Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
PLoS Genet ; 16(9): e1009017, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32925911

RESUMO

Interpreting rare variants remains a challenge in personal genomics, especially for disorders with several causal genes and for genes that cause multiple disorders. ZNF423 encodes a transcriptional regulatory protein that intersects several developmental pathways. ZNF423 has been implicated in rare neurodevelopmental disorders, consistent with midline brain defects in Zfp423-mutant mice, but pathogenic potential of most patient variants remains uncertain. We engineered ~50 patient-derived and small deletion variants into the highly-conserved mouse ortholog and examined neuroanatomical measures for 791 littermate pairs. Three substitutions previously asserted pathogenic appeared benign, while a fourth was effectively null. Heterozygous premature termination codon (PTC) variants showed mild haploabnormality, consistent with loss-of-function intolerance inferred from human population data. In-frame deletions of specific zinc fingers showed mild to moderate abnormalities, as did low-expression variants. These results affirm the need for functional validation of rare variants in biological context and demonstrate cost-effective modeling of neuroanatomical abnormalities in mice.


Assuntos
Defeitos do Tubo Neural/genética , Proteínas/genética , Alelos , Animais , Encéfalo/patologia , Encefalopatias/genética , Modelos Animais de Doenças , Feminino , Frequência do Gene/genética , Genômica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Malformações do Sistema Nervoso/genética , Transtornos do Neurodesenvolvimento/genética , Proteínas/metabolismo , Fatores de Transcrição/genética , Dedos de Zinco
2.
J Vis Exp ; (144)2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30829322

RESUMO

Mitochondria and oxidative metabolism are critical for maintaining cardiac muscle function. Research has shown that mitochondrial dysfunction is an important contributing factor to impaired cardiac function found in heart failure. By contrast, restoring defective mitochondrial function may have beneficial effects to improve cardiac function in the failing heart. Therefore, studying the regulatory mechanisms and identifying novel regulators for mitochondrial function could provide insight which could be used to develop new therapeutic targets for treating heart disease. Here, cardiac myocyte mitochondrial respiration is analyzed using a unique cell culture system. First, a protocol has been optimized to rapidly isolate and culture high viability neonatal mouse cardiomyocytes. Then, a 96-well format extracellular flux analyzer is used to assess the oxygen consumption rate of these cardiomyocytes. For this protocol, we optimized seeding conditions and demonstrated that neonatal mouse cardiomyocytes oxygen consumption rate can be easily assessed in an extracellular flux analyzer. Finally, we note that our protocol can be applied to a larger culture size and other studies, such as intracellular signaling and contractile function analysis.


Assuntos
Miócitos Cardíacos/metabolismo , Consumo de Oxigênio/fisiologia , Oxigênio/química , Animais , Células Cultivadas , Camundongos , Miócitos Cardíacos/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA