Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 181: 105017, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35082040

RESUMO

Broflanilide is a novel insecticide with a unique mode of action on the insect GABA receptor and is registered worldwide for the control of agricultural pests. It shows high efficacy in controlling the fall armyworm (FAW) Spodoptera frugiperda, which is a destructive pest to various crops. FAW was exposed to sublethal concentrations of broflanilide to determine its impact on insect development. Sublethal doses (LD10 and LD30) caused failure of ecdysis, reduced body length of larvae, malformation of pupae, and vestigial wing formation in adults. Also, broflanilide at LD30 significantly reduced the amount of molting hormone (MH). After exposure to LD10 or LD30 broflanilide, expression of five Halloween genes, which participate in MH biosynthesis, were found to be altered. Specifically, the transcript levels of SfrCYP307A1 (Spook), SfrCYP314A1 (Shade) and SfrCYP315A1 (Shadow) in 3rd day larvae were significantly decreased as well as SfrCYP302A1 (Disembodied) and SfrCYP306A1 (Phantom) in 5th day pupae. In contrast, the transcript levels of SfrCYP302A1 in 3rd day larvae, SfrCYP307A1 and SfrCYP314A1 in 5th day pupae, and SfrCYP306A1, SfrCYP307A1 and SfrCYP315A1 in 0.5th day adults were significantly increased. Our results demonstrate that broflanilide caused the failure of ecdysis in FAW possibly by influencing the intake of cholesterol through inhibition of feeding and also via altering expression of genes important for MH biosynthesis.


Assuntos
Ecdisona , Muda , Animais , Benzamidas , Fluorocarbonos , Larva , Spodoptera/genética
2.
J Agric Food Chem ; 71(31): 11875-11883, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37490029

RESUMO

In insect ionotropic γ-aminobutyric acid receptor (iGABAR) subunits, only resistance to dieldrin (RDL) can be individually and functionally expressed in vitro. In lepidopteran, two to three RDL subtypes are identified; however, their physiological roles have not been distinguished in vivo. In this study, SlRdl1 and SlRdl2 of S. litura were individually knocked out using CRISPR/Cas9, respectively. The mortality and larval and pupal duration of KOSlRdl1 and KOSlRdl2 were increased. The flight time and distance were increased by 43.30%-80.66% and 58.96%-198.22%, respectively, in KOSlRdl1. The GABA-induced current was significantly decreased by 53.57%-74.28% and 46.91%-63.34% in the ventral nerve cord, and the GABA titer was significantly reduced by 17.65%-28.05% and 19.85%-42.46% in KOSlRdl1 and KOSlRdl2, respectively. In conclusion, SlRdl1 and SlRdl2 are necessary for the transmission of GABA-induced neural signals; however, only SlRdl1 could regulate the flight capability of S. litura. Our results provided a new avenue to study lepidopteran iGABARs.


Assuntos
Sistemas CRISPR-Cas , Receptores de GABA , Animais , Receptores de GABA/genética , Receptores de GABA/metabolismo , Spodoptera/fisiologia , Larva/genética , Larva/metabolismo , Dieldrin , Ácido gama-Aminobutírico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA