Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 630(8016): 484-492, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811729

RESUMO

The CRISPR system is an adaptive immune system found in prokaryotes that defends host cells against the invasion of foreign DNA1. As part of the ongoing struggle between phages and the bacterial immune system, the CRISPR system has evolved into various types, each with distinct functionalities2. Type II Cas9 is the most extensively studied of these systems and has diverse subtypes. It remains uncertain whether members of this family can evolve additional mechanisms to counter viral invasions3,4. Here we identify 2,062 complete Cas9 loci, predict the structures of their associated proteins and reveal three structural growth trajectories for type II-C Cas9. We found that novel associated genes (NAGs) tended to be present within the loci of larger II-C Cas9s. Further investigation revealed that CbCas9 from Chryseobacterium species contains a novel ß-REC2 domain, and forms a heterotetrameric complex with an NAG-encoded CRISPR-Cas-system-promoting (pro-CRISPR) protein of II-C Cas9 (PcrIIC1). The CbCas9-PcrIIC1 complex exhibits enhanced DNA binding and cleavage activity, broader compatibility for protospacer adjacent motif sequences, increased tolerance for mismatches and improved anti-phage immunity, compared with stand-alone CbCas9. Overall, our work sheds light on the diversity and 'growth evolutionary' trajectories of II-C Cas9 proteins at the structural level, and identifies many NAGs-such as PcrIIC1, which serves as a pro-CRISPR factor to enhance CRISPR-mediated immunity.


Assuntos
Bactérias , Bacteriófagos , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Bactérias/virologia , Bactérias/genética , Bactérias/imunologia , Bacteriófagos/genética , Bacteriófagos/imunologia , Chryseobacterium/genética , Chryseobacterium/imunologia , Chryseobacterium/virologia , Proteína 9 Associada à CRISPR/química , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/imunologia , Clivagem do DNA , Loci Gênicos/genética , Modelos Moleculares , Domínios Proteicos
2.
Mol Cell ; 82(6): 1199-1209.e6, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35219382

RESUMO

A compact protein with a size of <1,000 amino acids, the CRISPR-associated protein CasX is a fundamentally distinct RNA-guided nuclease when compared to Cas9 and Cas12a. Although it can induce RNA-guided genome editing in mammalian cells, the activity of CasX is less robust than that of the widely used S. pyogenes Cas9. Here, we show that structural features of two CasX homologs and their guide RNAs affect the R-loop complex assembly and DNA cleavage activity. Cryo-EM-based structural engineering of either the CasX protein or the guide RNA produced two new CasX genome editors (DpbCasX-R3-v2 and PlmCasX-R1-v2) with significantly improved DNA manipulation efficacy. These results advance both the mechanistic understanding of CasX and its application as a genome-editing tool.


Assuntos
Edição de Genes , RNA Guia de Cinetoplastídeos , Animais , Sistemas CRISPR-Cas/genética , Endonucleases/genética , Endonucleases/metabolismo , Edição de Genes/métodos , Mamíferos/metabolismo , RNA/genética , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo
3.
Gut ; 71(2): 322-332, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33632712

RESUMO

OBJECTIVE: The systemic spread of colorectal cancer (CRC) is dominated by the portal system and exhibits diverse patterns of metastasis without systematical genomic investigation. Here, we evaluated the genomic evolution of CRC with multiorgan metastases using multiregion sequencing. DESIGN: Whole-exome sequencing was performed on multiple regions (n=74) of matched primary tumour, adjacent non-cancerous mucosa, liver metastasis and lung metastasis from six patients with CRC. Phylogenetic reconstruction and evolutionary analyses were used to investigate the metastatic seeding pattern and clonal origin. Recurrent driver gene mutations were analysed across patients and validated in two independent cohorts. Metastatic assays were performed to examine the effect of the novel driver gene on the malignant behaviour of CRC cells. RESULTS: Based on the migration patterns and clonal origins, three models were revealed (sequential, branch-off and diaspora), which not only supported the anatomic assumption that CRC cells spread to lung after clonally expanding in the liver, but also illustrated the direct seeding of extrahepatic metastases from primary tumours independently. Unlike other cancer types, polyphyletic seeding occurs in CRC, which may result in late metastases with intermetastatic driver gene heterogeneity. In cases with rapid dissemination, we found recurrent trunk loss-of-function mutations in ZFP36L2, which is enriched in metastatic CRC and associated with poor overall survival. CRISPR/Cas9-mediated knockout of ZFP36L2 enhances the metastatic potential of CRC cells. CONCLUSION: Our results provide genomic evidence for metastatic evolution and indicate that biopsy/sequencing of metastases may be considered for patients with CRC with multiorgan or late postoperative metastasis.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/secundário , Neoplasias Hepáticas/secundário , Neoplasias Pulmonares/secundário , Mutação/genética , Fatores de Transcrição/genética , China , Estudos de Coortes , Evolução Molecular , Humanos , Neoplasias Hepáticas/genética , Neoplasias Pulmonares/genética , Modelos Genéticos , Sequenciamento do Exoma
4.
Blood ; 133(7): 724-729, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30510082

RESUMO

Acute lymphoblastic leukemia (ALL) is the most common malignancy in children. Characterized by high levels of Native American ancestry, Hispanics are disproportionally affected by this cancer with high incidence and inferior survival. However, the genetic basis for this disparity remains poorly understood because of a paucity of genome-wide investigation of ALL in Hispanics. Performing a genome-wide association study (GWAS) in 940 Hispanic children with ALL and 681 ancestry-matched non-ALL controls, we identified a novel susceptibility locus in the ERG gene (rs2836365; P = 3.76 × 10-8; odds ratio [OR] = 1.56), with independent validation (P = .01; OR = 1.43). Imputation analyses pointed to a single causal variant driving the association signal at this locus overlapping with putative regulatory DNA elements. The effect size of the ERG risk variant rose with increasing Native American genetic ancestry. The ERG risk genotype was underrepresented in ALL with the ETV6-RUNX1 fusion (P < .0005) but enriched in the TCF3-PBX1 subtype (P < .05). Interestingly, ALL cases with germline ERG risk alleles were significantly less likely to have somatic ERG deletion (P < .05). Our results provide novel insights into genetic predisposition to ALL and its contribution to racial disparity in this cancer.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Hispânico ou Latino/genética , Proteínas de Fusão Oncogênica/genética , Polimorfismo de Nucleotídeo Único , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Doença Aguda , Estudos de Casos e Controles , Criança , Feminino , Seguimentos , Genótipo , Humanos , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras B/classificação , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Prognóstico , Regulador Transcricional ERG/genética
5.
Lupus ; 28(3): 406-413, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30774014

RESUMO

OBJECTIVE: Interleukin-21 (IL-21) contributes to expansion, differentiation, and modulation of various immunocompetent cells. Deregulated production of IL-21 plays a role of cardinal significance in the pathogenesis of systemic lupus erythematosus (SLE). We aimed to determine whether single nucleotide polymorphisms (SNP) near the IL-21 gene have significant association with SLE susceptibility and the T helper-related inflammatory cytokine profile of SLE patients. METHODS: We enrolled 460 SLE patients and 460 healthy controls. Whole genome analysis was used to investigate different genes including IL-21. Loci rs11725913, rs11937669, rs7676539, rs111438679, rs115935829, rs373549, rs4487356, and rs79923870 were further genotyped using an improved multiplex ligation detection reaction technique. Susceptibility, levels of Th-related inflammatory cytokines, and some clinical indexes of SLE patients were analyzed. RESULTS: rs11725913 and rs11937669 were identified for association with SLE in Chinese Han Population. The allelic frequency of rs11725913 approached significance (odds ratio (OR) (95% Confidence Interval (CI)) = 1.431 (1.122-1.825), P = 0.004). GT genotype at rs11725913 and GA genotype at rs11937669 were associated with SLE susceptibility (OR (95% CI) = 1.448 (1.074-1.952), P = 0.015; OR (95%CI) = 1.356 (1.013-1.815), P = 0.040, respectively). Dominant model analysis provided us with further validation (rs11725913: OR (95%CI) = 1.502 (1.126-2.004), P = 0.006; rs11937669: OR (95%CI) = 1.356 (1.025-1.793), P = 0.033). Cases with rs11937669 risk GA-genotype had higher serum IL-6 concentration than others ( P = 0.022). Dominant model analysis showed that patients with the wild type (AA-genotype) at rs11937669 had significantly lower soluble CD40 ligand ( P = 0.029) but higher IL-17A ( P = 0.040) compared with others. Cases carrying rs11725913 T allele had higher gamma glutamyl transpeptidase level ( P = 0.045) than those without. CONCLUSIONS: We identified two new loci, rs11725913 and rs11937669, associated with SLE risk in Chinese Han population. This research provided a new insight into the significant relationship between polymorphisms upstream IL-21 and Th17 inflammatory response, which suggest that the sequence upstream of the IL-21 gene is an important region involved in the Th17-related pathway.


Assuntos
Predisposição Genética para Doença , Interleucinas , Lúpus Eritematoso Sistêmico/genética , Adulto , Alelos , Povo Asiático , Estudos de Casos e Controles , Feminino , Frequência do Gene , Humanos , Lúpus Eritematoso Sistêmico/diagnóstico , Lúpus Eritematoso Sistêmico/imunologia , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Células Th17/imunologia , Sequenciamento Completo do Genoma , Adulto Jovem
6.
Int J Cancer ; 143(7): 1696-1705, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29667179

RESUMO

Non-small-cell lung cancer (NSCLC) has been recognized as a highly heterogeneous disease with phenotypic and genotypic diversity in each subgroup. While never-smoker patients with NSCLC have been well studied through next generation sequencing, we have yet to recognize the potentially unique molecular features of young never-smoker patients with NSCLC. In this study, we conducted whole genome sequencing (WGS) to characterize the genomic alterations of 36 never-smoker Chinese patients, who were diagnosed with lung adenocarcinoma (LUAD) at 45 years or younger. Besides the well-known gene mutations (e.g., TP53 and EGFR), our study identified several potential lung cancer-associated gene mutations that were rarely reported (e.g., HOXA4 and MST1). The lung cancer-related copy number variations (e.g., EGFR and CDKN2A) were enriched in our cohort (41.7%, 15/36) and the lung cancer-related structural variations (e.g., EML4-ALK and KIF5B-RET) were commonly observed (22.2%, 8/36). Notably, new fusion partners of ALK (SMG6-ALK) and RET (JMJD1C-RET) were found. Furthermore, we observed a high prevalence (63.9%, 23/36) of potentially targetable genomic alterations in our cohort. Finally, we identified germline mutations in BPIFB1 (rs6141383, p.V284M), CHD4 (rs74790047, p.D140E), PARP1 (rs3219145, p.K940R), NUDT1 (rs4866, p.V83M), RAD52 (rs4987207, p.S346*), and MFI2 (rs17129219, p.A559T) were significantly enriched in the young never-smoker patients with LUAD when compared with the in-house noncancer database (p < 0.05). Our study provides a detailed mutational portrait of LUAD occurring in young never-smokers and gives insights into the molecular pathogenesis of this distinct subgroup of NSCLC.


Assuntos
Adenocarcinoma de Pulmão/genética , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias Pulmonares/genética , Mutação , Fumar/genética , Adenocarcinoma de Pulmão/patologia , Adulto , Fatores Etários , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Seguimentos , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Prognóstico
7.
Int Immunopharmacol ; 142(Pt B): 113232, 2024 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-39340995

RESUMO

Benzo[a]pyrene (B[a]P) is a well-known polycyclic aromatic hydrocarbon (PAH) pollutant with high carcinogenicity, widespread environmental presence, and significant threat to public health. Epidemiological studies have linked exposure to B[a]P and its metabolite 7,8-dihydroxy-9,10-epoxybenzo[a]pyrene (BPDE) to the development and progression of various cancers, including bladder cancer. However, its underlying mechanism remains unclear. Our study revealed that B[a]P and BPDE induced epithelial-mesenchymal transition (EMT), a critical early event in cell malignant transformation, involving a decrease in E-Cadherin and upregulation of N-Cadherin protein levels, leading to increased cell motility and migration in bladder epithelial cells. Further studies have indicated that LOXL1 DNA undergoes methylation and modification influenced by methyltransferase 3a (DNMT3a) and DNMT3b, resulting in decreased LOXL1 protein levels. The decreased LOXL1 promotes the zinc finger transcription factor SLUG, which then inhibits E-Cadherin protein levels and initiates the EMT process. Moreover, DNMT3a/3b expression appears to be influenced by intracellular oxidative stress levels. These findings suggest that exposure to B[a]P/BPDE promotes the EMT process through the pivotal factor LOXL1, thereby contributing to bladder carcinogenesis. Our study provides a theoretical basis for considering LOXL1 as a potential biomarker for early diagnosis and a novel target for the precise diagnosis and treatment of bladder cancer.


Assuntos
Aminoácido Oxirredutases , Benzo(a)pireno , Epigênese Genética , Células Epiteliais , Transição Epitelial-Mesenquimal , Neoplasias da Bexiga Urinária , Bexiga Urinária , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo , Humanos , Benzo(a)pireno/toxicidade , Bexiga Urinária/patologia , Bexiga Urinária/metabolismo , Bexiga Urinária/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Epigênese Genética/efeitos dos fármacos , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , DNA Metiltransferase 3A , Regulação para Baixo/efeitos dos fármacos , Caderinas/metabolismo , Caderinas/genética , Movimento Celular/efeitos dos fármacos , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3B , Metilação de DNA/efeitos dos fármacos , Linhagem Celular , Fatores de Transcrição da Família Snail/metabolismo , Fatores de Transcrição da Família Snail/genética , Estresse Oxidativo/efeitos dos fármacos
8.
Science ; 383(6682): eadh4859, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38301022

RESUMO

Ribozymes are catalytic RNAs with diverse functions including self-splicing and polymerization. This work aims to discover natural ribozymes that behave as hydrolytic and sequence-specific DNA endonucleases, which could be repurposed as DNA manipulation tools. Focused on bacterial group II-C introns, we found that many systems without intron-encoded protein propagate multiple copies in their resident genomes. These introns, named HYdrolytic Endonucleolytic Ribozymes (HYERs), cleaved RNA, single-stranded DNA, bubbled double-stranded DNA (dsDNA), and plasmids in vitro. HYER1 generated dsDNA breaks in the mammalian genome. Cryo-electron microscopy analysis revealed a homodimer structure for HYER1, where each monomer contains a Mg2+-dependent hydrolysis pocket and captures DNA complementary to the target recognition site (TRS). Rational designs including TRS extension, recruiting sequence insertion, and heterodimerization yielded engineered HYERs showing improved specificity and flexibility for DNA manipulation.


Assuntos
Clivagem do DNA , Endonucleases , RNA Catalítico , Animais , Microscopia Crioeletrônica , Endonucleases/química , Endonucleases/genética , Hidrólise , Íntrons , Conformação de Ácido Nucleico , Splicing de RNA , RNA Catalítico/química , RNA Catalítico/genética
10.
Cell Res ; 33(3): 229-244, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36650285

RESUMO

CRISPR-Cas modules serve as the adaptive nucleic acid immune systems for prokaryotes, and provide versatile tools for nucleic acid manipulation in various organisms. Here, we discovered a new miniature type V system, CRISPR-Casπ (Cas12l) (~860 aa), from the environmental metagenome. Complexed with a large guide RNA (~170 nt) comprising the tracrRNA and crRNA, Casπ (Cas12l) recognizes a unique 5' C-rich PAM for DNA cleavage under a broad range of biochemical conditions, and generates gene editing in mammalian cells. Cryo-EM study reveals a 'bracelet' architecture of Casπ effector encircling the DNA target at 3.4 Å resolution, substantially different from the canonical 'two-lobe' architectures of Cas12 and Cas9 nucleases. The large guide RNA serves as a 'two-arm' scaffold for effector assembly. Our study expands the knowledge of DNA targeting mechanisms by CRISPR effectors, and offers an efficient but compact platform for DNA manipulation.


Assuntos
DNA , Edição de Genes , DNA/genética , Endonucleases/genética , Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas
11.
Acta Pharm Sin B ; 11(5): 1227-1245, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34094830

RESUMO

Autophagy is a critical cellular homeostatic mechanism, and its dysfunction is linked to invasive breast carcinoma (BRCA). Recently, several omics methods have been applied to explore autophagic regulators in BRCA; however, more reliable and robust approaches for identifying crucial regulators and druggable targets remain to be discovered. Thus, we report here the results of multi-omics approaches to identify potential autophagic regulators in BRCA, including gene expression (EXP), DNA methylation (MET) and copy number alterations (CNAs) from The Cancer Genome Atlas (TCGA). Newly identified candidate genes, such as SF3B3, TRAPPC10, SIRT3, MTERFD1, and FBXO5, were confirmed to be involved in the positive or negative regulation of autophagy in BRCA. SF3B3 was identified firstly as a negative autophagic regulator, and siRNA/shRNA-SF3B3 were shown to induce autophagy-associated cell death in in vitro and in vivo breast cancer models. Moreover, a novel small-molecule activator of SIRT3, 1-methylbenzylamino amiodarone, was discovered to induce autophagy in vitro and in vivo. Together, these results provide multi-omics approaches to identify some key candidate autophagic regulators, such as the negative regulator SF3B3 and positive regulator SIRT3 in BRCA, and highlight SF3B3 and SIRT3 as new druggable targets that could be used to fill the gap between autophagy and cancer drug development.

12.
Sci Adv ; 7(31)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34321197

RESUMO

Understanding of dedifferentiation, an indicator of poo prognosis for patients with thyroid cancer, has been hampered by imprecise and incomplete characterization of its heterogeneity and its attributes. Using single-cell RNA sequencing, we explored the landscape of thyroid cancer at single-cell resolution with 46,205 cells and delineated its dedifferentiation process and suppressive immune microenvironment. The developmental trajectory indicated that anaplastic thyroid cancer (ATC) cells were derived from a small subset of papillary thyroid cancer (PTC) cells. Moreover, a potential functional role of CREB3L1 on ATC development was revealed by integrated analyses of copy number alteration and transcriptional regulatory network. Multiple genes in differentiation-related pathways (e.g., EMT) were involved as the downstream targets of CREB3L1, increased expression of which can thus predict higher relapse risk of PTC. Collectively, our study provided insights into the heterogeneity and molecular evolution of thyroid cancer and highlighted the potential driver role of CREB3L1 in its dedifferentiation process.

13.
Cell Prolif ; 53(11): e12915, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33047870

RESUMO

Programmed cell death (PCD)-apoptosis, autophagy and programmed necrosis-is any pathological form of cell death mediated by intracellular processes. Ototoxic drugs, ageing and noise exposure are some common pathogenic factors of sensorineural hearing loss (SNHL) that can induce the programmed death of auditory hair cells through different pathways, and eventually lead to the loss of hair cells. Furthermore, several mutations in apoptotic genes including DFNA5, DFNA51 and DFNB74 have been suggested to be responsible for the new functional classes of monogenic hearing loss (HL). Therefore, in this review, we elucidate the role of these three forms of PCD in different types of HL and discuss their guiding significance for HL treatment. We believe that further studies of PCD pathways are necessary to understand the pathogenesis of HL and guide scientists and clinicians to identify new drug targets for HL treatment.


Assuntos
Apoptose , Morte Celular Autofágica , Células Ciliadas Auditivas/patologia , Perda Auditiva/patologia , Necroptose , Envelhecimento , Animais , Apoptose/efeitos dos fármacos , Morte Celular Autofágica/efeitos dos fármacos , Células Ciliadas Auditivas/efeitos dos fármacos , Células Ciliadas Auditivas/metabolismo , Perda Auditiva/etiologia , Perda Auditiva/genética , Perda Auditiva/metabolismo , Humanos , Mutação , Necroptose/efeitos dos fármacos , Ruído/efeitos adversos
14.
Eur J Med Chem ; 188: 112025, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31931340

RESUMO

Protein kinases are well-known to orchestrate the activation of signaling cascades in response to extracellular and intracellular stimuli to control cell proliferation and survival. The perturbation of such kinases by some mutation or abnormal protein expressions has been closely linked to cancer. Drug development aimed at several targetable kinases may alter their participated pathways that are able to trigger carcinogenesis. A series of small-molecule drugs have been approved for the current cancer therapy. However, their complicated inherent mechanisms may lead to the resistance to such small molecules. Consequently, development of new dual-target kinase drugs simultaneously aimed at two targetable kinases may improve their anti-tumor efficiency and solve resistant mechanism problems. In this review, we focus on summarizing an overview of the current strategies of dual-target kinase drug design, including medicinal chemistry strategies and computational approaches. Taken together, we believe the above-mentioned strategies will provide a new insight into future directions of dual-target kinase drug design to improve potential cancer therapeutics.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Inteligência Artificial , Proliferação de Células/efeitos dos fármacos , Química Farmacêutica , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química
15.
Theranostics ; 10(19): 8880-8902, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32754285

RESUMO

Gastric cancer (GC) is currently the fourth most common malignancy and the third leading cause of cancer-related deaths worldwide. Long non-coding RNAs (lncRNAs), transcriptional products with more than 200 nucleotides, are not as well-characterized as protein-coding RNAs. Accumulating evidence has recently revealed that maladjustments of diverse lncRNAs may play key roles in multiple genetic and epigenetic phenomena in GC, affecting all aspects of cellular homeostasis, such as proliferation, migration, and stemness. However, the full extent of their functionality remains to be clarified. Considering the lack of viable biomarkers and therapeutic targets, future research should be focused on unravelling the intricate relationships between lncRNAs and GC that can be translated from bench to clinic. Here, we summarized the state-of-the-art advances in lncRNAs and their biological functions in GC, and we further discuss their potential diagnostic and therapeutic roles. We aim to shed light on the interrelationships between lncRNAs and GC with respect to their potential therapeutic applications. With better understanding of these relationships, the biological functions of lncRNAs in GC development will be exploitable, and promising new strategies developed for the prevention and treatment of GC.


Assuntos
Biomarcadores Tumorais/genética , RNA Longo não Codificante/genética , Neoplasias Gástricas/genética , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Medicina de Precisão
16.
Front Genet ; 11: 598, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32595701

RESUMO

Acute lymphoblastic leukemia (ALL) is the most common malignancy in children with distinct characteristics among different subtypes. Although the etiology of ALL has not been fully unveiled, initiation of ALL has been demonstrated to partly depend on genetic factors. As indicated by several genome wide association studies (GWASs) and candidate gene analyses, ARID5B, a member of AT-rich interactive domain (ARID) protein family, is associated with the occurrence and prognosis of ALL. However, the mechanisms by which ARID5B genotype impact on the susceptibility and treatment outcome remain vague. In this review, we outline developments in the understanding of ARID5B in the susceptibility of ALL and its therapeutic perspectives, and summarize the underlying mechanisms based on the limited functional studies, hoping to illustrate the possible mechanisms of ARID5B impact and highlight the potential treatment regimens.

17.
Front Oncol ; 10: 1214, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983960

RESUMO

Objective: The objective of this study was to summarize the clinicopathological characteristics of the CLDN18-ARHGAP fusion gene in gastric cancer patients. Background: The CLDN18-ARHGAP26 fusion gene is one of the most frequent somatic genomic rearrangements in gastric cancer, especially in the genomically stable (GS) subtype. However, the clinical and prognostic meaning of the CLDN18-ARHGAP fusion in gastric cancer patients is unclear. Methods: Studies that investigated CLDN18-ARHGAP fusion gastric cancer patients were identified systematically from the PubMed, Cochrane, and Embase databases through the 28th of February 2020. A systematic review and meta-analysis were performed to estimate the clinical significance of CLDN18-ARHGAP fusion in patients. Results: A total of five eligible studies covering 1908 patients were selected for inclusion in the meta-analysis based on specified inclusion and exclusion criteria. Several fusion patterns were observed linking CLDN18 and ARHGAP26 or ARHGAP6, with the most common type being CLDN18/exon5-ARHGAP26/exon12. The survival outcome meta-analysis of the CLDN18-ARHGAP fusion gene showed that it was associated with overall survival outcomes in gastric cancer (HR, 2.03, 95% CI 1.26-3.26, P < 0.01, random-effects). In addition, diffuse gastric cancer had a greater proportion of CLDN18-ARHGAP fusions than intestinal gastric cancer (13.3%, 151/1,138 vs. 1.8%, 8/442; p < 0.001). Moreover, gastric cancer patients with the CLDN18-ARHGAP fusion gene are more likely to be female or have a younger age, lymph node metastasis and advanced TNM stages. Conclusion: The CLDN18-ARHGAP fusion is one of the molecular characteristics of diffuse gastric cancer and is also an independent prognostic risk factor for gastric cancer. In addition, it is also related to multiple clinical characteristics, including age, sex, lymph node metastasis and tumor stage. However, the mechanism of the CLDN18-ARHGAP fusion gene and potential targeted therapeutic strategies need further exploration.

18.
Ann Transl Med ; 7(7): 149, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31157270

RESUMO

Dermatofibrosarcoma protuberans (DFSP) is soft tissue malignancy which is locally aggressive, slow-growth, rarely metastasizing but recurs frequently after surgical excision. Fibrosarcomatous dermatofibrosarcoma protuberans (FS-DFSP) is a variant of DFSP with a higher risk of recurrence and metastasis. For treatment of metastatic DFSP, antiangiogenesis therapy is an important therapeutic option, which is beneficial in increasing the efficacy of chemotherapy. Apatinib is a novel vascular endothelial growth factor receptor 2 (VEGFR-2) inhibitor and revealed potential anti-tumor efficacy in some types of sarcomas. However, there is still no report of apatinib as an angiogenesis therapy for metastatic DFSP to date. Herein we first describe a case of FS-DFSP relapsed and metastasized post multiple surgeries and adjuvant radiotherapy responded to apatinib in combination with chemotherapy, indicating apatinib may be a potential therapeutic option for metastatic DFSP.

19.
J Natl Cancer Inst ; 111(12): 1350-1357, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30938820

RESUMO

BACKGROUND: Acute lymphoblastic leukemia (ALL) is the most common cancer in children and can arise in B or T lymphoid lineages. Although risk loci have been identified for B-ALL, the inherited basis of T-ALL is mostly unknown, with a particular paucity of genome-wide investigation of susceptibility variants in large patient cohorts. METHODS: We performed a genome-wide association study (GWAS) in 1191 children with T-ALL and 12 178 controls, with independent replication using 117 cases and 5518 controls. The associations were tested using an additive logistic regression model. Top risk variants were tested for effects on enhancer activity using luciferase assay. All statistical tests were two sided. RESULTS: A novel risk locus in the USP7 gene (rs74010351, odds ratio [OR] = 1.44, 95% confidence interval [CI] = 1.27 to 1.65, P = 4.51 × 10-8) reached genome-wide significance in the discovery cohort, with independent validation (OR = 1.51, 95% CI = 1.03 to 2.22, P = .04). The USP7 risk allele was overrepresented in individuals of African descent, thus contributing to the higher incidence of T-ALL in this race/ethnic group. Genetic changes in USP7 (germline variants or somatic mutations) were observed in 56.4% of T-ALL with TAL1 overexpression, statistically significantly higher than in any other subtypes. Functional analyses suggested this T-ALL risk allele is located in a putative cis-regulatory DNA element with negative effects on USP7 transcription. Finally, comprehensive comparison of 14 susceptibility loci in T- vs B-ALL pointed to distinctive etiology of these leukemias. CONCLUSIONS: These findings indicate strong associations between inherited genetic variation and T-ALL susceptibility in children and shed new light on the molecular etiology of ALL, particularly commonalities and differences in the biology of the two major subtypes (B- vs T-ALL).


Assuntos
Estudo de Associação Genômica Ampla , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Peptidase 7 Específica de Ubiquitina/genética , Alelos , População Negra , Estudos de Casos e Controles , Criança , Intervalos de Confiança , Genes p16 , Predisposição Genética para Doença , Técnicas de Genotipagem , Humanos , Modelos Logísticos , Luciferases/metabolismo , Mutação , Razão de Chances , Polimorfismo de Nucleotídeo Único , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/etnologia , Proteína 1 de Leucemia Linfocítica Aguda de Células T/metabolismo
20.
Front Pharmacol ; 9: 1050, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30294272

RESUMO

Checkpoint inhibitor (CPI) based immunotherapy (i.e., anit-CTLA-4/PD-1/PD-L1 antibodies) can effectively prolong overall survival of patients across several cancer types at the advanced stage. However, only part of patients experience objective responses from such treatments, illustrating large individual differences in terms of both efficacy and adverse drug reactions. Through the observation on a series of CPI based clinical trials in independent patient cohorts, associations of multiple clinical and molecular characteristics with CPI response rate have been determined, including microenvironment, genomic alterations of the cancer cells, and even gut microbiota. A broad interest has been drawn to the question whether and how these prognostic factors can be used as biomarkers for optimal usage of CPIs in precision immunotherapy. Therefore, we reviewed the candidate prognostic factors identified by multiple trials and the experimental investigations, especially those reported in the recent 2 years, and described the possibilities and problems of them in routine clinical usage of cancer treatment as biomarkers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA