Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 34(21)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36801855

RESUMO

Tin-lead perovskite-based photodetectors have a wide light-absorption wavelength range, which spans 1000 nm. However, the preparation of the mixed tin-lead perovskite films faces two great obstacles, namely easy oxidation of Sn2+to Sn4+and fast crystallization from tin-lead perovskite precursor solutions, thus further resulting in poor morphology and high density of defects in tin-lead perovskite films. In this study, we demonstrated a high-performance of near-infrared photodetectors prepared from a stable low-bandgap (MAPbI3)0.5(FASnI3)0.5film modified with 2-fluorophenethylammonium iodide (2-F-PEAI). The addition engineering can efficiently improve the crystallization of (MAPbI3)0.5(FASnI3)0.5films through the coordination binding between Pb2+and N atom in 2-F-PEAI, and resulting in a uniform and dense (MAPbI3)0.5(FASnI3)0.5film. Moreover, 2-F-PEAI suppressed Sn2+oxidation and effectively passivated defects in the (MAPbI3)0.5(FASnI3)0.5film, thereby significantly reducing the dark current in the PDs. Consequently, the near-infrared photodetectors showed a high responsivity with a specific detectivity of over 1012Jones at 800 to near-1000 nm. Additionally, the stability of PDs incorporated with 2-F-PEAI has been significantly improved under air conditions, and the device with the 2-F-PEAI ratio of 400:1 retained 80% of its initial efficiency after 450 h storage in air without encapsulation. Finally, 5 × 5 cm2photodetector arrays were fabricated to demonstrate the potential utility of the Sn-Pb perovskite photodetector in optical imaging and optoelectronic applications.

2.
J Colloid Interface Sci ; 652(Pt A): 612-618, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37482488

RESUMO

Nonradiation recombination of interfacial carriers is a key factor hindering the improvement of efficiency and stability of perovskite solar cells (PSCs). Here, we report an effective electron transport layer/perovskite interface regulation strategy. By introducing the multifunctional molecule guanidine hydrochloride (GCl) on the surface of SnO2, we can enhance the electron extraction between SnO2 and perovskite and promote the growth of high-quality perovskite films. GCl is anchored on the surface of SnO2 and interacts with undercoordinated ions in perovskite. The experimental results show that GCl has interaction with both SnO2 and perovskite layer, and a "bridge" connection is formed between the two layers. This strategy not only passivates the SnO2/perovskite interface defects, improves the perovskite crystallization quality, but also helps to reduce the interface charge accumulation. More importantly, the PCE of GCl passivated device reached 21.63 %, which was much better than that of control device (19.56 %). In the air environment, after 30 days at room temperature, the GCl modified unpackaged device maintained 83 % of its initial efficiency. Therefore, interface modification with GCl is an effective strategy to improve the interface state, improve the crystallization quality and obtain high-performance PSCs.

3.
Chem Commun (Camb) ; 59(20): 2911-2914, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36799177

RESUMO

Here, we present a new two-electrode photo-rechargeable FTO/TiO2/Cs3Bi2I9/Pt/FTO system. The key material is the photoactive lead-free perovskite Cs3Bi2I9, which performs photoelectric conversion and provides energy storage. This study is the first example of a battery system in which charging and discharging are based on bismuth redox chemistry. In the photo-charged state, the fabricated battery has an open-circuit voltage of ∼0.28 V in the dark. With a series-connected pack of these batteries, an LED was lit for tens of seconds in the dark.

4.
Front Chem ; 10: 887983, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711964

RESUMO

Near-infrared light-emitting diodes (NIR-LEDs) are widely used in various applications such as night-vision devices, optical communication, biological imaging and optical diagnosis. The current solution-processed high-efficiency perovskite NIR-LEDs are typically based on CsPbI3 and FAPbI3 with emission peaks being limited in the range of 700-800 nm. NIR-LEDs with longer emission wavelengths near to 900 nm can be prepared by replacing Pb with Sn. However, Sn-based perovskite LEDs usually exhibit a low efficiency owing to the high concentration of Sn-related defects and the rapid oxidation of Sn2+ to Sn4+, which further induces the device degradation. These problems can be solved by rationally adjusting the ratio between Pb content with Sn. Mixed Sn-Pb halide perovskites with a smaller bandgap and superior stability than pure Sn-based perovskites are promising candidates for manufacturing next-generation NIR emitters. In this study, we systematically investigated the optical properties of a family of hybrid Sn and Pb iodide compounds. The emission spectra of the mixed Sn-Pb halide perovskites were tuned by changing the Sn:Pb ratio. Consequently, the peak emission wavelength red-shifted from 710 nm to longer than 950 nm. The absorption and photoluminescence emission properties associated with different compositions were compared, and the results demonstrated the potential of MA- and FA-based mixed Sn-Pb halide perovskites for preparing low-cost and efficient NIR-LEDs. In addition, we clarified the influence of cations on the bandgap bowing effect and electronic properties of mixed Sn-Pb halide perovskites.

5.
Nanoscale ; 14(33): 12090-12098, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35950504

RESUMO

An effective electron transport layer (ETL) plays a pivotal role in suppressing nonradiative recombination at the interface as well as promoting perovskite crystallization to facilitate electron extraction in perovskite solar cells (PSCs). Herein, a functional polymer, poly(amidoamine) (PM) dendrimer, is introduced to rationalize the morphology and electrical performance of SnO2 nanocrystals to construct an SnO2 charge transfer layer. PM offers an even SnO2 colloidal dispersion with a particle-size distribution of ∼10 nm, which prevents the agglomeration of nanocrystals significantly. The polymer-complexed SnO2 provides a uniform and dense ETL film without island-like agglomeration, yielding a large conductive layer superior to that of the control. Equally important, the wettability-improved SnO2 ETL with PM modification produces a high-quality perovskite film with larger grain size, resulting in a power conversion efficiency (PCE) of the champion n-i-p PSC of up to 22.93% with negligible hysteresis. Noticeably, the device based on SnO2-PM maintained 71% of its initial PCE (only 49% for the control device) after storing in the ambient environment for 45 days (relative humidity of 30%-80%) without packaging.

6.
ACS Appl Mater Interfaces ; 14(36): 41389-41399, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36036961

RESUMO

Perovskite solar cells (PSCs) have been regarded as an exceptional renewable energy conversion technology due to their rapidly increasing photovoltaic efficiency, while their practical application is highly retarded by their intrinsic instability and potential lead ion leakage. Here, a two-dimensional (2D) π-conjugated benzodifuran-based polymer, PBDFP-Bz, is adopted to modify the perovskite film. Note that PBDFP-Bz could neutralize surface defects, fine-tune interfacial energetics, and hamper moisture ingression into the perovskite film. Therefore, high-quality perovskite films featuring reduced trap state density and enhanced moisture tolerance could be obtained after modification via PBDFP-Bz. Consequently, PBDFP-Bz-modified devices deliver a higher efficiency of 21.73% versus 19.55% of control ones. Meanwhile, PBDFP-Bz-modified devices can preserve 82.7 and 90.8% of their initial efficiency under continuous heating at 85 °C or light soaking for 500 h. However, the corresponding retained values of control devices are only 56.4 and 70.2%, respectively. Moreover, PBDFP-Bz can effectively prevent the leakage of lead ions in modified devices relative to control ones. This work not only reveals that PBDFP-Bz features high potential for fabricating high-performance and robust PSCs but also indicates that 2D π-conjugated benzodifuran-based polymers can endow PSCs with great security for sustainable development without the concern of lead ion leakage.

7.
Nanoscale ; 14(1): 35-41, 2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34768278

RESUMO

Although the power conversion efficiency (PCE) of perovskite solar cells (PSCs) has improved greatly in recent years, the challenges of efficiency and stability still need to be overcome before these solar cells can be used in commercial applications. Here, a weak acid buffer, hydroxyethyl piperazine ethane sulfonic acid (HEPES), is used to passivate the interface of an SnO2 electron transport layer (ETL) and a photoactive layer in n-i-p solar cells. The device efficiency based on a SnO2/HEPES ETL reaches 20.22%, which is 9.7% higher than that of the control (18.43%), and the device stability is also significantly improved. The improvement in the device performance is mainly due to the introduction of the HEPES interface layer to adjust the interface energy level, which also improves the crystallinity of the perovskite film and reduces the interface defects. Electrochemical impedance spectroscopy and transient photovoltage/photocurrent results show that the HEPES-modified PSCs have lower charge transfer resistance, weaker leakage current intensity and improved interfacial charge separation and transport.

8.
ACS Appl Mater Interfaces ; 11(10): 10012-10020, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30775904

RESUMO

Unavoidable defects in grain boundaries (GBs) are detrimental and critically influence the organometal halide perovskite performance and stability. To address this issue, semiconducting molecules have been employed to passivate traps along perovskite GBs. Here, we designed and synthesized three squaraine molecules (SQ) with zwitterionic structure to interact with under-coordinated Pb2+ and passivate Pb-I antisite defects. Density functional theory calculation shows symmetric O atoms could coordinate with perovskite grains simultaneously, resulting in continuous charge distribution at the SQ-perovskite interface. The energetic traps distribution in CH3NH3PbI3 perovskite is influenced significantly by the interaction between SQ and perovskite as analyzed by thermally stimulated current, in which the deep-level defects are considerably reduced due to efficient SQ passivation. In addition, we explore how SQ molecules with different energy offset affect the charge extraction, which is suggested to facilitate exciton separation at the perovskite-SQ interface. These benefits lead to enhanced perovskite efficiency from 15.77 to 18.83% with the fill factor approaching 80%, which is among the highest efficiency reported for MAPbI3 solar cells fabricated in an ambient environment at 60% relative humidity (RH). Considerable retardation of perovskite device degradation was achieved, retaining 90% of initial efficiency when kept 600 h at 60 ± 5% RH.

9.
ChemSusChem ; 11(14): 2348-2357, 2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-29727046

RESUMO

Perovskite solar cells have attracted considerable attention owing to their easy and low-cost solution manufacturing process with high power conversion efficiency. However, the fabrication process is usually performed inside a glovebox to avoid moisture, as organometallic halide perovskites are easily dissolved in water. In this study, we propose a one-step fabrication of high-quality MAPbI3 perovskite films in around 50 % relative humidity (RH) humid ambient air by using diethyl ether as an antisolvent and methanol as an additive into this antisolvent. Because of the presence of methanol, the water molecules can be efficiently removed from the gaps of the perovskite precursors and the perovskite film formation can be slightly controlled, leading to pinhole-free and low roughness films. Concurrently, methanol can be used to tune the DMSO ratio in the intermediate perovskite phase to regulate perovskite formation. Planar solar cells fabricated by using this method exhibited the best efficiency of 16.4 % with a reduced current density-voltage hysteresis. This efficiency value is approximately 160 % higher than the devices fabrication by using only diethyl ether treatment. From the impedance measurement, it is also found that the recombination reaction is suppressed when the device is prepared with methanol additive in the antisolvent. This method presents a new path for controlling the growth and morphology of perovskite films in humid climates and laboratories with uncontrolled environments.

10.
ACS Appl Mater Interfaces ; 10(29): 24543-24548, 2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-29969012

RESUMO

Despite the high efficiency of MAPbI3 perovskite solar cells, the long term stability and degradation in humid atmosphere are issues that still needed to be addressed. In this work, magnesium iodide (MgI2) was first successfully used as a dopant into MAPbI3 perovskite prepared in humid air atmosphere. Mg doping decreased the valence band level, which was determined from photoelectron yield spectroscopy. Compared to the pristine MAPbI3 perovskite film, the 1.0% Mg-doped perovskite film showed increased crystal grain size and formation of pinhole-free perovskite film. Performance of the solar cell was increased from 14.2% of the doping-free solar cell to 17.8% of 1.0% Mg-doped device. Moreover, 90% of the original power conversion efficiency was still retained after storage in 30-40% relative humidity for 600 h.

11.
ACS Appl Mater Interfaces ; 10(35): 29630-29637, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30113803

RESUMO

TiO2 is commonly used as an electron-transporting material in perovskite photovoltaic devices due to its advantages, including suitable band gap, good photoelectrochemical stability, and simple preparation process. However, there are many oxygen vacancies or defects on the surface of TiO2 and thus this affects the stability of TiO2-based perovskite solar cells under UV light. In this work, a thin (monolayer) SbI3 modification layer is introduced on the mesoporous TiO2 surface and the effect at the interface between of TiO2 and perovskite is monitored by using a quartz crystal microbalance system. We demonstrate that the SbI3-modified TiO2 electrodes exhibit superior electronic properties by reducing electronic trap states, enabling faster electron transport. This approach results in higher performances compared with electrodes without the SbI3 passivation layer. CH3NH3PbI3 perovskite solar cells with a maximum power conversion efficiency of 17.33% in air, accompanied by a reduction in hysteresis and enhancement of the device stability, are reported.

12.
ACS Appl Mater Interfaces ; 10(19): 16482-16489, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29733567

RESUMO

High-efficiency perovskite solar cells (PSCs) need to be fabricated in the nitrogen-filled glovebox by the atmosphere-controlled crystallization process. However, the use of the glovebox process is of great concern for mass level production of PSCs. In this work, notable efficient CH3NH3PbI3 solar cells can be obtained in high humidity ambient atmosphere (60-70% relative humidity) by using acetate as the antisolvent, in which dependence of methyl, ethyl, propyl, and butyl acetate on the crystal growth mechanism is discussed. It is explored that acetate screens the sensitive perovskite intermediate phases from water molecules during perovskite film formation and annealing. It is revealed that relatively high vapor pressure and high water solubility of methyl acetate (MA) leads to the formation of highly dense and pinhole free perovskite films guiding to the best power conversion efficiency (PCE) of 16.3% with a reduced hysteresis. The devices prepared using MA showed remarkable shelf life stability of more than 80% for 360 h in ambient air condition, when compared to the devices fabricated using other antisolvents with low vapor pressure and low water solubility. Moreover, the PCE was still kept at 15.6% even though 2 vol % deionized water was added in the MA for preparing the perovskite layer.

13.
Nanomicro Lett ; 8(3): 232-239, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-30460282

RESUMO

ABSTRACT: A bi-layer photoanode for dye-sensitized solar cell (DSSC) was fabricated, in which TiO2 hollow spheres (THSs) were designed as a scattering layer and P25/multi-walled carbon nanotubes (MWNTs) as an under-layer. The THSs were synthesized by a sacrifice template method and showed good light scattering ability as an over-layer of the photoanode. MWNTs were mixed with P25 to form an under-layer of the photoanode to improve the electron transmission ability of the photoanode. The power conversion efficiency of this kind of DSSC with bi-layer was enhanced to 5.13 %, which is 14.25 % higher than that of pure P25 DSSC. GRAPHICAL ABSTRACT: A bi-layer composite photoanode based on P25/MWNTs-THSs with improved light scattering and electron transmission, which will provide a new insight into fabrication and structure design of highly efficient dye-sensitized solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA