RESUMO
We demonstrate fluorescence-detected two-dimensional electronic spectroscopy (F-2DES) with a broadband, continuum probe pulse pair in the pump-probe geometry. The approach combines a pump pulse pair generated by an acousto-optic pulse-shaper with precise control of the relative pump pulse phase and time delay with a broadband, continuum probe pulse pair created using the Translating Wedge-based Identical pulses eNcoding System (TWINS). The continuum probe expands the spectral range of the detection axis and lengthens the waiting times that can be accessed in comparison to implementations of F-2DES using a single pulse-shaper. We employ phase-cycling of the pump pulse pair and take advantage of the separation of signals in the frequency domain to isolate rephasing and non-rephasing signals and optimize the signal-to-noise ratio. As proof of principle, we demonstrate broadband F-2DES on a laser dye and bacteriochlorophyll a.
RESUMO
An all-inorganic lead-free halides Cs-Cu-I system, represented by Cs3Cu2I5 and CsCu2I3, has attracted attention for their good photophysical characteristics recently. Successive works had reported their application potential in light-emitting devices. However, there is no report for CsCu2I3 in X-ray scintillation detectors so far. We notice that CsCu2I3 may be advantageous in such an application due to the one-dimensional crystal structure, the congruent-melting feature, and the high spectral matching to some photosensors. In this work, we explore the scintillation properties and imaging application of CsCu2I3 in X-ray scintillator detector. The oriented structure is designed to enhance the imaging performance of a CsCu2I3 detector. Close-space sublimation process and nanoscale seed screening strategy are employed to realize this design by producing a large-area (25 cm2) CsCu2I3 thick film layer with the oriented nanorod structure. This CsCu2I3 detector eventually achieves a high spatial resolution of 7.5 lp mm-1 in X-ray imaging.
RESUMO
Spectrally discriminating CH3OH and CD3OD, and even detecting CH3OH contents in the CD3OD solvent, are important yet have not been achieved so far, likely owing to their very similar chemical/physical properties. Herein, dynamic transesterification reactions, which can be achieved via two-step proton transfers, can be signaled via ultraviolet UV-visible (UV/vis) absorption and fluorescence spectroscopies under mild experimental conditions. Introduction of strong electron-withdrawing groups, such as -NO2, to the aromatic ring (benzoic acid moiety or phenol moiety) of carboxylate esters to activate the esters is important for transesterification reactions and is an intriguing method for modulating the selectivity of the spectral response. The rate constant of the transesterification reaction enhanced with increasing the total number of strong electron-withdrawing groups. Furthermore, the rate constants of esters in which substituent(s) are connected to the phenol moiety are higher than those of corresponding esters in which substituent(s) are connected to the benzoic acid moiety. In transesterification systems, added aliphatic amines mainly play two roles: (i) lowering the energy barrier of the first transesterification step via the formation of intermolecular hydrogen bonding in ternary systems and (ii) deprotonating the released 4-nitrophenol in UV/vis absorption spectral systems to generate an UV/vis absorption spectral signal reporter, i.e., nitrophenolate anions. As a result of the methanol-mediated transesterification reaction, spectral-sensing systems can be established for discriminating CH3OH and CD3OD and even detecting low CH3OH contents in the CD3OD solvent, owing to the kinetic isotope effect. This is the first example of spectral recognition between CD3OD and CH3OH.
RESUMO
Solution-processable semiconductors with antiferromagnetic (AFM) order are attractive for future spintronics and information storage technology. Halide perovskites containing magnetic ions have emerged as multifunctional materials, demonstrating a cross-link between structural, optical, electrical, and magnetic properties. However, stable optoelectronic halide perovskites that are antiferromagnetic remain sparse, and the critical design rules to optimize magnetic coupling still must be developed. Here, we combine the complementary magnetometry and electron-spin-resonance experiments, together with first-principles calculations to study the antiferromagnetic coupling in stable Cs2(Ag:Na)FeCl6 bulk semiconductor alloys grown by the hydrothermal method. We show the importance of nonmagnetic monovalence ions at the BI site (Na/Ag) in facilitating the superexchange interaction via orbital hybridization, offering the tunability of the Curie-Weiss parameters between -27 and -210 K, with a potential to promote magnetic frustration via alloying the nonmagnetic BI site (Ag:Na ratio). Combining our experimental evidence with first-principles calculations, we draw a cohesive picture of the material design for B-site-ordered antiferromagnetic halide double perovskites.
RESUMO
Coronavirus disease 2019 (COVID-19) was first reported three years ago, when a group of individuals were infected with the original SARS-CoV-2 strain, based on which vaccines were developed. Here, we develop six human monoclonal antibodies (mAbs) from two elite convalescents in Wuhan and show that these mAbs recognize diverse epitopes on the receptor binding domain (RBD) and can inhibit the infection of SARS-CoV-2 original strain and variants of concern (VOCs) to varying degrees, including Omicron strains XBB and XBB.1.5. Of these mAbs, the two most broadly and potently neutralizing mAbs (7B3 and 14B1) exhibit prophylactic activity against SARS-CoV-2 WT infection and therapeutic effects against SARS-CoV-2 Delta variant challenge in K18-hACE2 KI mice. Furthermore, post-exposure treatment with 7B3 protects mice from lethal Omicron variants infection. Cryo-EM analysis of the spike trimer complexed with 14B1 or 7B3 reveals that these two mAbs bind partially overlapped epitopes onto the RBD of the spike, and sterically disrupt the binding of human angiotensin-converting enzyme 2 (hACE2) to RBD. Our results suggest that mAbs with broadly neutralizing activity against different SARS-CoV-2 variants are present in COVID-19 convalescents infected by the ancestral SARS-CoV-2 strain, indicating that people can benefit from former infections or vaccines despite the extensive immune escape of SARS-CoV-2.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Animais , Camundongos , Anticorpos Amplamente Neutralizantes , Anticorpos Monoclonais , Epitopos/genéticaRESUMO
Thin-film solar cells show considerable application potential as alternative photovoltaic technologies. Cuprous antimony chalcogen materials and their derivatives, represented as CuSbS2 and CuPbSbS3, respectively, exhibit the advantages of low cost, massive elemental abundance, stability, and good photoelectric properties, including a suitable bandgap and large optical absorption coefficient. These advantages demonstrate that they can be used as light absorbers in photovoltaic applications. In this study, we review the major properties, fabrication methods, and recent progress of the performance of the devices containing CuSbS2 and CuPbSbS3. Furthermore, the limitations and future development prospects with respect to the CuSbS2 and CuPbSbS3 solar cells are discussed.
RESUMO
CuPbSbS3 (bournonite) has emerged as a promising light-absorbing material for thin-film solar cells due to its attractive photophysical properties. The crystallinity of CuPbSbS3 films is a main challenge of achieving high power conversion efficiency. Herein, we perform a series of optimization strategies to enhance the crystallinity of CuPbSbS3 films, including adjusting the annealing temperature and reducing the carbon residue. The optimized CuPbSbS3 film acquires an enhanced crystallinity, and an optimal solar cell device based on it achieves a power conversion efficiency of 2.65% with good stability. This efficiency is the highest value for CuPbSbS3 solar cells up to now.
RESUMO
An X-ray detector with high sensitivity would be able to increase the generated signal and reduce the dose rate; thus, this type of detector is beneficial for applications such as medical imaging and product inspection. The inorganic lead halide perovskite CsPbBr3 possesses relatively larger density and a higher atomic number in contrast to its hybrid counterpart. Therefore, it is expected to provide high detection sensitivity for X-rays; however, it has rarely been studied as a direct X-ray detector. Here, a hot-pressing method is employed to fabricate thick quasi-monocrystalline CsPbBr3 films, and a record sensitivity of 55 684 µC Gyair -1 cm-2 is achieved, surpassing all other X-ray detectors (direct and indirect). The hot-pressing method is simple and produces thick quasi-monocrystalline CsPbBr3 films with uniform orientations. The high crystalline quality of the CsPbBr3 films and the formation of self-formed shallow bromide vacancy defects during the high-temperature process result in a large µτ product and, therefore, a high photoconductivity gain factor and high detection sensitivity. The detectors also exhibit relatively fast response speed, negligible baseline drift, and good stability, making a CsPbBr3 X-ray detector extremely competitive for high-contrast X-ray detections.
RESUMO
Perovskite light-emitting diodes (PeLEDs) have drawn great research attention because of their outstanding electroluminescence performance by solution processing. PeLEDs made by thermal evaporation are relatively rarely explored but are compatible to existing organic light-emitting diode industrial lines. Blue-emitting PeLEDs are all based on organic-containing perovskites, rather than more stable all-inorganic perovskites because of their poor solubility, too fast crystallization, uneven discrete films, and unattainable pure blue emission. Here, we report all-inorganic, vacuum-processed blue PeLEDs. High-throughput combinatorial approaches are employed to optimize Cs-Pb-Br-Cl composition in our dual-source co-evaporation system to achieve the balance between film photoluminescence and injection efficiency. The as-deposited perovskite films demonstrated excellent intrinsic stability against heat, UV-light, and humidity attack. A series of PeLEDs were obtained covering the standard blue spectral region with a best luminance of 121 cd/m2 and an external quantum efficiency of 0.38%. We believe that the vacuum processing strategy demonstrated here provides a very promising alternative way to produce efficient and stable all-inorganic blue-emitting PeLEDs.
RESUMO
BACKGROUND: I-125 seed implantation has been widely applied in the local treatment of advanced malignant tumor. It has the advantages of providing a high dose of treatment to the target sites and low dose to normal tissues. It has been mostly applied as palliative treatment for recurrences in advanced malignant tumor (except for prostate cancer), suppressing tumor development and improving the quality of life of patients. OBJECTIVE: The objective of this study was to investigate changes in quality of life for patients with advanced malignant tumor after receiving I-125 seed implantation using a three-dimensional (3D)-printed individualized template and computed tomography (CT) guidance. MATERIALS AND METHODS: In this prospective study, convenience sampling was applied for patients with advanced tumors attending a tertiary hospital. The European Organization for Research on Treatment of Cancer Quality of Life Questionnaire-C30 was involved to assess quality of life. Patients completed the questionnaire before and 24 h after seed implantation. The questionnaire of 1 and 3 months after seed implantation was completed by telephonic follow-up. RESULTS: A total of 42 patients were included (24 males and 18 females), with an average age of 58.86 ± 14.13 years (ranged 25-91 years). The average scale score after seed implantation was higher than that of before implantation. The order was the average scale score 1 month after seed implantation >3 months after seed implantation >24 h after seed implantation. CONCLUSION: The results suggested that the quality of life could be improved with I-125 seed implantation using a 3D-printed individualized template under CT guidance in patients with the advanced malignant tumor.