Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Commun Signal ; 22(1): 313, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844957

RESUMO

BACKGROUND: Non-small-cell lung cancer (NSCLC) accounts for 80-85% of all lung cancer and is the leading cause of cancer-related deaths globally. Although various treatment strategies have been introduced, the 5-year survival rate of patients with NSCLC is only 20-30%. Thus, it remains necessary to study the pathogenesis of NSCLC and develop new therapeutic drugs. Notably, PYK2 has been implicated in the progression of many tumors, including NSCLC, but its detailed mechanism remains unclear. In this study, we aimed to elucidate the mechanisms through which PYK2 promotes NSCLC progression. METHODS: The mRNA and protein levels of various molecules were measured using qRT-PCR, western blot (WB), and immunohistochemistry (IHC), respectively. We established stable PYK2 knockdown and overexpression cell lines, and CCK-8, EdU, and clonogenic assays; wound healing, transwell migration, and Matrigel invasion assays; and flow cytometry were employed to assess the phenotypes of tumor cells. Protein interactions were evaluated with co-immunoprecipitation (co-IP), immunofluorescence (IF)-based colocalization, and nucleocytoplasmic separation assays. RNA sequencing was performed to explore the transcriptional regulation mediated by PYK2. Secreted VGF levels were examined using ELISA. Dual-luciferase reporter system was used to detect transcriptional regulation site. PF4618433 (PYK2 inhibitor) and Stattic (STAT3 inhibitor) were used for rescue experiments. A public database was mined to analyze the effect of these molecules on NSCLC prognosis. To investigate the role of PYK2 in vivo, mouse xenograft models of lung carcinoma were established and examined. RESULTS: The protein level of PYK2 was higher in human NSCLC tumors than in the adjacent normal tissue, and higher PYK2 expression was associated with poorer prognosis. PYK2 knockdown inhibited the proliferation and motility of tumor cells and caused G1-S arrest and cyclinD1 downregulation in A549 and H460 cells. Meanwhile, PYK2 overexpression had the opposite effect in H1299 cells. The siRNA-induced inhibition of integrins alpha V and beta 1 led to the downregulation of p-PYK2(Tyr402). Activated PYK2 could bind to STAT3 and enhance its phosphorylation at Tyr705, regulating the nuclear accumulation of p-STAT3(Tyr705). This further promoted the expression of VGF, as confirmed by RNA sequencing in a PYK2-overexpressing H1299 cell line and validated by rescue experiments. Two sites in promoter region of VGF gene were confirmed as binding sites of STAT3 by Dual-luciferase assay. Data from the TGCA database showed that VGF was related to the poor prognosis of NSCLC. IHC revealed higher p-PYK2(Tyr402) and VGF expression in lung tumors than in adjacent normal tissues. Moreover, both proteins showed higher levels in advanced TNM stages than earlier ones. A positive linear correlation existed between the IHC score of p-PYK2(Tyr402) and VGF. Knockdown of VGF inhibited tumor progression and reversed the tumor promoting effect of PYK2 overexpression in NSCLC cells. Finally, the mouse model exhibited enhanced tumor growth when PYK2 was overexpressed, while the inhibitors PF4618433 and Stattic could attenuate this effect. CONCLUSIONS: The Integrin αVß1-PYK2-STAT3-VGF axis promotes NSCLC development, and the PYK2 inhibitor PF4618433 and STAT3 inhibitor Stattic can reverse the pro-tumorigenic effect of high PYK2 expression in mouse models. Our findings provide insights into NSCLC progression and could guide potential therapeutic strategies against NSCLC with high PYK2 expression levels.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Proliferação de Células , Progressão da Doença , Quinase 2 de Adesão Focal , Neoplasias Pulmonares , Fator de Transcrição STAT3 , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Quinase 2 de Adesão Focal/metabolismo , Quinase 2 de Adesão Focal/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Animais , Proliferação de Células/genética , Camundongos , Movimento Celular/genética , Camundongos Nus , Linhagem Celular Tumoral , Transdução de Sinais/genética , Regulação Neoplásica da Expressão Gênica , Camundongos Endogâmicos BALB C
2.
Sci Rep ; 14(1): 19623, 2024 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-39179608

RESUMO

The EphA family belongs to a large group of membrane receptor tyrosine kinases. Emerging evidence indicates that the EphA family participates in tumour occurrence and progression. Nonetheless, the expression patterns and prognostic values of the nine EphAs in non-small cell lung cancer (NSCLC) have rarely been studied before. In the current study, we comprehensively analysed the expression and prognostic role of EphA family members by different means. The Cancer Genome Atlas and Gene Expression Profiling Interactive Analysis databases were used to investigate the expression of EphAs in NSCLC. The cBioPortal database was applied to analyse the prognostic values and genetic mutations of EphAs.We discovered that the expression of EphA10 was significantly higher in NSCLC tissues than in adjacent noncancerous tissues, and survival analyses showed that a higher level of EphA10 predicted poor prognosis. Further exploration into the role of EphA10 by ESTIMATE, CIBERSORT, and ssGSEA analysis found that it was also related to immune infiltration and higher expression of targets of ICI targets. In conclusion, this study revealed that among the EphA family members, EphA10 played an oncogenic role and was a promising biomarker for poor prognosis and better immunotherapy response in NSCLC.


Assuntos
Biomarcadores Tumorais , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Prognóstico , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Inibidores de Checkpoint Imunológico/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Receptores da Família Eph/metabolismo , Receptores da Família Eph/genética , Feminino , Masculino , Perfilação da Expressão Gênica
3.
Yi Chuan Xue Bao ; 30(3): 277-82, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12812094

RESUMO

It is generally recognized that S type of CMS in maize associated with the recombination region R in mitochondria. Complicated DNA recombination and changes of transcripts of R are observed in several subgroups of S cytoplasm. R region includes two open reading frames (orf355 and orf77) and they are all chemeric. Among the sequence of orf77, there are three stretches similar to atp9 of mitochondria. Many different S cytoplasms are found in maize in China and researches on them show that similar R region and sequence are also found in the mitochondrial DNA in Tangxu, Shuang and J (cytoplasm. Northern analysis of Tangxu, J cytoplasm with Probe R and orf77 indicates that orf77 co-transcribes with R region and the nuclear restorer gene Rf3 affects their expression. In all tested S cytoplasm plants with the genotype of s-rf3rf3, both probe orf77 and R can detect six transcripts of 2.8, 1.6, 1.1, 0.9, 0.7 and 0.4 kb. In the presence of the nuclear restorer-of-fertility gene Rf3, previous transcripts of 2.8 kb and 1.6 kb are disappeared, but the other four transcripts are not changed. In T and C cytoplasm of CMS, only four transcripts of 1.1, 0.9, 0.7 and 0.4 kb appear when hybrid to probe R. Further Northern analysis of probe atp9 proved that all the four transcripts of 1.1, 0.9, 0.7 and 0.4 kb were actually transcripts of gene atp9, so only the transcripts of 2.8 kb and 1.6 kb are particular to R region of S. In addition, atp9, atp6 and cox II each has the same transcription pattern in tassel with different genotypes respectively. It can be included that R region and orf77 are the most important candidate gene for S-CMS.


Assuntos
DNA Mitocondrial/genética , Herança Extracromossômica/genética , Fases de Leitura Aberta/genética , Zea mays/genética , Proteínas de Arabidopsis , Northern Blotting , Complexo IV da Cadeia de Transporte de Elétrons/genética , Fertilidade/genética , Regulação da Expressão Gênica de Plantas , ATPases Mitocondriais Próton-Translocadoras/genética , Proteínas de Plantas/genética , Proteolipídeos/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo
4.
PLoS One ; 8(10): e77436, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24204827

RESUMO

Carbon nanoparticles can penetrate the cell membrane and cause cytotoxicity. The diffusion feature and translocation free energy of fullerene through lipid membranes is well reported. However, the knowledge on self-assembly of fullerenes and resulting effects on lipid membrane is poorly addressed. In this work, the self-assembly of fullerene nanoparticles and the resulting influence on the dioleoylphosphtidylcholine (DOPC) model membrane were studied by using all-atom molecular dynamics simulations with explicit solvents. Our simulation results confirm that gathered small fullerene cluster can invade lipid membrane. Simulations show two pathways: 1) assembly process is completely finished before penetration; 2) assembly process coincides with penetration. Simulation results also demonstrate that in the membrane interior, fullerene clusters tend to stay at the position which is 1.0 nm away from the membrane center. In addition, the diverse microscopic stacking mode (i.e., equilateral triangle, tetrahedral pentahedral, trigonal bipyramid and octahedron) of these small fullerene clusters are well characterized. Thus our simulations provide a detailed high-resolution characterization of the microscopic structures of the small fullerene clusters. Further, we found the gathered small fullerene clusters have significant adverse disturbances to the local structure of the membrane, but no great influence on the global integrity of the lipid membrane, which suggests the prerequisite of high-content fullerene for cytotoxicity.


Assuntos
Fulerenos/química , Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Nanopartículas/química , Fosfatidilcolinas/química , Carbono/química , Modelos Químicos , Permeabilidade , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA