, Au, Ni, Ag, Al, graphite, and so forth. When they contact with p-type layer, it always produces a Schottky contact with a high contact potential barrier, which greatly affects the cell performance. In this work, we report for the first time to find an appropriate p-type conductive semiconductor film, digenite Cu9S5 nanocrystalline film, as the back electrode for CdTe solar cells as the model device. Its low sheet resistance (16.6 Ω/sq) could compare to that of the commercial TCO films (6-30 Ω/sq), like FTO, ITO, and AZO. Different from the traditonal metal back electrode, it produces a successive gradient-doping region by the controllable Cu diffusion, which greatly reduces the contact potential barrier. Remarkably, it achieved a comparable power conversion efficiency (PCE, 11.3%) with the traditional metal back electrode (Cu/Au thin films, 11.4%) in CdTe cells and a higher PCE (13.8%) with the help of the Au assistant film. We believe it could also act as the back electrode for other thin film solar cells (α-Si, CuInS2, CIGSe, CZTS, etc.), for their performance improvement.

18.
Chemistry ; 22(3): 1141-5, 2016 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-26663482

RESUMO

Metal-organic framework (MOF)-based energetic material [Cu3 (MA)2 (N3 )3 ] (1; MA=melamine) was synthesized and structurally characterized (47.55 % N). The structural analysis revealed the existence of unusual multiwalled tubular channels and interweaving of single and double helical units in 1. The standard molar enthalpy of formation was found to be 1788.73 kJ mol(-1) , which is the highest value among previously reported MOF-based energetic materials. The calculated detonation properties showed that 1 can be used as a potential explosive. Sensitivity tests revealed that 1 is insensitive and thus can function as a high-energy-density material with a favorable level of safety.

19.
Inorg Chem ; 55(4): 1480-5, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26844362

RESUMO

The first two new Na-containing sulfides Na2In2MS6 (M = Si (1), Ge (2)) in the Na2Q-B2Q3-CQ2 (B = Ga, In; C = Si, Ge, Sn; Q = S, Se) system were prepared for the first time through conventional high-temperature solid-state reaction. They are isostructural with space group Cc (No. 9) in monoclinic phases and feature three-dimensional frameworks built by the (∞)¹[In2MS6]²â» (M = Si, Ge) chains through corner-sharing InS4 tetrahedra and MS4 (M = Si, Ge) tetrahedra, with Na⁺ cation located in the cavities. They display moderate second harmonic generation (SHG) conversion efficiencies compared with commercial AgGaS2, with phase-matching behavior at 1800 nm and laser-induced damage thresholds 6.9 and 4.0 times higher than that of AgGaS2, respectively. Therefore, the output SHG intensities of 1 and 2 will be ∼4.3 and 4.0 times larger than that of AgGaS2, when the intensity of incident laser increased to close the damage energy of 1 and 2, indicating their potential for high-power nonlinear optical application.

20.
Exp Cell Res ; 330(1): 43-55, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25152439

RESUMO

The exact mechanisms underlying inhibitory effects of pioglitazone (Pio) on Angiotensin II (AngII)-induced atrial fibrosis are complex and remain largely unknown. In the present study, we examined the effect of Pio on AngII-induced mice atrial fibrosis in vivo and atrial fibroblasts proliferation in vitro. In vivo study showed that AngII infusion induced atrial fibrosis and increased expressions of Toll/IL-1 receptor domain-containing adaptor inducing IFN-ß (TRIF) and tumor necrosis factor receptor associated factor 6 (TRAF6) in mice models. However, those effects could be attenuated by Pio (P<0.01). As for in vitro experiment, Pio suppressed AngII-induced atrial fibroblasts proliferation via nuclear factor-κB/transforming growth factor-ß1/TRIF/TRAF6 signaling pathway in primary cultured mice atrial fibroblasts (P<0.01). In conclusion, suppression of Pio on AngII-induced atrial fibrosis might be related to its inhibitory effects on above signaling pathway.


Assuntos
Angiotensina II/farmacologia , Proliferação de Células , Miofibroblastos/metabolismo , Transdução de Sinais , Tiazolidinedionas/farmacologia , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Fibrose/metabolismo , Átrios do Coração/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/fisiologia , NF-kappa B/metabolismo , Pioglitazona , Fator 6 Associado a Receptor de TNF/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA