Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Anal Chem ; 96(4): 1659-1667, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38238102

RESUMO

Cancer-cell-specific fluorescent photosensitizers (PSs) are highly desired molecular tools for cancer ablation with minimal damage to normal cells. However, such PSs that can achieve cancer specification and ablation and a self-reporting manner concurrently are rarely reported and still an extremely challenging task. Herein, we have proposed a feasible strategy and conceived a series of fluorescent PSs based on simple chemical structures for identifying and killing cancer cells as well as monitoring the photodynamic therapy (PDT) process by visualizing the change of subcellular localization. All of the constructed cationic molecules could stain mitochondria in cancer cells, identify cancer cells specifically, and monitor cancer cell viability. Among these, IVP-Br has the strongest ability to produce ROS, which serves as a potent PS for specific recognition and killing of cancer cells. IVP-Br could translocate from mitochondria to the nucleolus during PDT, self-reporting the entire therapeutic process. Mechanism study confirms that IVP-Br with light irradiation causes cancer cell ablation via inducing cell cycle arrest, cell apoptosis, and autophagy. The efficient ablation of tumor through PDT induced by IVP-Br has been confirmed in the 3D tumor spheroid chip. Particularly, IVP-Br could discriminate cancer cells from white blood cells (WBCs), exhibiting great potential to identify circulating tumor cells (CTCs).


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Apoptose , Mitocôndrias/metabolismo , Corantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo
2.
J Chem Phys ; 160(24)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940287

RESUMO

Multicomponent macromolecular mixtures often form higher-order structures, which may display non-ideal mixing and aging behaviors. In this work, we first propose a minimal model of a quaternary system that takes into account the formation of a complex via a chemical reaction involving two macromolecular species; the complex may then phase separate from the buffer and undergo a further transition into a gel-like state. We subsequently investigate how physical parameters such as molecular size, stoichiometric coefficients, equilibrium constants, and interaction parameters affect the phase behavior of the mixture and its propensity to undergo aging via gelation. In addition, we analyze the thermodynamic stability of the system and identify the spinodal regions and their overlap with gelation boundaries. The approach developed in this work can be readily generalized to study systems with an arbitrary number of components. More broadly, it provides a physically based starting point for the investigation of the kinetics of the coupled complex formation, phase separation, and gelation processes in spatially extended systems.

3.
Anal Chem ; 95(39): 14787-14796, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37726214

RESUMO

Discriminatively visualizing mitochondrial and lysosomal dysfunction is crucial for an in-depth understanding of cell apoptosis regulation and relative biology. However, fluorescent probes for the separate visualization of lysosomal and mitochondria damages have not been reported yet. Herein, we have constructed a fluorescent probe [2-(4-hydroxystyryl)-1,3,3-trimethyl-3H-indol-1-ium iodide (HBSI)] for labeling mitochondria and lysosomes in dual emission colors and discriminatively imaging mitochondrial and lysosomal damage in two different sets of fluorescent signals. In living cells, HBSI targeted both lysosomes and mitochondria to give green and red emission, respectively. During mitochondrial damages, HBSI immigrated into lysosomes, and the red emission decreased. During lysosomal damage, HBSI immigrated into mitochondria, and the green emission decreased. With the robust probe, the different damaging sequences of mitochondria and lysosomes under different amounts of H2O2 and chloral hydrate have been revealed. The sequential damage of lysosomes and mitochondria during cell apoptosis induced by rotenone, paclitaxel, and colchicine has been discovered. Furthermore, the regulation of mitochondria, lysosome, and their interplay during autophagy was also observed with the probe.


Assuntos
Apoptose , Peróxido de Hidrogênio , Peróxido de Hidrogênio/metabolismo , Autofagia , Lisossomos/metabolismo , Mitocôndrias , Corantes Fluorescentes/toxicidade , Corantes Fluorescentes/metabolismo
4.
Int J Mol Sci ; 24(1)2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36613778

RESUMO

Hydrogels have been utilized extensively in the field of cutaneous wound treatment. The introduction of nanomaterials (NMs), which are a big category of materials with diverse functionalities, can endow the hydrogels with additional and multiple functions to meet the demand for a comprehensive performance in wound dressings. Therefore, NMs-functionalized hydrogels (NMFHs) as wound dressings have drawn intensive attention recently. Herein, an overview of reports about NMFHs for the treatment of cutaneous wounds in the past five years is provided. Firstly, fabrication strategies, which are mainly divided into physical embedding and chemical synthesis of the NMFHs, are summarized and illustrated. Then, functions of the NMFHs brought by the NMs are reviewed, including hemostasis, antimicrobial activity, conductivity, regulation of reactive oxygen species (ROS) level, and stimulus responsiveness (pH responsiveness, photo-responsiveness, and magnetic responsiveness). Finally, current challenges and future perspectives in this field are discussed with the hope of inspiring additional ideas.


Assuntos
Hidrogéis , Nanoestruturas , Hidrogéis/uso terapêutico , Pele , Hemostasia , Administração Cutânea
5.
Compr Rev Food Sci Food Saf ; 19(4): 2297-2329, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33337082

RESUMO

As a global public health problem, food safety has attracted increasing concern. To minimize the risk exposure of food to harmful ingredients, food quality and safety inspection that covers the whole process of "from farm to fork" is much desired. Fluorescent sensing is a promising and powerful screening tool for sensing hazardous substances in food and thus plays a crucial role in promoting food safety assurance. However, traditional fluorphores generally suffer the problem of aggregation-caused quenching (ACQ) effect, which limit their application in food quality and safety inspection. In this regard, luminogens with aggregation-induced emission property (AIEgens) showed large potential in food analysis since AIEgens effectively surmount the ACQ effect with much better detection sensitivity, accuracy, and robustness. In this contribution, we review the latest developments of food safety monitoring by AIEgens, which will focus on the molecular design of AIEgens and their sensing principles. Several examples of AIE-based sensing applications for screening food contaminations are highlighted, and future perspectives and challenges in this emerging field are tentatively elaborated. We hope this review can motivate new research ideas and interest to aid food safety and quality control, and facilitate more collaborative endeavors to advance the state-of-the-art sensing developments and reduce actual translational gap between laboratory research and industrial production.


Assuntos
Corantes Fluorescentes/química , Análise de Alimentos/métodos , Contaminação de Alimentos/análise , Qualidade dos Alimentos , Inocuidade dos Alimentos , Medições Luminescentes , Controle de Qualidade
6.
Anal Chem ; 91(4): 2672-2677, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30545215

RESUMO

The mitochondrial membrane potential (MMP) definitely reflects mitochondrial function. Thus, it is very essential to found a physical parameter as MMP indicator. At present, available parameters are either fluorescent intensity of monochromatic probes such as rhodamine 123 or a ratio of fluorescent intensity at different wavelengths of dual-color dyes such as JC-1, but the inconvenience in practice as well as serious effect of loading concentrations on experimental results limited their application. To address this concern, herein,we found a reliable and easily obtainable colocalization coefficient (CLC) of a fluorescent probe as new MMP indicator and developed a target switchable fluorescent probe (Mito-Lyso) to attain the aim. Because of its intrinsic nature, Mito-Lyso exclusively stains mitochondria with normal MMP and a subsequent decreasing of MMP results in release of some Mito-Lyso. Importantly, the released Mito-Lyso can reversibly transfer between mitochondria and lysosomes. Thus, CLCs of Mito-Lyso and a commercial lysosomal probe (NIR-Lyso) can be MMP-dependent. CLCs gradually increased from 0.20 to 0.8 with the decreasing of MMP and then returned to 0.3 with the recovering of MMP, which better proves that the CLC is a valuable MMP indicator. Furthermore, both the design principle and action mechanism of Mito-Lyso has been explained in detail for the development of this type of probes.


Assuntos
Benzopiranos/química , Cumarínicos/química , Corantes Fluorescentes/química , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Piridinas/química , Benzopiranos/síntese química , Linhagem Celular Tumoral , Cumarínicos/síntese química , Cumarínicos/toxicidade , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/toxicidade , Humanos , Lisossomos/metabolismo , Microscopia de Fluorescência/métodos , Piridinas/síntese química
7.
Anal Chem ; 89(6): 3335-3344, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28192959

RESUMO

The feedback from mitochondrial membrane potential (MMP) in different situations (normal, decreasing, and vanishing) can reflect different cellular status, which can be applied in biomedical research and diagnosis of the related diseases. Thus, the efficient and convenient detection for MMP in different situations is particularly important, yet the operations of current fluorescent probes are complex. In order to address this concern, we presented herein a spatially dependent fluorescent probe composed of organic cationic salt. The experimental results from normal and immortalized cells showed that it could accumulate in mitochondria selectively when MMP was normal. Also, it would move into the nucleus from mitochondria gradually with the decrease of MMP, and finally it targeted the nucleus exclusively when MMP vanished. According to the cell morphology, there is a straightforward spatial boundary between the nucleus and cytoplasm where mitochondria locate; thus, the three situations of MMP can be point-to-point indicated just by fluorescence images of the probe: that all probes accumulate in mitochondria corresponds to normal MMP; that probes locate both in the mitochondria and nucleus corresponds to decreasing MMP; that probes only target the nucleus corresponds to vanishing MMP. It is worth noting that counterstaining results with S-11348 indicated that the spatially dependent probe could be applied to distinguishing dead from viable cells in the same cell population. Compared with the commercial Cellstain-Double staining kit containing calcein-AM and propidium iodide (PI), this probe can address this concern by itself and shorten the testing time, which brings enormous convenience for relevant researches.


Assuntos
Corantes Fluorescentes/análise , Corantes Fluorescentes/química , Potencial da Membrana Mitocondrial , Corantes Fluorescentes/síntese química , Células HeLa , Humanos , Microscopia Confocal , Microscopia de Fluorescência , Estrutura Molecular , Imagem Óptica , Células Tumorais Cultivadas
8.
Anal Chem ; 89(12): 6575-6582, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28513170

RESUMO

In situ and directly imaging mitochondria in tissues instead of isolated cells can offer more native and accurate information. Particularly, in the clinical diagnose of mitochondrial diseases such as mitochondrial myopathy, it is a routine examination item to directly observe mitochondrial morphology and number in muscle tissues from patients. However, it is still a challenging task because the selectivity of available probes is inadequate for exclusively tissue imaging. Inspired by the chemical structure of amphiphilic phospholipids in mitochondrial inner membrane, we synthesized a phospholipid-biomimetic amphiphilic fluorescent probe (Mito-MOI) by modifying a C18-alkyl chain to the lipophilic side of carbazole-indolenine cation. Thus, the phospholipid-like Mito-MOI locates at mitochondrial inner membrane through electrostatic interaction between its cation and inner membrane negative charge. Simultaneously, the C18-alkyl chain, as the second targeting group, is deeply embedded into the hydrophobic region of inner membrane through hydrophobic interaction. Therefore, the dual targeting groups (cation and C18-alkyl chain) actually endow Mito-MOI with ultrahigh selectivity. As expected, high-resolution microscopic photos showed that Mito-MOI indeed stained mitochondrial inner membrane. Moreover, in situ and high-fidelity tissue imaging has been achieved, and particularly, four kinds of mitochondria and their crystal-like structure in muscle tissues were visualized clearly. Finally, the dynamic process of mitochondrial fission in living cells has been shown. The strategy employing dual targeting groups should have reference value for designing fluorescent probes with ultrahigh selectivity to various intracellular membranous components.


Assuntos
Materiais Biomiméticos/química , Corantes Fluorescentes/análise , Corantes Fluorescentes/química , Mitocôndrias/química , Imagem Molecular , Imagem Óptica , Fosfolipídeos/química , Animais , Materiais Biomiméticos/análise , Células Cultivadas , Estrutura Molecular , Ratos , Espectrometria de Fluorescência
9.
Analyst ; 141(11): 3228-32, 2016 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-27160329

RESUMO

Based on styrylpyridine salts, a small-molecule red emitting membrane probe with large two-photon absorption cross-section has been synthesized. As a molecular rotor, it enables exclusive lighting up of the plasma membrane in live cells and particular tissues. This probe has the potential to be a powerful tool for bioimaging.


Assuntos
Membrana Celular/química , Piridinas/química , Sais/química , Animais , Corantes Fluorescentes , Células HeLa , Humanos , Fígado/diagnóstico por imagem , Músculo Esquelético/diagnóstico por imagem , Fótons , Ratos
10.
Anal Chem ; 87(24): 12088-95, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26585577

RESUMO

Herein, we reported a red-emitting probe (E)-4-(2-(8-hydroxy-julolidine-9-yl)vinyl)-1-methylpyridin-1-ium iodide (HJVPI) on a rotor mechanism with an ultrahigh signal-to-noise ratio. HJVPI could give high-fidelity fluorescent images of mitochondria in living immortalized and normal cells and be suitable for IR excitation source of two-photon microscopy and various excitation sources of confocal microscopy. As a rotor, its single/two-photon fluorescence intensities directly depended on environmental viscosity. And, as a mitochondrial probe, it displayed much larger two-photon absorption cross sections in comparison with commercial MitoTracker Green FM and MitoTracker Red FM. Moreover, the fact that living cells stained by HJVPI still possessed physiological function could also be confirmed: (1) MTT assay demonstrated that the mitochondria of cells stained retained their electron mediating ability and (2) double assay of HJVPI and SYTOX Blue nucleic acid stain (S-11348) showed that the plasma membrane of the cells stained was still intact. In addition, HJVPI possessed a number of beneficial properties in bioimaging such as good membrane permeability, high photostability, and excellent counterstain compatibility with Hoechst 33342. Related mechanism research suggested that its localization property was dependent on the mitochondrial membrane potential in living cells. All its remarkable properties can extend the investigation on mitochondria in a biological context.


Assuntos
Técnicas Citológicas/instrumentação , Mitocôndrias , Sobrevivência Celular , Citometria de Fluxo , Células HeLa , Humanos , Microscopia Confocal , Microscopia de Fluorescência , Razão Sinal-Ruído , Coloração e Rotulagem
11.
PNAS Nexus ; 3(2): pgae045, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38725528

RESUMO

Amyloid fibrils have long been associated with many neurodegenerative diseases. The conventional picture of the formation and proliferation of fibrils from unfolded proteins comprises primary and secondary nucleation of oligomers followed by elongation and fragmentation thereof. In this work, we first employ extensive all-atom molecular dynamics (MD) simulations of short peptides to investigate the governing processes of fibril growth at the molecular scale. We observe that the peptides in the bulk solution can bind onto and subsequently diffuse along the fibril surface, which leads to fibril elongation via either bulk- or surface-mediated docking mechanisms. Then, to guide the quantitative interpretation of these observations and to provide a more comprehensive picture of the growth kinetics of single fibrils, a continuum model which incorporates the key processes observed in the MD simulations is formulated. The model is employed to investigate how relevant physical parameters affect the kinetics of fibril growth and identify distinct growth regimes. In particular, it is shown that fibrils which strongly bind peptides may undergo a transient exponential growth phase in which the entire fibril surface effectively acts as a sink for peptides. We also demonstrate how the relevant model parameters can be estimated from the MD trajectories. Our results provide compelling evidence that the overall fibril growth rates are determined by both bulk and surface peptide fluxes, thereby contributing to a more fundamental understanding of the growth kinetics of amyloid-like fibrils.

12.
Adv Mater ; 36(25): e2400085, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38469972

RESUMO

The interactive flexible device, which monitors the human motion in optical and electrical synergistic modes, has attracted growing attention recently. The incorporation of information attribute within the optical signal is deemed advantageous for improving the interactive efficiency. Therefore, the development of wearable optical information-electronic strain sensors holds substantial promise, but integrating and synergizing various functions and realizing strain-mediated information transformation keep challenging. Herein, an amylopectin (AP) modified nanoclay/polyacrylamide-based nanocomposite (NC) hydrogel and an aggregation-induced-emission-active ink are fabricated. Through the fluorescence-transfer printing of the ink onto the hydrogel film in different strains with nested multiple symbolic information, a wearable interactive fluorescent information-electronic strain sensor is developed. In the sensor, the nanoclay plays a synergistic "one-stone-three-birds" role, contributing to "lightening" fluorescence (≈80 times emission intensity enhancement), ionic conductivity, and excellent stretchability (>1000%). The sensor has high biocompatibility, resilience (elastic recovery ratio: 97.8%), and strain sensitivity (gauge factor (GF): 10.9). Additionally, the AP endows the sensor with skin adhesiveness. The sensor can achieve electrical monitoring of human joint movements while displaying interactive fluorescent information transformation. This research poses an efficient strategy to develop multifunctional materials and provides a general platform for achieving next-generation interactive devices with prospective applications in wearable devices, human-machine interfaces, and artificial intelligence.


Assuntos
Condutividade Elétrica , Hidrogéis , Nanocompostos , Dispositivos Eletrônicos Vestíveis , Hidrogéis/química , Nanocompostos/química , Humanos , Fluorescência , Resinas Acrílicas/química , Adesivos/química , Impressão
13.
Sci Total Environ ; 933: 173235, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38750751

RESUMO

Treatment of naphthenic acids (NAs) in wastewater is necessary due to its high toxicity and difficult degradation. In the heterogeneous Fenton-like advanced oxidation of organic pollutant system, the insufficient accessibility of oxidizing agent and NAs greatly hamper the reaction efficiency. CO2-responsive phase transfer materials derived from polyethylene glycol (PEG)-based deep eutectic solvents were specific targeted at the immiscible-binary phase system. The NAs oxidative degradation process was optimized including the kinds of catalyst (Molecular weight of PEG, constitute of DESs, and dosage.), temperature, flow rate of CO2, et al. With the help of fluorescence properties of catalyst, the hydrophilic-hydrophobic interaction was visual-monitored and further studied. The amphipathic property of PEG-200/Sodium persulfate/Polyether amine 230 (PEA230) greatly reduced the aqueous/organic phase transfer barrier between sodium persulfate and NAs (up to 84 %), thus accreting oxidation rate. The surface tension decreased from 35.364 mN/m to 28.595 mN/m. To control the reaction rate, the CO2 respond structure of amido played an important role. In addition, the interfacial transfer intermediates and oxidation pathways were also explored by nuclear magnetic resonance, flourier transform infrared spectroscopy, surface tension, and radical inhibition experiments. The mechanism of advanced oxidation of NAs catalyzed by CO2-responsive phase transfer catalyst was proposed, which would made up for the deficiency of the system theory of heterogeneous chemical oxidation of organic pollutants.

14.
Adv Healthc Mater ; : e2400362, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38768110

RESUMO

The diminishing effectiveness of existing aminoglycoside antibiotics (AGs) compels scientists to seek new approaches to enhance the sensitivity of current AGs. Despite ongoing efforts, currently available approaches remain restricted. Herein, a novel strategy involving the rational construction of an aggregation-induced-emission luminogen (AIEgen) is introduced to significantly enhance Gram-positive bacteria's susceptibility to AGs. The application of this approach involves the simple addition of AIEgens to bacteria followed by a 5 min light irradiation. Under light exposure, AIEgens efficiently generate reactive oxygen species (ROS), elevating intrabacterial ROS levels to a nonlethal threshold. Post treatment, the bacteria swiftly enter a hypersensitive state, resulting in a 21.9-fold, 15.5-fold, or 7.2-fold increase in susceptibility to three AGs: kanamycin, gentamycin, and neomycin, respectively. Remarkably, this approach is specific to AGs, and the induced hypersensitivity displays unparalleled longevity and heritability. Further in vivo studies confirm a 7.0-fold enhanced bactericidal ability of AGs against Gram-positive bacteria through this novel approach. This research not only broadens the potential applications of AIEgens but also introduces a novel avenue to bolster the effectiveness of AGs in combating bacterial infections.

15.
J Phys Chem B ; 127(45): 9759-9770, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37934627

RESUMO

The formation of amyloid fibrils is a complex phenomenon that remains poorly understood at the atomic scale. Herein, we perform extended unbiased all-atom simulations in explicit solvent of a short amphipathic peptide to shed light on the three mechanisms accounting for fibril formation, namely, nucleation via primary and secondary mechanisms, and fibril growth. We find that primary nucleation takes place via the formation of an intermediate state made of two laminated ß-sheets oriented perpendicular to each other. The amyloid fibril spine subsequently emerges from the rotation of these ß-sheets to account for peptides that are parallel to each other and perpendicular to the main axis of the fibril. Growth of this spine, in turn, takes place via a dock-and-lock mechanism. We find that peptides dock onto the fibril tip either from bulk solution or after diffusing on the fibril surface. The latter docking pathway contributes significantly to populate the fibril tip with peptides. We also find that side chain interactions drive the motion of peptides in the lock phase during growth, enabling them to adopt the structure imposed by the fibril tip with atomic fidelity. Conversely, the docked peptide becomes trapped in a local free energy minimum when docked-conformations are sampled randomly. Our simulations also highlight the role played by nonpolar fibril surface patches in catalyzing and orienting the formation of small cross-ß structures. More broadly, our simulations provide important new insights into the pathways and interactions accounting for primary and secondary nucleation as well as the growth of amyloid fibrils.


Assuntos
Amiloide , Peptídeos , Amiloide/química , Peptídeos/química , Solventes , Conformação Proteica em Folha beta , Movimento (Física) , Peptídeos beta-Amiloides/química , Fragmentos de Peptídeos/química
16.
Sci Total Environ ; 885: 163773, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37146826

RESUMO

With the development of the petrochemical industry, a large amount of naphthenic acids in petrochemical wastewater was accumulated in the environment, causing serious environmental pollution. Most of the commonly used methods for the determination of naphthenic acids have the characteristics of high energy consumption, complicated pretreatment, long detection cycle, and the need to send samples to analytical laboratories. Therefore, it is essential to develop an efficient and low-cost field analytical method for rapidly naphthenic acids quantify. In this study, nitrogen-rich carbon quantum dots (N-CQDs) based on natural deep eutectic solvents (NADESs) was successfully synthesized by a one-step solvothermal method. The fluorescence property of carbon quantum dots was used to achieve the quantitative detection of naphthenic acids in wastewater. The prepared N-CQDs showed excellent fluorescence and stability, showed a good response to naphthenic acids and a linear relationship in the concentration range of naphthenic acids from 0.03 to 0.09 mol‧L-1. The effect of common interferents in petrochemical wastewater on the detection of naphthenic acids by N-CQDs was investigated. The results showed that N-CQDs had good specificity for the detection of naphthenic acids. N-CQDs was applied to the naphthenic acids wastewater, and the concentration of naphthenic acids in the wastewater was successfully calculated according to the fitting equation.

17.
Adv Sci (Weinh) ; 10(18): e2301295, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37083241

RESUMO

Cancer starvation therapy have received continuous attention as an efficient method to fight against wide-spectrum cancer. However, during cancer starvation therapy, the protective autophagy promotes cancer cells survival, compromising the therapeutic effect. Herein, a novel strategy by combination of autophagy-activated fluorescent photosensitizers (PSs) and cancer starvation therapy to realize the controllable and efficient ablation of tumor is conceived. Two dual-emissive self-reporting aggregation-induced emission luminogens (AIEgens), TPAQ and TPAP, with autophagy-activated reactive oxygen species (ROS) generation are prepared to fight against the protective autophagy in cancer starvation therapy. When protective autophagy occurs, a portion of TPAQ and TPAP will translocate from lipid droplets to acidic lysosomes with significant redshift in fluorescence emission and enhanced ROS generation ability. The accumulation of ROS induced by TPAQ-H and TPAP-H causes lysosomal membrane permeabilization (LMP), which further results in cell apoptosis and promotes cell death. In addition, TPAQ and TPAP can enable the real-time self-reporting to cell autophagy and cell death process by observing the change of red-emissive fluorescence signals. Particularly, the efficient ablation of tumor via the combination of cancer starvation therapy and photodynamic therapy (PDT) induced by TPAQ has been successfully confirmed in 3D tumor spheroid chip, suggesting the validation of this strategy.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Fotoquimioterapia/métodos , Neoplasias/tratamento farmacológico , Autofagia
18.
Biomaterials ; 291: 121915, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36410108

RESUMO

Visualizing Ribonucleic acid (RNA) dynamics inside live cells is crucially important for the research of life science. However, almost all of the reported RNA probes target RNA with cationic groups, and mitochondria with high negative transmembrane potential may bring significant interferences. As a result, precise visualization of RNA in living cells is still a greatly challenging task. To overcome this problem, in this work, we proposed a novel charge-elimination strategy to construct a fluorescent probe (H-SMBT) specific for RNA undisturbed by mitochondria in live cells. Probe H-SMBT was designed to target the negative groove of RNA with a cationic group, and an additional hydroxyl group was modified to overcome the interference from mitochondria. H-SMBT will change from cationic structure to a charge-eliminated state in mitochondria with weak alkalic environment and detach from mitochondria, and therefore, it can exclusively stain RNA in live cells. Using M-SMBT with a methoxy group as a comparative molecule, we confirmed that the phenol group in H-SMBT played a decisive role to achieve the RNA specificity. Furthermore, H-SMBT can fast stain live cells in 5 min with excellent RNA selectivity. The probe can also monitor cellular damage processes, and successfully be applied to live zebrafish imaging due to the good tissue permeability. This work provides a new design strategy for constructing RNA-selective fluorescent probes avoiding the interference from mitochondria, and the designed RNA probe can be widely used for RNA-related life science research.


Assuntos
Corantes Fluorescentes , RNA , Animais , Peixe-Zebra , Mitocôndrias , Membrana Celular
19.
Sci Total Environ ; 811: 152389, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-34923018

RESUMO

Trace Co2+, when present in large quantities, is harmful to the environment and therefore cannot be ignored. Inductively coupled plasma mass spectrometry (ICP-MS) is a standard method used to detect metal ions, however, detecting trace Co2+ under high saline conditions can be challenging. Similarly, existing Co2+ treatment methods are prone to secondary pollution and have high energy consumption. Therefore, it is necessary to find an efficient and non-polluting method for Co2+ detection and treatment. This study successfully synthesized nitrogen-rich carbon quantum dots (N-CQDs) based on natural deep eutectic solvents (NADES) using a one-step solvothermal method. The prepared N-CQDs exhibited excellent fluorescence and high salt tolerance. The simultaneous detection and treatment of trace Co2+ in water under high salinity conditions were achieved for the first time. The response of the N-CQDs to Co2+ under saline condition was linear in the range of 5-250 µM with a limit of detection (LOD) of 1.2269 µM. Feasibility of practical application was assessed by quantitative detection of Co2+ in real water samples. Furthermore, the N-CQDs can treat Co2+, and the removal rate was 99.98%.


Assuntos
Pontos Quânticos , Carbono , Solventes Eutéticos Profundos , Nitrogênio , Espectrometria de Fluorescência
20.
Adv Mater ; 34(49): e2207212, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36168849

RESUMO

Advanced materials with high performance and distinctive function are one of the main driving forces for the development of human society. The selection of appropriate materials and adequately utilizing their features to apply them in a specific area rationally are of great significance but remain challenging. Herein, an aggregation-induced emission (AIE)-active nanocomposite (NC) hydrogel is developed by introducing a pH-responsive AIE luminogen (AIEgen) into a Laponite XLS/polyacrylamide-based NC hydrogel (Laponite is a trademark of the company BYK Additives Ltd.). The AIEgen can protonate to interact with the negatively charged clay through the electrostatic interaction, which results in a drastic fluorescence enhancement due to the restriction of intramolecular motion by the rigid clay to the protonated AIEgen. This behavior facilitates the input of fluorescent information with a high contrast ratio in the hydrogel by acid stimulation. Moreover, by utilizing the excellent resilience of the hydrogel, hierarchically inputting and displaying the information in the original and stretched states of the hydrogel film is realized, which achieves information-storage expansion and dual-encryption via switching between stretching and restoring the film. This work showcases fully and synergistically utilizing the superiorities of various advanced materials to achieve superior applications and should guide the future development of advanced materials in emerging areas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA