Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Biol Chem ; 300(10): 107772, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39276938

RESUMO

Lipid-rich deposits called drusen accumulate under the retinal pigment epithelium (RPE) in the eyes of patients with age-related macular degeneration and Sorsby's fundus dystrophy (SFD). Drusen may contribute to photoreceptor degeneration in these blinding diseases. Stimulating ß-oxidation of fatty acids could decrease the availability of lipid with which RPE cells generate drusen. Inhibitors of acetyl-CoA carboxylase (ACC) stimulate ß-oxidation and diminish lipid accumulation in fatty liver disease. In this report, we test the hypothesis that an ACC inhibitor, Firsocostat, can diminish lipid deposition by RPE cells. We probed metabolism and cellular function in mouse RPE-choroid tissue and human RPE cells. We used 13C6-glucose, 13C16-palmitate, and gas chromatography-linked mass spectrometry to monitor effects of Firsocostat on glycolytic, Krebs cycle, and fatty acid metabolism. We quantified lipid abundance, apolipoprotein E levels, and vascular endothelial growth factor release using liquid chromatography-mass spectrometry, ELISAs, and immunostaining. RPE barrier function was assessed by trans-epithelial electrical resistance (TEER). Firsocostat-mediated ACC inhibition increases ß-oxidation, decreases intracellular lipid levels, diminishes lipoprotein release, and increases TEER. When human serum or outer segments are used to stimulate lipoprotein release, fewer lipoproteins are released in the presence of Firsocostat. In a culture model of SFD, Firsocostat stimulates fatty acid oxidation, increases TEER, and decreases apolipoprotein E release. We conclude that Firsocostat remodels RPE metabolism and can limit lipid deposition. This suggests that ACC inhibition could be an effective strategy for diminishing pathologic drusen in the eyes of patients with age-related macular degeneration or SFD.


Assuntos
Acetil-CoA Carboxilase , Ácidos Graxos , Epitélio Pigmentado da Retina , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/patologia , Acetil-CoA Carboxilase/metabolismo , Humanos , Animais , Ácidos Graxos/metabolismo , Camundongos , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Apolipoproteínas E/metabolismo , Apolipoproteínas E/genética , Inibidores Enzimáticos/farmacologia , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Degeneração Macular/tratamento farmacológico
2.
Small ; 20(13): e2308743, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37948424

RESUMO

Long-term exposure to low concentration indoor VOCs of acetaldehyde (CH3CHO) is harmful to human health. Thus, a novel isogenous heterojunction CeO2/Ce-MOF photocatalyst is synthesized via a one-step hydrothermal method for the effective elimination of CH3CHO in this work. This CeO2/Ce-MOF photocatalyst performs well in CH3CHO removal and achieves an apparent quantum efficiency of 7.15% at 420 nm, which presents ≈6.7 and 3.4 times superior to those generated by CeO2 and Ce-MOF, respectively. The enhanced efficiency is due to two main aspects including i) an effective photocarrier separation ability and the prolonged reaction lifetime of excitons play crucial roles and ii) the formation of an internal electric field (IEF) is sufficient to overcome the considerable exciton binding energy, and increases the exciton dissociation efficiency by up to 50.4%. Moreover, the reasonable pathways and mechanisms of CH3CHO degradation are determined by in situ DRIFTS analysis and simulated DFT calculations. Those results demonstrated that S-scheme heterojunction successfully increases the efficiency of harmful volatile organic compounds elimination, and it offers essential guidance for designing rare earth-based MOF photocatalysts.

3.
Small ; 20(20): e2308908, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105418

RESUMO

The environmental deterioration caused by dye wastewater discharge has received considerable attention in recent decades. One of the most promising approaches to addressing the aforementioned environmental issue is the development of photocatalysts with high solar energy consumption efficiency for the treatment of dye-contaminated water. In this study, a novel low-cost π-π biomass-derived black carbon modified g-C3N4 coupled FeIn2S4 composite (i.e., FeInS/BC-CN) photocatalyst is successfully designed and fabricated that reveals significantly improved photocatalytic performance for the degradation of Eosin Yellow (EY) dye in aqueous solution. Under dark and subsequent visible light irradiation, the amount optimized composite reveals 99% removal performance for EY dye, almost three-fold compared to that of the pristine FeInS and BC-CN counterparts. Further, it is confirmed by means of the electron spin resonance spectrometry, quenching experiments, and density functional theory (DFT) calculations, that the hydroxyl radicals (•OH) and superoxide radicals (•O2 -) are the dominant oxidation species involved in the degradation process of EY dye. In addition, a systematic photocatalytic degradation route is proposed based on the resultant degradation intermediates detectedduring liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. This work provides an innovative idea for the development of advanced photocatalysts to mitigate water pollution.

4.
Exp Eye Res ; 245: 109966, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38857822

RESUMO

The retinal pigment epithelium (RPE) is omnivorous and can utilize a wide range of substrates for oxidative phosphorylation. Certain tissues with high mitochondrial metabolic load are capable of ketogenesis, a biochemical pathway that consolidates acetyl-CoA into ketone bodies. Earlier work demonstrated that the RPE expresses the rate-limiting enzyme for ketogenesis, 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), and that the RPE indeed produces ketone bodies, including beta-hydroxybutyrate (ß-HB). Prior work, based on detecting ß-HB via enzymatic assays, suggested that differentiated cultures of primary RPE preferentially export ß-HB across the apical membrane. Here, we compare the accuracy of measuring ß-HB by enzymatic assay kits to mass spectrometry analysis. We found that commercial kits lack the sensitivity to accurately measure the levels of ß-HB in RPE cultures and are prone to artifact. Using mass spectrometry, we found that while RPE cultures secrete ß-HB, they do so equally to both apical and basal sides. We also find RPE is capable of consuming ß-HB as levels rise. Using isotopically labeled glucose, amino acid, and fatty acid tracers, we found that carbons from both fatty acids and ketogenic amino acids, but not from glucose, produce ß-HB. Altogether, we substantiate ß-HB secretion in RPE but find that the secretion is equal apically and basally, RPE ß-HB can derive from ketogenic amino acids or fatty acids, and accurate ß-HB assessment requires mass spectrometric analysis.


Assuntos
Ácido 3-Hidroxibutírico , Corpos Cetônicos , Epitélio Pigmentado da Retina , Epitélio Pigmentado da Retina/metabolismo , Corpos Cetônicos/metabolismo , Células Cultivadas , Ácido 3-Hidroxibutírico/metabolismo , Humanos , Ensaios Enzimáticos/métodos , Hidroximetilglutaril-CoA Sintase/metabolismo , Espectrometria de Massas , Animais
5.
BMC Public Health ; 23(1): 2371, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38031053

RESUMO

BACKGROUND: An increasing number of systematic reviews (SRs) in the environmental field have been published in recent years as a result of the global concern about the health impacts of air pollution and temperature. However, no study has assessed and compared the methodological and reporting quality of SRs on the health effects of air pollutants and extreme temperatures. This study aims to assess and compare the methodological and reporting quality of SRs on the health effects of ambient air pollutants and extreme temperatures. METHODS: PubMed, Embase, the Cumulative Index to Nursing and Allied Health Literature (CINAHL), Cochrane Library, Web of Science, and Epistemonikos databases were searched. Two researchers screened the literature and extracted information independently. The methodological quality of the SRs was assessed through A Measurement Tool to Assess Systematic Reviews 2 (AMSTAR 2). The reporting quality was assessed through Preferred Reporting Items of Systematic reviews and Meta-Analyses (PRISMA). RESULTS: We identified 405 SRs (286 for air pollution, 108 for temperature, and 11 for the synergistic effects). The methodological and reporting quality of the included SRs were suboptimal, with major deficiencies in protocol registration. The methodological quality of SRs of air pollutants was better than that of temperature, especially in terms of satisfactory explanations for any heterogeneity (69.6% v. 45.4%). The reporting quality of SRs of air pollution was better than temperature, however, adherence to the reporting of the assessment results of risk of bias in all SRs (53.5% v. 34.3%) was inadequate. CONCLUSIONS: Methodological and reporting quality of SRs on the health effect of air pollutants were higher than those of temperatures. However, deficiencies in protocol registration and the assessment of risk of bias remain an issue for both pollutants and temperatures. In addition, developing a risk-of-bias assessment tool applicable to the temperature field may improve the quality of SRs.


Assuntos
Poluentes Atmosféricos , Revisões Sistemáticas como Assunto , Humanos , Poluentes Atmosféricos/efeitos adversos , Temperatura Alta , Projetos de Pesquisa , Relatório de Pesquisa , Temperatura
6.
Exp Eye Res ; 178: 212-222, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30336126

RESUMO

The daily shedding and renewal of photoreceptor outer segments (OS) is critical for maintaining vision. This process relies on the efficient uptake, degradation, and sorting of shed OS material by the retinal pigment epithelium (RPE). Poor OS degradation has been linked to retinal degenerations such as Stargardt disease and may contribute to macular degeneration. While primary human fetal RPE cultures have emerged as a valuable model of in vivo human RPE function, surprisingly few studies have utilized the model for tracking the degradation and fate of OS components in the RPE. Here, we establish an improved platform for studying this topic by modifying existing protocols and creating new methods. Our human fetal culture model facilitates studies of RPE secretion in response to OS ingestion, preserves RPE differentiation and polarization during live-cell imaging of OS phagocytosis, and minimizes costs. We optimize Mer tyrosine kinase-dependent OS phagocytosis assays specifically in human fetal cultures and provide a simple and accurate method for measuring total OS consumption by the RPE. Finally, we utilize chemical transfection, dextran labeling, and immunocytochemistry to evaluate key players in OS degradation, including lysosomes and autophagy proteins. To facilitate quantification of autophagy vesicles, we develop customized image analysis macros in the Fiji/ImageJ software environment. These protocols will facilitate a broad range of studies in human fetal RPE cultures aimed at determining the ultimate fate of OS components after ingestion, a critical step in understanding the pathogenesis of numerous retinal diseases.


Assuntos
Fagocitose/fisiologia , Segmento Externo das Células Fotorreceptoras da Retina/fisiologia , Epitélio Pigmentado da Retina/fisiologia , Autofagia/fisiologia , Biomarcadores/metabolismo , Células Cultivadas , Meios de Cultura Livres de Soro , Pesquisa Fetal , Humanos , Imuno-Histoquímica , Lisossomos/metabolismo , Microscopia , Cultura Primária de Células , Proteínas/metabolismo , Epitélio Pigmentado da Retina/citologia
8.
Lab Invest ; 95(11): 1278-90, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26280220

RESUMO

Retinoblastoma (RB) is the most common primary intraocular cancer in children, and the third most common cancer overall in infants. No molecular-targeted therapy for this lethal tumor exists. Since the tumor suppressor RB1, whose genetic inactivation underlies RB, is upstream of the epigenetic regulator EZH2, a pharmacologic target for many solid tumors, we reasoned that EZH2 might regulate human RB tumorigenesis. Histologic and immunohistochemical analyses were performed using an EZH2 antibody in sections from 43 samples of primary, formalin-fixed, paraffin-embedded human RB tissue, cryopreserved mouse retina, and in whole cell lysates from human RB cell lines (Y79 and WERI-Rb1), primary human fetal retinal pigment epithelium (RPE) and fetal and adult retina, mouse retina and embryonic stem (ES) cells. Although enriched during fetal human retinal development, EZH2 protein was not present in the normal postnatal retina. However, EZH2 was detected in all 43 analyzed human RB specimens, indicating that EZH2 is a fetal protein expressed in postnatal human RB. EZH2 expression marked single RB cell invasion into the optic nerve, a site of invasion whose involvement may influence the decision for systemic chemotherapy. To assess the role of EZH2 in RB cell survival, human RB and primary RPE cells were treated with two EZH2 inhibitors (EZH2i), GSK126 and SAH-EZH2 (SAH). EZH2i impaired intracellular adenosine triphosphate (ATP) production, an indicator of cell viability, in a time and dose-dependent manner, but did not affect primary human fetal RPE. Thus, aberrant expression of a histone methyltransferase protein is a feature of human RB. This is the first time this mechanism has been implicated for an eye, adnexal, or orbital tumor. The specificity of EZH2i toward human RB cells, but not RPE, warrants further in vivo testing in animal models of RB, especially those EZH2i currently in clinical trials for solid tumors and lymphoma.


Assuntos
Epigênese Genética/fisiologia , Complexo Repressor Polycomb 2/efeitos dos fármacos , Neoplasias da Retina/metabolismo , Retinoblastoma/metabolismo , Animais , Linhagem Celular Tumoral , Pré-Escolar , Proteína Potenciadora do Homólogo 2 de Zeste , Feminino , Humanos , Lactente , Masculino , Camundongos , Complexo Repressor Polycomb 2/metabolismo , Complexo Repressor Polycomb 2/fisiologia , Neoplasias da Retina/patologia , Retinoblastoma/patologia
9.
Gels ; 10(9)2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39330201

RESUMO

Thermosetting resins have good temperature resistance and high strength and have been widely used as plugging agents in oil fields. However, the current resin materials have high costs, and unmodified thermosetting resins are brittle or have deteriorated properties such as flame retardancy after curing to form a crosslinked network structure. In this study, the resin was modified via physical blending. The curing strength and temperature resistance were used as the main indicators. The resin matrix, curing agent, rheology modifier, and filling materials were modified and formulated optimally to form a high-strength resin gel plugging system. The resin gel system exhibited good fluidity and pumpability. When the shear rate was 200 s-1 at 25 °C, the initial viscosity was 300-400 mPa·s. The viscosity gradually decreased with increasing shear rate, and the apparent viscosity had good long-term stability at room temperature. A contamination test of different types of drilling fluids on the resin gel system showed that this system had good anti-contamination capability and could maintain a high curing strength even after being contaminated. At the same time, the system exhibited good plugging capability. A wedge-shaped fracture with an inlet size of 7 mm and an outlet size of 5 mm was plugged at 12.84 MPa for 10 min without leakage. A sand-filling pipe (with a diameter of 3.8 cm and pipe length of 30 cm) connected to the pipeline with a 6 mm outlet was subjected to a constant pressure of 11.29 MPa and plugged for 8 min before breaking through. Therefore, it exhibited good capability for plugging fissures and cavities. The resin gel leakage-plugging system has significant potential to realize effective plugging of the deep large-fracture leakage layer.

10.
Sci Adv ; 10(5): eadl5432, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38295163

RESUMO

Activation of carbon-hydrogen (C-H) bonds is of utmost importance for the synthesis of vital molecules. Toward achieving efficient photocatalytic C-H activation, our investigation revealed that incorporating hydrophilic C≡N-Sb(CN)3 sites into hydrophobic sp2 carbon-conjugated covalent organic frameworks (sp2-c-COFs) had a dual effect: It simultaneously enhanced charge separation and improved generation of polar reactive oxygen species. Detailed spectroscopy measurements and simulations showed that C≡N-Sb(CN)3 primarily functioned as water capture sites, which were not directly involved in photocatalysis. However, the potent interaction between water molecules and the Sb(CN)3-modified framework notably enhanced charge dynamics in hydrophobic sp2-c-COFs. The reactive species ·O2- and ·OH (ad) subsequently combined with benzyl radical, leading to the formation of benzaldehyde, benzyl alcohol, and lastly benzyl benzoate. Notably, the Sb(CN)3-modified sp2-c-COFs exhibited a 54-fold improvement in reaction rate as compared to pristine sp2-c-COFs, which achieved a remarkable 68% conversion rate for toluene and an 80% selectivity for benzyl benzoate.

11.
J Vis Exp ; (210)2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39221933

RESUMO

Mitochondrial metabolism is critical for the normal function of the retinal pigment epithelium (RPE), a monolayer of cells in the retina important for photoreceptor survival. RPE mitochondrial dysfunction is a hallmark of age-related macular degeneration (AMD), the leading cause of irreversible blindness in the developed world, and proliferative vitreoretinopathy (PVR), a blinding complication of retinal detachments. RPE degenerative conditions have been well-modeled by RPE culture systems that are highly differentiated and polarized to mimic in vivo RPE. However, monitoring oxygen consumption rates (OCR), a proxy for mitochondrial function, has been difficult in such culture systems because the conditions that promote ideal RPE polarization and differentiation do not allow for easy OCR measurements. Here, we introduce a novel system, Resipher, to monitor OCR for weeks at a time in well-differentiated RPE cultures while maintaining the RPE on optimal growth substrates and physiologic culture media in a standard cell culture incubator. This system calculates OCR by measuring the oxygen concentration gradient present in the media above cells. We discuss the advantages of this system over other methods for detecting OCR and how to set up the system for measuring OCR in RPE cultures. We cover key tips and tricks for using the system, caution about interpreting the data, and guidelines for troubleshooting unexpected results. We also provide an online calculator for extrapolating the level of hypoxia, normoxia, or hyperoxia RPE cultures experience based on the oxygen gradient in the media above cells detected by the system. Finally, we review two applications of the system, measuring the metabolic state of RPE cells in a PVR model and understanding how the RPE metabolically adapts to hypoxia. We anticipate that the use of this system on highly polarized and differentiated RPE cultures will enhance our understanding of RPE mitochondrial metabolism both under physiologic and disease states.


Assuntos
Consumo de Oxigênio , Epitélio Pigmentado da Retina , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/citologia , Humanos , Consumo de Oxigênio/fisiologia , Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia
12.
ACS Nano ; 18(23): 14893-14906, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38801653

RESUMO

Stem cell therapies are gaining traction as promising treatments for a variety of degenerative conditions. Both clinical and preclinical studies of regenerative medicine are hampered by the lack of technologies that can evaluate the migration and behavior of stem cells post-transplantation. This study proposes an innovative method to longitudinally image in vivo human-induced pluripotent stem cells differentiated to retinal pigment epithelium (hiPSC-RPE) cells by multimodal photoacoustic microscopy, optical coherence tomography, and fluorescence imaging powered by ultraminiature chain-like gold nanoparticle cluster (GNC) nanosensors. The GNC exhibits an optical absorption peak in the near-infrared regime, and the 7-8 nm size in diameter after disassembly enables renal excretion and improved safety as well as biocompatibility. In a clinically relevant rabbit model, GNC-labeled hiPSC-RPE cells migrated to RPE degeneration areas and regenerated damaged tissues. The hiPSC-RPE cells' distribution and migration were noninvasively, longitudinally monitored for 6 months with exceptional sensitivity and spatial resolution. This advanced platform for cellular imaging has the potential to enhance regenerative cell-based therapies.


Assuntos
Ouro , Imagem Multimodal , Epitélio Pigmentado da Retina , Coelhos , Animais , Humanos , Ouro/química , Epitélio Pigmentado da Retina/citologia , Transplante de Células-Tronco , Tomografia de Coerência Óptica , Nanopartículas Metálicas/química , Células-Tronco Pluripotentes Induzidas/citologia , Movimento Celular , Diferenciação Celular , Imagem Óptica , Técnicas Fotoacústicas
13.
Nat Chem ; 16(8): 1250-1260, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38918581

RESUMO

Providing affordable, safe drinking water and universal sanitation poses a grand societal challenge. Here we developed atomically dispersed Au on potassium-incorporated polymeric carbon nitride material that could simultaneously boost photocatalytic generation of ·OH and H2O2 with an apparent quantum efficiency over 85% at 420 nm. Potassium introduction into the poly(heptazine imide) matrix formed strong K-N bonds and rendered Au with an oxidation number close to 0. Extensive experimental characterization and computational simulations revealed that the low-valent Au altered the materials' band structure to trap highly localized holes produced under photoexcitation. These highly localized holes could boost the 1e- water oxidation reaction to form highly oxidative ·OH and simultaneously dissociate the hydrogen atom in H2O, which greatly promoted the reduction of oxygen to H2O2. The photogenerated ·OH led to an efficiency enhancement for visible-light-response superhydrophilicity. Furthermore, photo-illumination in an onsite fixed-bed reactor could disinfect water at a rate of 66 L H2O m-2 per day.

14.
Adv Healthc Mater ; : e2402110, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39205543

RESUMO

Hypoxia can aggravate tumor occurrence, development, invasion, and metastasis, and greatly inhibit the photodynamic therapy (PDT) effect. Herein, carbon nitride (CNs)-based DNA and photosensitizer co-delivery systems (BPSCNs) with oxygen-producing functions are developed to address this problem. Selenide glucose (Seglu) is used as the dopant to prepare red/NIR-active CNs (SegluCNs). The tumor-targeting unit Bio-PEG2000 is utilized to construct BPSCNs nanoparticles through esterification reactions. Furthermore, DNA hydrophobization is realized via mixing P53 gene with a positively charged mitochondrial-targeted near-infrared (NIR) emitting photosensitizer (MTTPY), which is encapsulated in non-cationic BPSCNs for synergistic delivery. Ester bonds in BPSCNs@MTTPY-P53 complexes can be disrupted by lipase in the liver to facilitate P53 release, upregulated P53 expression, and promoted HIF-1α degradation in mitochondria. In addition, the oxygen produced by the complexes improved the hypoxic microenvironment of hepatocellular carcinoma (HCC), synergistically downregulated HIF-1α expression in mitochondria, promoted mitochondrial-derived ferroptosis and enhanced the PDT effect of the MTTPY unit. Both in vivo and in vitro experiments indicated that the transfected P53-DNA, produced O2 and ROS by these complexes synergistically led to mitochondrial-derived ferroptosis in hepatoma cells through the HIF-1α/SLC7A11 pathway, and completely avoiding PDT resistance caused by hypoxia, exerting a significant therapeutic role in HCC treatment.

15.
J Vis Exp ; (194)2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37125790

RESUMO

The daily phagocytosis of photoreceptor outer segments by the retinal pigment epithelium (RPE) contributes to the accumulation of an intracellular aging pigment termed lipofuscin. The toxicity of lipofuscin is well established in Stargardt's disease, the most common inherited retinal degeneration, but is more controversial in age-related macular degeneration (AMD), the leading cause of irreversible blindness in the developed world. Determining lipofuscin toxicity in humans has been difficult, and animal models of Stargardt's have limited toxicity. Thus, in vitro models that mimic human RPE in vivo are needed to better understand lipofuscin generation, clearance, and toxicity. The majority of cell culture lipofuscin models to date have been in cell lines or have involved feeding RPE a single component of the complex lipofuscin mixture rather than fragments/tips of the entire photoreceptor outer segment, which generates a more complete and physiologic lipofuscin model. Described here is a method to induce the accumulation of lipofuscin-like material (termed undigestible autofluorescence material, or UAM) in highly differentiated primary human pre-natal RPE (hfRPE) and induced pluripotent stem cell (iPSC) derived RPE. UAM accumulated in cultures by repeated feedings of ultraviolet light-treated OS fragments taken up by the RPE via phagocytosis. The key ways that UAM approximates and differs from lipofuscin in vivo are also discussed. Accompanying this model of lipofuscin-like accumulation, imaging methods to distinguish the broad autofluorescence spectrum of UAM granules from concurrent antibody staining are introduced. Finally, to assess the impact of UAM on RPE phagocytosis capacity, a new method for quantifying outer segment fragment/tips uptake and breakdown has been introduced. Termed "Total Consumptive Capacity", this method overcomes potential misinterpretations of RPE phagocytosis capacity inherent in classic outer segment "pulse-chase" assays. The models and techniques introduced here can be used to study lipofuscin generation and clearance pathways and putative toxicity.


Assuntos
Lipofuscina , Pigmentos da Retina , Animais , Humanos , Lipofuscina/metabolismo , Pigmentos da Retina/metabolismo , Fagocitose/fisiologia , Epitélio Pigmentado da Retina , Linhagem Celular , Células Cultivadas
16.
ACS Appl Mater Interfaces ; 15(51): 59444-59453, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38091379

RESUMO

The photocatalytic oxygen evolution of bismuth oxybromide (BiOBr) is greatly hindered by its low visible-light response and high electron-hole recombination. Nonmetal doping can effectively alleviate these issues, leading to improvement in photocatalytic performance. Herein, Bi2Te3 was introduced as both the Te doping source and the morphology-control template to improve the photocatalytic performance of BiOBr. Appropriate amounts of Te are critical to maintain the ultrathin plate-like structure of BiOBr, whereas excessive Te results in the formation of a flower-like architecture. Oxygen evolution activity disclosed that a plate-like structure is essential for realizing higher performance owing to sufficient light utilization and efficient charge separation. An optimal oxygen evolution rate of 368.0 µmol h-1 g-1 was achieved for the Te-doped sample, which is 2.3-fold as that of the undoped BiOBr (158.9 µmol h-1 g-1). Theoretical calculations demonstrated that Te doping can induce impurity levels above the valence band of BiOBr, which slightly narrowed the band gap and strengthened the light absorption in the range of 400-800 nm. More importantly, Te dopants could act as shallow traps for confining the excited electrons, thus prolonging the carrier lifetime. This work provides a novel strategy to prepare highly efficient photocatalysts by simultaneously realizing morphology manipulation and nonmetal doping.

17.
bioRxiv ; 2023 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-36909658

RESUMO

PURPOSE: RPE oxidative metabolism is critical for normal retinal function and is often studied in cell culture systems. Here, we show that conventional culture media volumes dramatically impact O 2 availability, limiting oxidative metabolism. We suggest optimal conditions to ensure cultured RPE is in a normoxic environment permissive to oxidative metabolism. METHODS: We altered the availability of O 2 to human primary RPE cultures directly via a hypoxia chamber or indirectly via the amount of medium over cells. We measured oxygen consumption rates (OCR), glucose consumption, lactate production, 13 C-glucose flux, hypoxia inducible factor (HIF-1α) stability, intracellular lipid droplets after a lipid challenge, trans-epithelial electrical resistance, cell morphology, and pigmentation. RESULTS: Medium volumes commonly employed during RPE culture limit diffusion of O 2 to cells, triggering hypoxia, activating HIF-1α, limiting OCR, and dramatically altering cell metabolism, with only minor effects on typical markers of RPE health. Media volume effects on O 2 availability decrease acetyl-CoA utilization, increase glycolysis, and alter the size and number of intracellular lipid droplets under lipid-rich conditions. CONCLUSIONS: Despite having little impact on visible and typical markers of RPE culture health, media volume dramatically affects RPE physiology ″under the hood″. As RPE-centric diseases like age-related macular degeneration (AMD) involve oxidative metabolism, RPE cultures need to be optimized to study such diseases. We provide guidelines for optimal RPE culture volumes that balance ample nutrient availability from larger media volumes with adequate O 2 availability seen with smaller media volumes.

18.
Adv Mater ; 35(48): e2306831, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37775094

RESUMO

Revealing the photocatalytic mechanism between various junctions and catalytic activities has become a hotspot in photocatalytic systems. Herein, an internal molecular heptazine/triazine (H/T) junction in crystalline carbon nitride (HTCN) is constructed and devoted to selective two-electron oxygen reduction reaction (2e- ORR) for efficient hydrogen peroxide (H2 O2 ) production. In-situ X-ray diffraction spectra under various temperatures authenticate the successful formation of molecular H/T junction in HTCN during the calcining process rather than physically mixing. The increased surface photovoltage and transient photovoltage signals, and the decreased exciton binding energy undoubtably elucidate that an obvious increasement of carrier density and diffusion capability of photogenerated electrons are realized over HTCN. Additionally, the analyses of in situ photoirradiated Kelvin probe force microscopy and femto-second transient absorption spectra reveal the successful construction of the strong internal built-in-electric field and the existence of the majority of long-lived shallow trapped electrons associated with molecular H/T junction over HTCN, respectively. Benefiting from these, the photocatalytic results exhibit an incredible improvement (96.5-fold) for H2 O2 production. This novel work provides a comprehensive understanding of the long-lived reactive charges in molecular H/T junctions for strengthening the driving-force for photocatalytic H2 O2 production, which opens potential applications for enhancing PCN-based photocatalytic redox reactions.

19.
Nanomicro Lett ; 16(1): 23, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985523

RESUMO

This comprehensive review provides a deep exploration of the unique roles of single atom catalysts (SACs) in photocatalytic hydrogen peroxide (H2O2) production. SACs offer multiple benefits over traditional catalysts such as improved efficiency, selectivity, and flexibility due to their distinct electronic structure and unique properties. The review discusses the critical elements in the design of SACs, including the choice of metal atom, host material, and coordination environment, and how these elements impact the catalytic activity. The role of single atoms in photocatalytic H2O2 production is also analysed, focusing on enhancing light absorption and charge generation, improving the migration and separation of charge carriers, and lowering the energy barrier of adsorption and activation of reactants. Despite these advantages, several challenges, including H2O2 decomposition, stability of SACs, unclear mechanism, and low selectivity, need to be overcome. Looking towards the future, the review suggests promising research directions such as direct utilization of H2O2, high-throughput synthesis and screening, the creation of dual active sites, and employing density functional theory for investigating the mechanisms of SACs in H2O2 photosynthesis. This review provides valuable insights into the potential of single atom catalysts for advancing the field of photocatalytic H2O2 production.

20.
Invest Ophthalmol Vis Sci ; 64(14): 4, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37922158

RESUMO

Purpose: Retinal pigment epithelium (RPE) oxidative metabolism is critical for normal retinal function and is often studied in cell culture systems. Here, we show that conventional culture media volumes dramatically impact O2 availability, limiting oxidative metabolism. We suggest optimal conditions to ensure cultured RPE is in a normoxic environment permissive to oxidative metabolism. Methods: We altered the availability of O2 to human primary and induced pluripotent stem cell-derived RPE cultures directly via a hypoxia chamber or indirectly via the amount of medium over cells. We measured oxygen consumption rates (OCRs), glucose consumption, lactate production, 13C6-glucose and 13C5-glutamine flux, hypoxia inducible factor 1α (HIF-1α) stability, intracellular lipid droplets after a lipid challenge, transepithelial electrical resistance, cell morphology, and pigmentation. Results: Medium volumes commonly employed during RPE culture limit diffusion of O2 to cells, triggering hypoxia, activating HIF-1α, limiting OCR, and dramatically altering cell metabolism, with only minor effects on typical markers of RPE health. Media volume effects on O2 availability decrease acetyl-CoA utilization, increase glycolysis and reductive carboxylation, and alter the size and number of intracellular lipid droplets under lipid-rich conditions. Conclusions: Despite having little impact on visible and typical markers of RPE culture health, media volume dramatically affects RPE physiology "under the hood." As RPE-centric diseases like age-related macular degeneration involve oxidative metabolism, RPE cultures need to be optimized to study such diseases. We provide guidelines for optimal RPE culture volumes that balance ample nutrient availability from larger media volumes with adequate O2 availability seen with smaller media volumes.


Assuntos
Retina , Epitélio Pigmentado da Retina , Humanos , Epitélio Pigmentado da Retina/metabolismo , Retina/metabolismo , Hipóxia/metabolismo , Glucose/farmacologia , Lipídeos , Células Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA