Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biogerontology ; 25(3): 447-459, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38183523

RESUMO

Dietary restriction (DR) is a potential intervention for ameliorating ageing-related damages. Mitochondrial quality control is the key mechanism for regulating cellular functions in skeletal muscle. This study aimed to explore the effect of age and DR on the homeostasis of mitochondrial quality control in skeletal muscle. To study the effect of age on mitochondrial homeostasis, young (3 months old) male C57BL/6J mice were fed ad libitum (AL) until 7 (Young), 14 (Middle), and 19 months (Aged) of age. For the DR intervention, 60% of AL intake was given to the mice at 3 months of age until they reached 19 months of age (16 months). The quadriceps femoris muscle was collected for further analysis. Significant changes in the skeletal muscle were noticed during the transition between middle age and the elderly stages. An accumulation of collagen was observed in the muscle after middle age. Compared with the Middle muscle, Aged muscle displayed a greater expression of VDAC, and lower expressions of mitochondrial dynamic proteins and OXPHOS proteins. The DR intervention attenuated collagen content and elongated the sarcomere length in the skeletal muscle during ageing. In addition, DR adjusted the abnormalities in mitochondrial morphology in the Aged muscle. DR downregulated VDAC expression, but upregulated OPA1 and DRP1 expressions. Taken together, greater pathological changes were noticed in the skeletal muscle during ageing, especially in the transition between middle age and the elderly, whereas early-onset DR attenuated the muscular ageing via normalising partial functions of mitochondria.


Assuntos
Envelhecimento , Restrição Calórica , Camundongos Endogâmicos C57BL , Mitocôndrias Musculares , Músculo Quadríceps , Animais , Masculino , Músculo Quadríceps/metabolismo , Camundongos , Envelhecimento/fisiologia , Envelhecimento/metabolismo , Mitocôndrias Musculares/metabolismo , Colágeno/metabolismo
2.
Eur J Nutr ; 63(3): 965-976, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38265751

RESUMO

PURPOSE: Weight cycling is a phenomenon characterized by fluctuating body weight that is commonly observed in individuals employing intentional weight loss methods. Despite its prevalence, the impact of weight cycling on health remains equivocal. The current investigation aimed to examine the effects of weight cycling on liver health. METHODS: The weight cycling model was established by switching the feeding method of mice between ad libitum (AL) and restricted intake (DR or 60% of AL) of the breeding diet to cause weight gain and weight loss, respectively. The weight cycling model comprised two and a half cycles, with one group terminating the experience during the weight-gain period (S-AL) and the other during the weight-loss period (S-DR). Liver tissue was collected to investigate morphology alterations, apoptosis, lipid metabolism, and mitochondrial homeostasis. RESULTS: The results demonstrated that the termination point of weight cycling affected body weight and hepatic steatosis. All parameters examined in the S-DR mice exhibited a comparable trend to those observed in the DR mice. Notably, S-AL mice showed a significant increase in lipid metabolism-related proteins in the liver compared to AL-fed mice, along with reduced lipid droplets. Moreover, hepatic apoptosis and fibrosis were exacerbated in the S-AL mice compared to AL mice, whereas mitochondrial fusion, biogenesis, and mitophagy were decreased in the S-AL mice. CONCLUSION: Weight cycling ending in weight gain exacerbated hepatic fibrosis, potentially by inducing apoptosis or disrupting mitochondrial homeostasis. Conversely, weight cycling ending in weight loss demonstrated beneficial effects on hepatic health.


Assuntos
Fígado , Ciclo de Peso , Camundongos , Masculino , Animais , Fígado/metabolismo , Cirrose Hepática , Aumento de Peso , Redução de Peso , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica
3.
Phytother Res ; 38(4): 1815-1829, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38349045

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive and lethal clinical subtype and lacks effective targeted therapies at present. Isobavachalcone (IBC), the main active component of Psoralea corylifolia L., has potential anticancer effects. Herein, we identified IBC as a natural sirtuin 2 (SIRT2) inhibitor and characterized the potential mechanisms underlying the inhibition of TNBC. Molecular dynamics analysis, enzyme activity assay, and cellular thermal shift assay were performed to evaluate the combination of IBC and SIRT2. The therapeutic effects, mechanism, and safety of IBC were analyzed in vitro and in vivo using cellular and xenograft models. IBC effectively inhibited SIRT2 enzyme activity with an IC50 value of 0.84 ± 0.22 µM by forming hydrogen bonds with VAL233 and ALA135 within its catalytic domain. In the cellular environment, IBC bound to and stabilized SIRT2, consequently inhibiting cellular proliferation and migration, and inducing apoptosis and cell cycle arrest by disrupting the SIRT2/α-tubulin interaction and inhibiting the downstream Snail/MMP and STAT3/c-Myc pathways. In the in vivo model, 30 mg/kg IBC markedly inhibited tumor growth by targeting the SIRT2/α-tubulin interaction. Furthermore, IBC exerted its effects by inducing apoptosis in tumor tissues and was well-tolerated. IBC alleviated TNBC by targeting SIRT2 and triggering the reactive oxygen species ROS/ß-catenin/CDK2 axis. It is a promising natural lead compound for future development of SIRT2-targeting drugs.


Assuntos
Chalconas , Sirtuína 2 , Neoplasias de Mama Triplo Negativas , Humanos , Sirtuína 2/farmacologia , Linhagem Celular Tumoral , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Tubulina (Proteína)/farmacologia , Tubulina (Proteína)/uso terapêutico , Proliferação de Células , Apoptose
4.
Biogerontology ; 23(6): 731-740, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36183304

RESUMO

As the kidneys age, gradual changes in the structures and functions of mitochondria occur. Dietary restriction (DR) can play a protective role in ageing-associated renal decline, however the exact mechanisms involved are still unclear. This study aims to clarify the beneficial effects of long-term DR on renal ageing and to explore the potential mechanisms of mitochondrial homeostasis. Eight-week-old C57BL/6 male mice (n = 30) were randomly divided into three groups, Young-AL (AL, ad libitum), Aged-AL, and Aged-DR (60% intake of AL). Mice were sacrificed at age of 7 months (Young) or 22 months (Aged). Heavier body and kidney weights were associated with ageing, but DR reduced these increases in aged mice. Ageing caused extensive tubulointerstitial fibrosis and glomerulosclerosis in the kidney. Giant mitochondria with looser and irregular crista were observed in Aged-AL kidneys. DR retarded these morphological alterations in aged kidneys. In addition, DR reversed the increase of MDA caused by ageing. Renal ATP level was elevated by DR treatment. Mitochondrial-related proteins were analysed to elucidate this association. Ageing downregulated the renal levels of VDAC, FOXO1, SOD2, LC3I and II, and upregulated the renal levels of MFN2 and PINK1. In contrast, DR elevated the levels of VDAC, FOXO1, and LC3I and reduced the ratio of LC3II to LC3I in aged kidneys. To conclude, impaired mitochondria, increased oxidative stress, and severe fibrosis were noticed in the aged kidneys, and DR improved these changes by increasing functional mitochondria and promoting autophagic clearance.


Assuntos
Envelhecimento , Nefropatias , Camundongos , Masculino , Animais , Camundongos Endogâmicos C57BL , Envelhecimento/metabolismo , Mitocôndrias/metabolismo , Autofagia , Fibrose , Nefropatias/etiologia , Nefropatias/prevenção & controle , Proteínas Mitocondriais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA