Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
J Environ Manage ; 288: 112370, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33761332

RESUMO

Central North China Plain (NCP) is one of the most important source region of air pollutants over the Beijing-Tianjin-Hebei (BTH) region. The national government has issued abatement measures to improve the air quality in this area from 2017. To examine the effects of control measures, observational analysis on PM2.5 characteristics was performed in a city of central NCP during 2017-2019 to investigate the variation in mass concentration, chemical composition, and emission source of PM2.5. Annual PM2.5 concentration significantly reduced by 16% from 2017 to 2019, implying substantial improvements in air quality. PM2.5 enriched in autumn-winter seasons was dominated by SNA (sum of sulfate, nitrate and ammonium; ~38%), followed by organic carbon matters (OM; ~24%) and fine soil (FS; ~12%). This chemical composition was different from that in a megacity in NCP (Beijing) where OM accounted for a comparable fraction to SNA. Approximately half of SNA was attributed to nitrate, indicating that SNA changed from sulfate-driven to nitrate-driven, and the considerable effects of coal combustion cutoff, in which sulfate was concentrated. Decreased mass fraction of SNA and increased OM fraction in PM2.5 were observed in 2018-2019 partly contributed to the decrease in PM2.5. A progressive increase in the contribution of heterogeneous formed SNA whilst a decrease in OM was observed as the pollution elevated from clean to heavily polluted. Six sources (soil dust, biomass burning, secondary emission, road traffic, coal combustion and industry) were identified by the Positive Matrix Factorization (PMF) model in both years and dominated by secondary aerosols, respectively contributing 39% and 41% to PM2.5. The decreasing concentrations (with reductions of 17%-61%) of the secondary source, coal combustion, soil dust and biomass burning largely accounted for the reduction in PM2.5, as a consequence of the recent abatement measures. By contrast, contributions of vehicle-related emissions, similar to the increasing contribution of vehicles at sites in NCP after 2013, should receive increased attention.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar/prevenção & controle , Pequim , China , Cidades , Monitoramento Ambiental , Material Particulado/análise , Estações do Ano , Emissões de Veículos/análise
2.
Environ Sci Technol ; 54(13): 7836-7847, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32479722

RESUMO

The chromophores responsible for light absorption in atmospheric brown carbon (BrC) are not well characterized, which hinders our understanding of BrC chemistry, the links with optical properties, and accurate model representations of BrC to global climate and atmospheric oxidative capacity. In this study, the light absorption properties and chromophore composition of three BrC fractions of different polarities were characterized for urban aerosol collected in Xi'an and Beijing in winter 2013-2014. These three BrC fractions show large differences in light absorption and chromophore composition, but the chromophores responsible for light absorption are similar in Xi'an and Beijing. Water-insoluble BrC (WI-BrC) fraction dominates the total BrC absorption at 365 nm in both Xi'an (51 ± 5%) and Beijing (62 ± 13%), followed by a humic-like fraction (HULIS-BrC) and high-polarity water-soluble BrC. The major chromophores identified in HULIS-BrC are nitrophenols and carbonyl oxygenated polycyclic aromatic hydrocarbons (OPAHs) with 2-3 aromatic rings (in total 18 species), accounting for 10% and 14% of the light absorption of HULIS-BrC at 365 nm in Xi'an and Beijing, respectively. In comparison, the major chromophores identified in WI-BrC are PAHs and OPAHs with 4-6 aromatic rings (in total 16 species), contributing 6% and 8% of the light absorption of WI-BrC at 365 nm in Xi'an and Beijing, respectively.


Assuntos
Carbono , Água , Aerossóis/análise , Pequim , Carbono/análise , China , Monitoramento Ambiental
3.
Environ Sci Technol ; 53(21): 12389-12397, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31553592

RESUMO

The light-absorbing properties of atmospheric brown carbon (BrC) are poorly understood due to its complex chemical composition. Here, a black-carbon-tracer method was coupled with source apportionments of organic aerosol (OA) to explore the light-absorbing properties of primary and secondary BrC from the North China Plain (NCP). Primary emissions of BrC contributed more to OA light absorption than secondary processes, and biomass burning OA accounted for 60% of primary BrC absorption at λ = 370 nm, followed by coal combustion OA (35%) and hydrocarbon-like OA (5%). Secondary BrC absorption was high in the early morning and later decreased due to the bleaching of chromophores. Nighttime aqueous-phase chemistry promoted the formation of secondary light-absorbing compounds and the production of strongly absorbing particles. Source analysis showed that the NCP region was the most important source for primary and secondary BrC subtypes at the study site. The mean direct radiative forcing for BrC was 0.15 W m-2 (0.11 W m-2 and 0.04 W m-2 for the primary and secondary fractions, respectively). This study provides new information on the optical properties of primary and secondary BrC and highlights the importance of atmospheric oxidation on BrC absorption.


Assuntos
Carbono , Água , Aerossóis , Biomassa , China
4.
Environ Sci Technol ; 52(19): 10967-10974, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30185022

RESUMO

Source apportionment studies of particulate matter (PM) link chemical composition to emission sources, while health risk analyses link health outcomes and chemical composition. There are limited studies to link emission sources and health risks from ambient measurements. We show such an attempt for particulate trace elements. Elements in PM2.5 were measured in wintertime Beijing, and the total concentrations of 14 trace elements were 1.3-7.3 times higher during severe pollution days than during low pollution days. Fe, Zn, and Pb were the most abundant elements independent of the PM pollution levels. Chemical fractionation shows that Pb, Mn, Cd, As, Sr, Co, V, Cu, and Ni were present mainly in the bioavailable fraction. Positive matrix factorization was used to resolve the sources of particulate trace elements into dust, oil combustion, coal combustion, and traffic-related emissions. Traffic-related emission contributed 65% of total mass of the measured elements during low pollution days. However, coal combustion dominated (58%) during severe pollution days. By combining element-specific health risk analyses and source apportionment results, we conclude that traffic-related emission dominates the health risks by particulate trace elements during low pollution days, while coal combustion becomes equally or even more important during moderate and severe pollution days.


Assuntos
Poluentes Atmosféricos , Oligoelementos , Pequim , Carvão Mineral , Poeira , Monitoramento Ambiental , Material Particulado
5.
Environ Sci Technol ; 52(12): 6825-6833, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29799735

RESUMO

Light-absorbing organic carbon (i.e., brown carbon or BrC) in the atmospheric aerosol has significant contribution to light absorption and radiative forcing. However, the link between BrC optical properties and chemical composition remains poorly constrained. In this study, we combine spectrophotometric measurements and chemical analyses of BrC samples collected from July 2008 to June 2009 in urban Xi'an, Northwest China. Elevated BrC was observed in winter (5 times higher than in summer), largely due to increased emissions from wintertime domestic biomass burning. The light absorption coefficient of methanol-soluble BrC at 365 nm (on average approximately twice that of water-soluble BrC) was found to correlate strongly with both parent polycyclic aromatic hydrocarbons (parent-PAHs, 27 species) and their carbonyl oxygenated derivatives (carbonyl-OPAHs, 15 species) in all seasons ( r2 > 0.61). These measured parent-PAHs and carbonyl-OPAHs account for on average ∼1.7% of the overall absorption of methanol-soluble BrC, about 5 times higher than their mass fraction in total organic carbon (OC, ∼0.35%). The fractional solar absorption by BrC relative to element carbon (EC) in the ultraviolet range (300-400 nm) is significant during winter (42 ± 18% for water-soluble BrC and 76 ± 29% for methanol-soluble BrC), which may greatly affect the radiative balance and tropospheric photochemistry and therefore the climate and air quality.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Aerossóis , Carbono , China
6.
Sci Total Environ ; 928: 172345, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38621537

RESUMO

Fine particulate matter (PM2.5) causes millions of premature deaths each year worldwide. Oxidative potential (OP) has been proposed as a better metric for aerosol health effects than PM2.5 mass concentration alone. In this study, we report for the first time online measurements of PM2.5 OP in wintertime Beijing and surroundings based on a dithiothreitol (DTT) assay. These measurements were combined with co-located PM chemical composition measurements to identify the main source categories of aerosol OP. In addition, we highlight the influence of two distinct pollution events on aerosol OP (spring festival celebrations including fireworks and a severe regional dust storm). Source apportionment coupled with multilinear regression revealed that primary PM and oxygenated organic aerosol (OOA) were both important sources of OP, accounting for 41 ± 12 % and 39 ± 10 % of the OPvDTT (OP normalized by the sampled air volume), respectively. The small remainder was attributed to fireworks and dust, mainly resulting from the two distinct pollution events. During the 3.5-day spring festival period, OPvDTT spiked to 4.9 nmol min-1 m-3 with slightly more contribution from OOA (42 ± 11 %) and less from primary PM (31 ± 15 %). During the dust storm, hourly-averaged PM2.5 peaked at a very high value of 548 µg m-3 due to the dominant presence of dust-laden particles (88 % of total PM2.5). In contrast, only mildly elevated OPvDTT values (up to 1.5 nmol min-1 m-3) were observed during this dust event. This observation indicates that variations in OPvDTT cannot be fully explained using PM2.5 alone; one must also consider the chemical composition of PM2.5 when studying aerosol health effects. Our study highlights the need for continued pollution control strategies to reduce primary PM emissions, and more in-depth investigations into the source origins of OOA, to minimize the health risks associated with PM exposure in Beijing.

7.
Sci Total Environ ; 871: 162185, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36775154

RESUMO

Atmospheric δ15N-NO3- has been used to reveal NOx (NO + NO2) sources as NO3- is the ultimate sink of NOx. However, it remains questionable whether the nitrogen isotope fractionation among NOy (NO, NO2, NO3, N2O5, HNO3 and NO3-) engender the misjudgment of NOx emission sources by affecting δ15N-NOy. To explore this issue, we integrated the dataset of aerosol δ15N-NO3- values and ratios of fNO2 (fNO2 = NO2/(NO2 + NO)), calculated the nitrogen isotope fractionation factors (Δs) among NOy, compared the total energy consumption in Beijing-Tianjin-Hebei region (BTH) from 2013 to 2018. Results showed that, although the total energy consumption structure changed from 2013 to 2018 in BTH, there were fewer interannual variances of aerosol δ15N-NO3- values. Nitrogen isotope fractionation factors between NO and NO2 (Δ0), NO2 and NO3 (Δ2), NO2 and N2O5 (Δ3), NO2 and ClONO2 (Δ4) also displayed less interannual variations from 2013 to 2018 in BTH. But both aerosol δ15N-NO3- and Δs displayed significant seasonal patterns, and there was significant relationship between monthly aerosol δ15N-NO3- and Δs, which suggested that Δs have important influence on shaping aerosol δ15N-NO3- and further discriminating NOx emission sources. This study implies that we should refine the Δs when employing atmospheric δ15N-NO3- to quantify NOx source allocation.

8.
Environ Sci Technol ; 46(9): 4783-91, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22475345

RESUMO

Size-resolved airborne particles (9-stages) in urban Xi'an, China, during summer and winter were measured for molecular distributions and stable carbon isotopic compositions of dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls. To our best knowledge, we report for the first time the size-resolved differences in stable carbon isotopic compositions of diacids and related compounds in continental organic aerosols. High ambient concentrations of terephthalic (tPh, 379 ± 200 ng m(-3)) and glyoxylic acids (ωC(2), 235 ± 134 ng m(-3)) in Xi'an aerosols during winter compared to those in other Chinese cities suggest significant emissions from plastic waste burning and coal combustions. Most of the target compounds are enriched in the fine mode (<2.1 µm) in both seasons peaking at 0.7-2.1 µm. However, summertime concentrations of malonic (C(3)), succinic (C(4)), azelaic (C(9)), phthalic (Ph), pyruvic (Pyr), 4-oxobutanoic (ωC(4)), and 9-oxononanoic (ωC(9)) acids, and glyoxal (Gly) in the coarse mode (>2.1 µm) are comparable to and even higher than those in the fine mode (<2.1 µm). Stable carbon isotopic compositions of the major organics are higher in winter than in summer, except oxalic acid (C(2)), ωC(4), and Ph. δ(13)C of C(2) showed a clear difference in sizes during summer, with higher values in fine mode (ranging from -22.8‰ to -21.9‰) and lower values in coarse mode (-27.1‰ to -23.6‰). The lower δ(13)C of C(2) in coarse particles indicate that coarse mode of the compound originates from evaporation from fine mode and subsequent condensation/adsorption onto pre-existing coarse particles. Positive linear correlations of C(2), sulfate and ωC(2) and their δ(13)C values suggest that ωC(2) is a key intermediate, which is formed in aqueous-phase via photooxidation of precursors (e.g., Gly and Pyr), followed by a further oxidation to produce C(2).


Assuntos
Poluição do Ar/análise , Ácidos Dicarboxílicos/análise , Cetonas/análise , Aerossóis , Isótopos de Carbono/análise , China , Tamanho da Partícula , Estações do Ano
9.
J Environ Monit ; 14(11): 3000-8, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23023835

RESUMO

Precipitation samples were collected at an urban site in Xi'an, northwest China during March to November in 2009 and were then analyzed to determine the pH and concentrations of water-soluble inorganic ions (Na(+), NH(4)(+), K(+), Mg(2+), Ca(2+), SO(4)(2-), NO(3)(-), Cl(-), and F(-)) in precipitation. The pH of precipitation ranged from 4.1 to 7.6 for all of the samples with an annual volume-weighted mean of 6.4. While a large portion of the precipitation events were weakly acidic or alkaline, around 30% of the precipitation events in the autumn were strongly acidic. Precipitation events with air masses from the northeast and the southeast were weakly acidic while those with air masses from the northwest and the southwest were alkaline. SO(4)(2-), Ca(2+), NH(4)(+), and NO(3)(-) were dominant ions in the precipitation, accounting for 37%, 25%, 18%, and 9%, respectively, of the total analyzed ions. Ca(2+) and NH(4)(+) were found to be the major neutralizers of precipitation acidity; however, the contribution of Mg(2+), although much lower than those of Ca(2+) and NH(4)(+), was important, in many cases, in changing the precipitation from weakly acidic to weakly alkaline. Enrichment factor analysis confirmed that SO(4)(2-) and NO(3)(-) were produced from anthropogenic sources, Ca(2+), K(+), and 80% Mg(2+) were from crustal sources, and Na(+), Cl(-), and ∼20% of Mg(2+) were from marine sources. The annual wet depositions were estimated to be 3.5 t km(-2) per year for sulfur; 2.3 t km(-2) per year for nitrogen, of which 0.8 t km(-2) per year was oxidized nitrogen and 1.5 t km(-2) per year was reduced nitrogen; and 3.0 t km(-2) per year for Ca(2+).


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Chuva/química , Poluição do Ar/estatística & dados numéricos , China , Cidades , Concentração de Íons de Hidrogênio , Íons/análise , Estações do Ano , Solubilidade
10.
Environ Pollut ; 299: 118907, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35091017

RESUMO

Worship activities like burning joss paper during the Chinese Hanyi festival is a common, traditional custom in northwest China. However, the pollutants of e.g., soot particles, released from joss paper burning and the corresponding impacts on urban air quality were poorly investigated, which can be a particular concern since these activities are conducted in an uncontrolled manner. In this study, a long time-of-flight (LToF) soot particle aerosol mass spectrometry (SP-AMS) was deployed to characterize the refractory black carbon (rBC) emitted from the joss paper burning, as well as crop residue, coal combustion, and traffic during the Hanyi Festival in mid-November 2020 in the northwestern city of Xi'an in China. Large difference (from <5% to >100%) in the fragmentation patterns (Cn+) for the measured rBC from different source emissions were found when compared to the reference Regal Black. Using the receptor model of positive matrix factorization (PMF) with the multilinear engine (ME-2) algorithm, the obtained rBC mass spectra were used as the anchoring profiles to evaluate the emission strengths of different source types to the atmospheric rBC. Our results show that the burning of joss paper accounted for up to 42% of the atmospheric rBC mass, higher than traffic (14-17%), crop residue (10-17%), coal (18-20%) during the Hanyi festival in northwest China. Moreover, we show that the overall air quality can be worsened due to the practice of uncontrolled burning of joss paper during the festival, which is not just confined to the people who do the burning. Although worship activities occur mainly during festival periods, the pollution events contributed by joss paper burning may pose an acute exposure risk for public health. This is particularly important since burning joss paper during worship activities is common in China and most Asian countries with similar traditions.


Assuntos
Poluentes Atmosféricos , Fuligem , Aerossóis/análise , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental/métodos , Humanos , Material Particulado/análise , Estações do Ano , Fuligem/análise
11.
Chemosphere ; 305: 135489, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35777547

RESUMO

The formation of secondary aerosol species, including nitrate and sulfate, induces severe haze in the North China Plain. However, despite substantial reductions in anthropogenic pollutants due to severe restriction of residential and industrial activities in 2020 to stop the spread of COVID-19, haze still formed in Zhengzhou. We compared ionic compositions of PM2.5 during the period of the restriction with that immediately before the restriction and in the comparison period in 2019 to investigate the processes that caused the haze. The average concentration of PM2.5 was 83.9 µg m-3 in the restriction period, 241.8 µg m-3 before the restriction, and 94.0 µg m-3 in 2019. Nitrate was the largest contributor to the PM2.5 in all periods, with an average mass fraction of 24%-30%. The average molar concentration of total nitrogen compounds (NOx + nitrate) was 0.89 µmol m-3 in the restriction period, which was much lower than that in the non-restriction periods (1.85-2.74 µmol m-3). In contrast, the concentration of sulfur compounds (SO2 + sulfate) was 0.34-0.39 µmol m-3 in all periods. The conversion rate of NOx to nitrate (NOR) was 0.35 in the restriction period, significantly higher than that before the restriction (0.26) and in 2019 (0.25). NOR was higher with relative humidity in 40-80% in the restriction period than in the other two periods, whereas the conversion rate of SO2 to sulfate did not, indicating nitrate formation was more efficient during the restriction. When O3 occupied more than half of the oxidants (Ox = O3 + NO2), NOR increased rapidly with the ratio of O3 to Ox and was much higher in the daytime than nighttime. Therefore, haze in the restriction period was caused by increased NOx-to-nitrate conversion driven by photochemical reactions.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , China , Monitoramento Ambiental , Humanos , Nitratos/análise , Óxidos de Nitrogênio/análise , Material Particulado/análise , Estações do Ano , Sulfatos/análise
12.
Sci Total Environ ; 810: 151307, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34748827

RESUMO

Atmospheric brown carbon (BrC) is a light-absorbing component that affects radiative forcing; however, this effect requires further clarification, particularly with respect to BrC emission sources, chromophores, and optical properties. In the present study, the concentrations, optical properties, and emission factors of organic carbon (OC), water-soluble OC (WSOC), and humic-like substances (HULIS) in fine particulate matter (PM2.5) emitted from vehicles in three road tunnels (the Wucun, Xianyue, and Wenxing tunnels in Xiamen, China) were investigated. The mass concentrations and light absorption of OC, WSOC, and HULIS were higher at the exits of each tunnel than at entrances, demonstrating that vehicle emissions were a BrC source. At each tunnel's exit, the average light absorption contributed by HULIS-BrC to water-soluble BrC (WS-BrC) and total BrC at 365 nm was higher than the corresponding carbon mass concentration contributed by HULIS (HULIS-C) to WSOC and OC, indicating that the chromophores of HULIS emitted from vehicles had a disproportionately high effect on the light absorption characteristics of BrC. The emission factors (EFs) of HULIS-C and WSOC mass concentrations were highest at the Xianyue tunnel; however, the EFs of HULIS-BrC and WS-BrC light absorption were highest at the Wenxing tunnel, indicating that the chromophore composition of BrC was different among the tunnels and that the mass concentration EFs did not correspond directly to the light absorption EFs.


Assuntos
Poluentes Atmosféricos , Carbono , Aerossóis/análise , Poluentes Atmosféricos/análise , Carbono/análise , Monitoramento Ambiental , Material Particulado/análise
13.
Sci Total Environ ; 812: 151451, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34780830

RESUMO

Organic nitrogen constitutes a significant fraction of the nitrogen budget in particulate matter (PM). However, the composition and sources of nitrogen-containing organic compounds (NOCs) in PM remain unclear currently in North China Plain (NCP), China. Rare local or regional studies on NOCs were conducted. In this study, ambient fine particles (PM2.5) were collected in Xianghe, a regional background site in NCP, from 26 October to 26 December 2017. The insights from this study include NOC molecule identification, concentration level, and NOC sources and origins. Specifically, we have identified and quantified >90 NOC species, with urea being the most abundant, accounting for 39.7 ± 4.7% of the total NOC followed by free amino acids (FAAs; 21.9 ± 1.5%), cyclic NOCs (15.3 ± 4.5%), amines (14.8 ± 1.5%), alkyl amides (5.8 ± 0.5%), isocyanates (1.7 ± 0.2%), and nitriles (1.1 ± 0.2%). The time series of FAAs was well correlated (r = 0.51-0.68, p < 0.01) with the organic marker of levoglucosan and was moderately correlated with Ox (r = 0.29-0.41, p < 0.01), suggesting biomass burning and secondary formation were important FAAs sources. We also show that amines can be oxidized and/or reacted by aqueous-phase processing to form secondary aerosols, which are further enhanced by the involvement of iron in the catalytic process. Using the receptor model of positive matrix factorization (PMF), six factors were identified including coal combustion, crustal sources, biomass burning, industry-related sources, traffic emissions, and secondary aerosols. Source apportionment of NOC shows biomass burning was the dominant factor, accounting for 31.8% of the total NOCs. This study provides a unique dataset of NOCs at this regional background site in the NCP, with the insights of NOC chemical composition and sources gained in this study being important for future NOC modeling as well as NOC health effects studies.


Assuntos
Poluentes Atmosféricos , Aerossóis/análise , Poluentes Atmosféricos/análise , Aminas , China , Monitoramento Ambiental , Nitrogênio , Compostos de Nitrogênio , Material Particulado/análise , Estações do Ano , Emissões de Veículos/análise
14.
Sci Total Environ ; 852: 158459, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36063936

RESUMO

A Regional Air Quality Model System (named RAQMS) coupled with a developed dust model driven by WRF was applied to synthetically investigate the emission, transport, deposition, budget, and chemical and radiative effects of mineral dust during the severe dust storm periods of 10-31 March 2021. Model results were validated against a variety of ground, vertical and satellite observations, which demonstrated a generally good model ability in reproducing meteorological variables, particulate matter and compositions, and aerosol optical properties. The first dust storm (DS1), which was the severest one since 2010 was originated from the Gobi Desert in southern Mongolia on 14 March, with the dust emission flux reaching 2785 µg m-2 s-1 and the maximum dust concentration exceeding 18,000 µg m-3 in the dust deflation region. This dust storm resulted in remarkably high hourly PM10 observations up to 7506 µg m-3, 1887 µg m-3, and 2704 µg m-3 in Beijing, Tianjin, and Shijiazhuang on 15 March, respectively, and led to a maximum decrease in surface shortwave radiation up to 313.4 W m-2 (72 %) in Beijing. The second dust storm (DS2) broke out in the deserts of eastern Mongolia, with lower dust emission than the first one. The extinction of shortwave radiation by dust aerosols led to a reduction in photolysis rate and consequently decreases in O3 and secondary aerosol concentrations over the North China Plain (NCP), whereas total sulfate and nitrate concentrations consistently increased due to heterogeneous reactions on dust surfaces over the middle reaches of the Yellow River and the NCP region during DS1. Sulfate and nitrate formation through heterogeneous reactions were enhanced in the dust backflow on 16-17 March by approximately 18 % and 24 % on average in the NCP. Heterogeneous reactions and photolysis rate reduction by mineral dust jointly led to average changes in sulfate, nitrate, ammonium, and secondary organic aerosol (SOA) concentrations by 13.0 %, 13.5 %, -12.3 %, and -4.4 %, respectively, in the NCP region during DS1, larger than the changes in the Yangtze River Delta (YRD). The maximum dry deposition settled in the 7-11 µm size range in downwind land and ocean areas, while wet deposition peaked in the 4.7-7 µm size range in the entire domain. Wet deposition was approximately twice the dry deposition over mainland China except for dust source regions. During 10-31 March, the total dust emission, dry and wet depositions were estimated to be 31.4 Tg, 13.78 Tg and 4.75 Tg, respectively, with remaining 12.87 Tg of dust aerosols (41 % of the dust emission) suspending in the atmosphere or transporting to other continents and oceans.


Assuntos
Poluentes Atmosféricos , Compostos de Amônio , Poluentes Atmosféricos/análise , Nitratos/análise , Monitoramento Ambiental/métodos , Poeira/análise , Aerossóis/análise , Material Particulado/análise , Ásia Oriental , Minerais , China , Sulfatos/análise , Estações do Ano
15.
Sci Total Environ ; 842: 156949, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35753467

RESUMO

Southeast Asia is one of the largest biomass burning (BB) source regions in the world. In order to promote our understanding of BB aerosol characteristics and environmental impacts, this study investigated the emission, composition, evolution, radiative effects, and feedbacks of BB aerosols from Mainland Southeast Asia during 15 March to 15 April 2019 by using an online-coupled regional chemistry/aerosol-climate model RIEMS-Chem. Model results are compared against a variety of ground and vertical observations, indicating a generally good model performance for meteorology, aerosol chemical compositions, and aerosol optical properties. It is found that BB aerosols contributed significantly to regional particulate matter (PM), accounting for up to 90 % of the near-surface PM2.5, BC, and OC concentrations over the BB source regions of north Mainland Southeast Asia and for approximately 30-70 % over wide downwind areas including most areas of southwest China and portions of south China. At the top of atmosphere (TOA), BB aerosols exerted a positive all-sky radiative effect (DREBB) up to 25 W/m2 over north Vietnam and south China, a negative DREBB up to -10 W/m2 over Myanmar, western Thailand, and southwest China. Meanwhile, the indirect radiative effect (IREBB) was consistently negative, with the maximum of -10 W/m2 over downwind areas with cloud coverage, e.g., from north Vietnam to most of south China. The subregional (95-125°E and 10-30°N) and period mean DREBB and IREBB at TOA were estimated to be 0.69 W/m2 and - 0.63 W/m2, respectively, leading a total radiative effect (TREBB) of 0.06 W/m2 at TOA. The radiative effects of BB aerosols led to decreases in sensible and latent heat fluxes, near-surface temperature, PBL height, and wind speed of 6.0 Wm-2, 9.0 Wm-2, 0.26 °C, 38.7 m, and 0.1 m/s, respectively, accompanied with an increase in RH of 1.9 %, averaged over the subregion and the study period. The accumulated precipitation during the study period was apparently reduced by BB aerosols from east Thailand to south China, with the maximum reduction up to 14 cm (exceeding 40 %) over north Vietnam and south China. TREBB tended to increase mean near-surface PM2.5 and its component concentrations, with the maximum percentage increase up to 24 % over the BB source regions of north Mainland Southeast Asia, resulting from the combined effects of dynamic and chemical feedbacks. DREBB generally dominated over IREBB in the feedback-induced PM2.5 concentration changes.


Assuntos
Poluentes Atmosféricos , Aerossóis/análise , Poluentes Atmosféricos/análise , Sudeste Asiático , Biomassa , China , Monitoramento Ambiental/métodos , Retroalimentação , Material Particulado/análise , Estações do Ano
16.
Environ Sci Pollut Res Int ; 29(8): 11865-11873, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34553281

RESUMO

Fine particulate matter (PM2.5) has been linked to cardiopulmonary disease and systemic effects in humans. However, few studies have investigated the particle bioreactivity in Chinese megacities during haze episodes. The objective of this study was to determine the contributions of chemical components in PM2.5 to particle bioreactivity in Chinese megacities during haze episodes. PM2.5 samples were collected in 14 megacities across China from 23 December 2013 to 16 January 2014. Average PM2.5 concentrations ranged 88.92~199.67 µg/m3. Organic carbon (OC), elemental carbon (EC), anions, and cations per unit of PM2.5 were linked to cellular bioreactivity (i.e., reactive oxygen species (ROS) as assessed by dichlorodihydrofluorescein diacetate (DCFH) and inflammation as assessed by interleukin (IL)-6 in A549 cells). The contributions of chemicals in PM2.5 to ROS and inflammation were examined by the Pearson correlation coefficient and random forests. These results indicated that OC, Ca2+, SO42-, Cl-, F-, K+, and NO3- contributed to ROS production, whereas OC, Cl-, EC, K+, F-, Na+, and Ca2+ contributed to inflammation. In conclusion, PM2.5-contained OC and acidic ions are important in regulation of oxidative stress and inflammation during haze episodes. Our findings suggest that severe haze PM2.5 events cause deterioration in air quality and may adversely affect human health.


Assuntos
Poluentes Atmosféricos , Aerossóis/análise , Poluentes Atmosféricos/análise , Carbono/análise , China , Cidades , Monitoramento Ambiental , Humanos , Íons/análise , Tamanho da Partícula , Material Particulado/análise , Estações do Ano
17.
J Air Waste Manag Assoc ; 61(8): 843-9, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21874955

RESUMO

Visual range (VR) data from 1981 to 2005 were examined for 20 meteorological monitoring sites in the Yangtze River Delta Region of China. Cumulative percentile analysis was used to construct VR trend. The 25-yr average domain-average 50% VR was approximately 21.9 +/- 1.9 km. Domain-average 50% VR decreased from 1981 to 2005 with a trend of -2.41 km/decade. The worst 20% and 50% and best 20% VR and variation rates for the 20 sites were analyzed. The 50% VR of the town, county-level city, and prefecture-level city sites were 24.1, 21.5, and 19.4 km, respectively. The best 20% VR decreased fastest with a rate of -3.5 km/decade. Regional median VR decreased from the coastal sites to the inland sites. Ridit analysis and cumulative percentile were adopted to study the VR variation properties between economically developed areas (e.g., Nanjing and Hangzhou) and remote areas (e.g., Lvsi). The two analyses show that VR decreased in Nanjing and Hangzhou but remained constant in Lvsi from 1981 to 2005.


Assuntos
Monitoramento Ambiental/métodos , Algoritmos , China , Cidades , Interpretação Estatística de Dados , Rios
18.
Sci Total Environ ; 801: 149749, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34428665

RESUMO

Knowledge of aerosol hygroscopicity is essential to assess visibility improvement and aerosol radiative forcing. Aerosol hygroscopicity is highly dependent on emission sources, while the hygroscopicity of different sources remains largely unexplored. In the current study, the hygroscopic growth factor (i.e., f(RH)) and relevant chemical compositions (e.g., water-soluble inorganic ions, carbonaceous fractions and elements) in fine particles were synchronously measured for nearly 3 months within 2019-2020 in an urban site of Guangzhou. The mean value (± standard deviation) of f(RH) at 70% RH was 1.50 (± 0.11). The diurnal cycle in aerosol hygroscopic growth strongly depended on the mass fraction of hydrophilic chemical compositions (e.g., SO42-, NO3- and NH4+) in fine particles and variation in contributions of aerosol sources. A Positive Matrix Factorization model was applied to distinguish the different hygroscopicity of specific source factors in a mixed aerosol. Secondary nitrate and secondary sulfate were more hydrophilic, whereas emissions from primary combustion processes (i.e., ship emission, coal combustion and road traffic) were less hygroscopic. Soil dust was almost insoluble. The hygroscopic growth of each source was parameterized that quantified the emission sources and f(RH) relationship for use of air quality and radiative transfer models either as input or as validation.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , China , Estações do Ano , Molhabilidade
19.
Sci Total Environ ; 753: 141742, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-32896731

RESUMO

To investigate the effects of shipping aerosols on radiation, cloud physical properties, and near-surface PM2.5, four sensitive experiments with the WRF-Chem model were performed over coastal areas near Shanghai for July 2014. In general, the direct effect of shipping aerosols resulted in negative shortwave (SW) radiation forcing at the land surface. However, when considering the indirect effect, the downward SW radiation at the sea surface declined significantly. By the direct effect, shipping aerosols could modify cloud structure, resulting in a higher cloud base, lower cloud top, and shallower cloud depth. With the indirect effect included, both the cloud base and cloud top showed a declining trend over sea areas. The indirect effect of shipping aerosols was relatively more significant in influencing clouds. For example, the results revealed a 1.2% change of low cloud coverage from the indirect effect but only a 0.1% change due to the direct effect. Through their direct and indirect effects, shipping aerosols cause non-negligible impacts on precipitation, which are concentrated within light precipitation (<0.1 mm h-1). Finally, we concluded that after considering the shipping aerosols, the peak of the cloud droplet spectrum increases by about 50 cm-3/µm. It can be found that when the average volume radius of the cloud droplet is less than 2 µm, the number concentration of cloud droplets increases sharply, and when the average radius of the cloud drop is greater than 2 µm and less than 5 µm, the cloud droplet number concentration drops sharply.

20.
Sci Total Environ ; 773: 145264, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33940722

RESUMO

The atmospheric oxidation capacity (AOC) and photochemical reactivity are of increasing concern owing to their roles in photochemical pollution. The AOC and OH reactivity were evaluated based on simultaneous measurements of volatile organic compounds (VOCs), trace gases and photolysis frequency during summer and winter campaigns at a suburban site in Xianghe. The AOC exhibited well-defined seasonal and diurnal patterns, with higher intensities during the summertime and daytime than during the wintertime and nighttime, respectively. The major reductants contributing to the AOC during the summertime were CO (41%) and alkenes (41%), whereas CO (40%) and oxygenated VOCs (OVOCs) (30%) dominated the AOC during the wintertime. The dominant oxidant contributor to the AOC during the daytime was OH (≥93%), while the contributions of O3 and NO3 (≥75%) to the AOC increased during the nighttime. High values during the wintertime and an increase at night were features of the speciated OH reactivity. Inorganic compounds (NOx and CO) dominated the speciated OH reactivity (76% and 85% during the summer and winter campaigns, respectively). Among VOCs, the dominant contributors were alkenes (12%) and OVOCs (7%) during the summer and winter campaigns, respectively. The ratio of NOx- and VOC-attributed OH reactivity indicated that O3 formation occurred under a VOC-limited regime during the summertime and that aromatics had the largest potential to form O3. Isoprene and m/p-xylene were the most important contributors to the AOC, OH reactivity and O3-forming among VOCs during the summertime, biogenic sources and secondary formation and industrial production were the main sources of these species. During the wintertime, hexanal and ethylene were the key VOC species contributing to the AOC and OH reactivity, and solvent usage and traffic-related emissions were the main contributing sources. We recommend that priority measures for the control of VOC species and sources should be taken when suitable. CAPSULE: This study focused on the similarities and differences in the AOC and speciated OH reactivity during summer and winter campaigns.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA