Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Biomed Chromatogr ; 36(9): e5430, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35727297

RESUMO

The analgesic effect of the resin of Boswellia carterii (BC) is well known; however, the constituents that contribute to the analgesic effect remain elusive. The current study integrates ultrasonic-assisted extraction, quantitative determination, analgesic evaluation in rats, and gray relationship analysis for tracing analgesic constituents from the resin of BC. First, a robust and precise ultra-performance liquid chromatography tandem mass spectrometry approach with multiple reaction monitoring mode was developed for the simultaneous quantification of seven major constituents in crude and vinegar-processed resin of BC. Glycyrrhetinic acid was chosen as the internal standard. The approach showed good linearity. The intra- and inter-day precisions of each constituent were within 3.0%. The recoveries of each constituent were in the range of 96.4-102.7%. The approach was then applied to determine the seven constituents in 10 batches of crude and vinegar-processed resin of BC. Second, the analgesic effects of crude and vinegar-processed resin of BC were assessed in mice. Third, chemometrics methods, gray relationship analysis, and partial least squares regression were employed for determining the relationship between the contents of seven constituents and their analgesic effects. 11-Keto-ß-boswellic acid, 3-acetyl-ß-boswellic acid, 3-acetyl-α-boswellic acid, 3-acetyl-11-keto-ß-boswellic acid, and ß-sitosterol were identified as the key analgesic constituents of BC.


Assuntos
Boswellia , Triterpenos , Ácido Acético , Analgésicos , Animais , Boswellia/química , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Camundongos , Extratos Vegetais/química , Ratos , Resinas Vegetais/química , Espectrometria de Massas em Tandem , Triterpenos/química
2.
Nature ; 484(7392): 87-91, 2012 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-22481362

RESUMO

Between about 55.5 and 52 million years ago, Earth experienced a series of sudden and extreme global warming events (hyperthermals) superimposed on a long-term warming trend. The first and largest of these events, the Palaeocene-Eocene Thermal Maximum (PETM), is characterized by a massive input of carbon, ocean acidification and an increase in global temperature of about 5 °C within a few thousand years. Although various explanations for the PETM have been proposed, a satisfactory model that accounts for the source, magnitude and timing of carbon release at the PETM and successive hyperthermals remains elusive. Here we use a new astronomically calibrated cyclostratigraphic record from central Italy to show that the Early Eocene hyperthermals occurred during orbits with a combination of high eccentricity and high obliquity. Corresponding climate-ecosystem-soil simulations accounting for rising concentrations of background greenhouse gases and orbital forcing show that the magnitude and timing of the PETM and subsequent hyperthermals can be explained by the orbitally triggered decomposition of soil organic carbon in circum-Arctic and Antarctic terrestrial permafrost. This massive carbon reservoir had the potential to repeatedly release thousands of petagrams (10(15) grams) of carbon to the atmosphere-ocean system, once a long-term warming threshold had been reached just before the PETM. Replenishment of permafrost soil carbon stocks following peak warming probably contributed to the rapid recovery from each event, while providing a sensitive carbon reservoir for the next hyperthermal. As background temperatures continued to rise following the PETM, the areal extent of permafrost steadily declined, resulting in an incrementally smaller available carbon pool and smaller hyperthermals at each successive orbital forcing maximum. A mechanism linking Earth's orbital properties with release of soil carbon from permafrost provides a unifying model accounting for the salient features of the hyperthermals.


Assuntos
Carbono/análise , Congelamento , Aquecimento Global/história , Efeito Estufa/história , Solo/química , Temperatura , Regiões Antárticas , Regiões Árticas , Atmosfera/química , Calibragem , Ciclo do Carbono , Ecossistema , Retroalimentação , História Antiga , Itália , Modelos Teóricos , Água do Mar/química
3.
Ecol Appl ; 23(8): 1778-97, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24555309

RESUMO

This synthesis paper provides a summary of the major components of the physical terrestrial Arctic and the influences of their changes upon the larger eco-climate system. Foci here are snow cover, permafrost, and land hydrology. During the last century, snow cover duration has shortened in a large portion of the circum-Arctic, mainly because of its early northward retreat in spring due to warming. Winter precipitation has generally increased, resulting in an increase in maximum snow depth over large areas. This is consistent with the increase in river discharge over large Russian watersheds. Soil temperature has also increased, and the active layer has deepened in most of the permafrost regions, whereas thinning of the seasonally frozen layer has been observed in areas not underlain by permafrost. These active components are mutually interrelated, conditioned by ambient micro- to landscape-level topography and local surface and subsurface conditions, and they are closely related with vegetation and ecology, as evidenced by evolution in the late Quaternary. Further, we provide examples and arguments for discussions on the pathways through which changes in the Arctic terrestrial system can affect or propagate to remote areas beyond the Arctic, reaching to the extratropics in the larger climate system. These considerations include dynamical and thermodynamical responses and feedbacks,'modification of hemisphere-scale atmospheric circulation associated with troposphere-stratosphere couplings, and moisture intrusion at a continental scale.


Assuntos
Clima , Ecossistema , Fenômenos Geológicos , Regiões Árticas , Monitoramento Ambiental , Modelos Teóricos , Fatores de Tempo
4.
ACS Appl Mater Interfaces ; 15(16): 19833-19846, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37052616

RESUMO

Radiation gastroenteritis represents one of the most prevalent and hazardous complications of abdominopelvic radiotherapy, which not only severely reduces patients' life quality but also restricts radiotherapy efficacy. However, there is currently no clinically available oral radioprotector for this threatening disease due to its complex pathogenesis and the harsh gastrointestinal environment. To this end, this study developed a facile but effective oral radioprotector, ergothioneine hyaluronate (EGT@HA) gel, protecting against radiation gastroenteritis by synergistically regulating oxidative stress, inflammation, and gut microbiota. In vitro and cellular experiments verified the chemical stability and free radical scavenging ability of EGT and its favorable cellular radioprotective efficacy by inhibiting intracellular reactive oxidative species (ROS) generation, DNA damage, mitochondrial damage, and apoptosis. At the in vivo level, EGT@HA with prolonged gastrointestinal residence mitigated radiation-induced gastrointestinal tissue injury, apoptosis, neutrophil infiltration, and gut flora dysbiosis. For the first time, this work investigated the protective effects of EGT@HA gel on radiation gastroenteritis, which not only hastens the advancement of the novel gastrointestinal radioprotector but also provides a valuable gastrointestinal radioprotection paradigm by synergistically modulating oxidative stress, inflammation, and gut microbiota disturbance.


Assuntos
Ergotioneína , Gastroenterite , Microbioma Gastrointestinal , Lesões por Radiação , Humanos , Ergotioneína/genética , Ergotioneína/farmacologia , Antioxidantes/farmacologia , Disbiose/tratamento farmacológico , Disbiose/prevenção & controle , Apoptose , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle
5.
Nanotoxicology ; 17(5): 449-470, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37688453

RESUMO

Lead halide perovskites (LHPs) are outstanding candidates for next-generation optoelectronic materials, with considerable prospects of use and commercial value. However, knowledge about their toxicity is scarce, which may limit their commercialization. Here, for the first time, we studied the cardiotoxicity and molecular mechanisms of representative CsPbBr3 nanoparticles in LHPs. After their intranasal administration to Institute of Cancer Research (ICR) mice, using advanced synchrotron radiation, mass spectrometry, and ultrasound imaging, we revealed that CsPbBr3 nanoparticles can severely affect cardiac systolic function by accumulating in the myocardial tissue. RNA sequencing and Western blotting demonstrated that CsPbBr3 nanoparticles induced excessive oxidative stress in cardiomyocytes, thereby provoking endoplasmic reticulum stress, disturbing calcium homeostasis, and ultimately leading to apoptosis. Our findings highlight the cardiotoxic effects of LHPs and provide crucial toxicological data for the product.


Assuntos
Compostos de Cálcio , Nanopartículas , Animais , Camundongos , Compostos de Cálcio/toxicidade , Miocárdio , Óxidos/toxicidade , Nanopartículas/toxicidade
6.
Adv Healthc Mater ; 12(29): e2300819, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37698231

RESUMO

Radiation-induced heart disease is a serious side effect of radiation therapy that can lead to severe consequences. However, effective and safe methods for their prevention and treatment are presently lacking. This study reports the crucial function of fullerenols in protecting cardiomyocytes from radiation injury. First, fullerenols are synthesized using a simple base-catalyzed method. Next, the as-prepared fullerenols are applied as an effective free radical scavenger and broad-spectrum antioxidant to protect against X-ray-induced cardiomyocyte injury. Their ability to reduce apoptosis via the mitochondrial signaling pathway at the cellular level is then verified. Finally, it is observed in animal models that fullerenols accumulate in the heart and alleviate myocardial damage induced by X-rays. This study represents a timely and essential analysis of the prevention and treatment of radiological myocardial injury, providing new insights into the applications of fullerenols for therapeutic strategies.


Assuntos
Fulerenos , Lesões por Radiação , Animais , Fulerenos/farmacologia , Fulerenos/uso terapêutico , Antioxidantes , Sequestradores de Radicais Livres , Miócitos Cardíacos
7.
ACS Appl Mater Interfaces ; 15(36): 42139-42152, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37650305

RESUMO

Lead-based perovskite nanoparticles (Pb-PNPs) have found extensive applications across diverse fields. However, because of poor stability and relatively strong water solubility, the potential toxicity of Pb-PNPs released into the environment during their manufacture, usage, and disposal has attracted significant attention. Inhalation is a primary route through which human exposure to Pb-PNPs occurs. Herein, the toxic effects and underlying molecular mechanisms of Pb-PNPs in the respiratory system are investigated. The in vitro cytotoxicity of CsPbBr3 nanoparticles in BEAS-2B cells is studied using multiple bioassays and electron microscopy. CsPbBr3 nanoparticles of different concentrations induce excessive oxidative stress and cell apoptosis. Furthermore, CsPbBr3 nanoparticles specifically recruit the TGF-ß1, which subsequently induces epithelial-mesenchymal transition. In addition, the biodistribution and lung toxicity of representative CsPbBr3 nanoparticles in ICR mice are investigated following intranasal administration. These findings indicate that CsPbBr3 nanoparticles significantly induce pulmonary inflammation and epithelial-mesenchymal transition and can even lead to pulmonary fibrosis in mouse models. Above findings expose the adverse effects and molecular mechanisms of Pb-PNPs in the lung, which broadens the safety data of Pb-PNPs.


Assuntos
Chumbo , Pulmão , Camundongos , Humanos , Animais , Camundongos Endogâmicos ICR , Chumbo/toxicidade , Distribuição Tecidual
8.
Environ Pollut ; 300: 118875, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35074457

RESUMO

To investigate the chemical components, sources, and interactions of particulate matter (PM) and volatile organic compounds (VOCs), a field campaign was implemented during the spring of 2018 in nine cities in northwestern (NW) China. PM was mainly contributed by organic matter and water-soluble inorganic ions (41% for PM10 and approximately 60% for PM2.5 and PM1). Two typical haze patterns were observed: anthropogenic pollution type (AP-type), wherein contributions of sulfate, nitrate, and ammonium (SNA) increased, and dust pollution type (DP-type), wherein contributions of Ca2+ increased and SNA decreased. Source appointment suggested that regional sources contributed close to half to PM2.5 pollution (40% for AP-type and 50% for DP-type). Thus, sources from regional transport are also important for haze and dust pollution. The ranking of VOC concentrations was methanol > acetaldehyde > formic acid + ethanol > acetone. Compared with other cities, there are higher oxygenated VOCs (OVOCs) and lower aromatics in NW China. The relationships between VOCs and PM were discussed. The dominating secondary organic aerosols (SOA) formation potential precursors were C10-aromatics, xylene, and styrene under low-nitrogen oxide (NOx) conditions, and benzene, C10-aromatics, and toluene dominated under high-NOx conditions. The quadratic polynomial was the most suitable fitting model for their correlation, and the results suggested that VOC oxidations explained 6.1-10.8% and 9.9-20.7% of SOA formation under high-NOx and low-NOx conditions, respectively.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Aerossóis/análise , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental , Material Particulado/análise , Estações do Ano , Compostos Orgânicos Voláteis/análise
9.
Nat Commun ; 13(1): 4332, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35882838

RESUMO

Ferroelectric domain wall memories have been proposed as a promising candidate for nonvolatile memories, given their intriguing advantages including low energy consumption and high-density integration. Perovskite oxides possess superior ferroelectric prosperities but perovskite-based domain wall memory integrated on silicon has rarely been reported due to the technical challenges in the sample preparation. Here, we demonstrate a domain wall memory prototype utilizing freestanding BaTiO3 membranes transferred onto silicon. While as-grown BaTiO3 films on (001) SrTiO3 substrate are purely c-axis polarized, we find they exhibit distinct in-plane multidomain structures after released from the substrate and integrated onto silicon due to the collective effects from depolarizing field and strain relaxation. Based on the strong in-plane ferroelectricity, conductive domain walls with reading currents up to nanoampere are observed and can be both created and erased artificially, highlighting the great potential of the integration of perovskite oxides with silicon for ferroelectric domain wall memories.

10.
Sci Total Environ ; 750: 141670, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32871371

RESUMO

The timing and duration of snow cover critically affect surface albedo, surface energy budgets, and hydrological processes. Previous studies using in-situ or satellite remote sensing data have mostly been site-specific (Siberia and the Tibetan Plateau), and remote sensing and/or modeling data include large uncertainties. Here, we used 1103 stations with long-term (1966-2012) ground-based snow measurements to investigate spatial and temporal variability in snow cover timing and duration and factors impacting those changes across the Eurasian continent. We found the earliest annual onset and latest disappearance of snow cover occurred along the Arctic coast, where the long-term (1971-2000) mean annual snow cover duration (SCD) was more than nine months which was the longest in this study. The shortest SCD, ≤10 days, was found in southern China. The first and last dates of snow cover (FD and LD, respectively), SCD, and the ratio of SCD to snow season length (RDL) were generally latitude dependent over the Eurasian Continent, while were elevation dependent on the Tibetan Plateau. During the period from 1966 through 2012, FD delayed and LD advanced by ~1 day/decade, and RDL increased by about 0.01/decade. The LD, SCD, and RDL anomalies (relative to the period 1971-2000) were also significantly correlated with latitude. Advances in LD and positive RDL were more significant in low-latitude regions, decreases in SCD were more significant in high-latitude regions. Changes in SCD were related to air temperature and snowfall in autumn and warming in spring. SCD specifically increased in the northern Xinjiang and northeastern China due to increased snowfall. The significant reduction in SCD in southwestern Russia, the Tibetan Plateau and along the Yangtze River was mainly affected by climate warming.

11.
Sci Total Environ ; 708: 135127, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31787283

RESUMO

Permafrost on the Qinghai-Tibetan Plateau (QTP) has been degrading in the past decades. While the degradation may mobilize previously protected material from the permafrost profile, little is known about the stocks and stability of mercury (Hg) in the QTP permafrost. Here we measured total soil Hg in 265 samples from 15 permafrost cores ranging from 3 to 18 m depth, and 45 active layer (AL) soil samples from different land cover types on the QTP. Approximately 21.7 Gg of Hg was stored in surficial permafrost (0-3 m), with 16.58 Gg of Hg was stored in the active layer. Results from six permafrost collapse areas showed that much of the thawed Hg is mobile, with decreases in total Hg mass of 17.6-30.9% for the AL (top 30 cm) in comparison with non-thermokarst surfaces. We conclude that the QTP permafrost region has a large mercury pool, and the stored mercury is sensitive to permafrost degradation.

12.
Sci Rep ; 9(1): 3295, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30824774

RESUMO

Degradation of cryospheric components such as arctic sea ice and permafrost may pose a threat to the Earth's climate system. A rise of 2 °C above pre-industrial global surface temperature is considered to be a risk-level threshold. This study investigates the impacts of global temperature rises of 1.5 °C and 2 °C on the extent of the permafrost in the Northern Hemisphere (NH), based on the 17 models of Coupled Model Intercomparison Project Phase 5 (CMIP5). Results show that, when global surface temperature rises by 1.5 °C, the average permafrost extent projected under Representative Concentration Pathway (RCP) scenarios would decrease by 23.58% for RCP2.6 (2027-2036), 24.1% for RCP4.5 (2026-2035) and 25.55% for RCP8.5 (2023-2032). However, uncertainty in the results persists because of distinct discrepancies among the models. When the global surface temperature rises by 2 °C, about one-third of the permafrost would disappear; in other words, most of the NH permafrost would still remain even in the RCP8.5 (2037-2046) scenario. The results of the study highlight that the NH permafrost might be able to stably exist owing to its relatively slow degradation. This outlook gives reason for hope for future maintenance and balance of the cryosphere and climate systems.

13.
Sci Total Environ ; 686: 370-381, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31181523

RESUMO

Riverine dissolved organic carbon (DOC) and its optical properties were investigated in two sub-river basins (Yeniugou and Hulugou river) of the Upper Heihe river basin in the northern Tibetan Plateau. The results showed that DOC concentrations ranged from 0.25 to 12.2 and 0.18-1.04 mg L-1 for Yeniugou and Hulugou river basin with an average of 0.82 and 0.33 mg L-1, respectively. Export of DOC from the studied river (YNG: ~0.86 Gg C yr-1) was lesser compared with other large river in the Tibetan Plateau and Arctic regions because of the small drainage area and lower DOC concentrations. There exhibited significant seasonality for DOC in Yeniugou river basin with higher values observed during late spring and summer; however, no such distinct trend was observed for DOC in the studied rivers of Hulugou river basin. In contrast, total dissolved nitrogen showed a slightly lower value during the summer season. A strong relationship was determined between DOC concentrations and spectral UV absorbance at 254 nm (SUVA254), absorption coefficients and spectral slope for both sub-river basins, attributing that the riverine DOM in the northern Tibetan Plateau has a remarkably high content of aromatic compounds in late spring and summer. Considering the less snow cover percentage, this study highlights the potential impacts of permafrost thaw on the riverine DOC and its characteristics in the permafrost region under climate change.

14.
Water Res ; 161: 54-60, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31176884

RESUMO

Arctic rivers export a large amount of organic carbon (OC) and mercury (Hg) to Arctic oceans. Because there are only a few direct calculations of OC and Hg exports from these large rivers, very little is known about their response to changes in the active layer in northern permafrost-dominated areas. In this study, multiyear data sets from the Arctic Great Rivers Observatory (ArcticGRO) are used to estimate the export of dissolved organic carbon (DOC), particulate organic carbon (POC), total mercury (THg) and methylmercury (MeHg) from the six largest rivers (Yenisey, Lena, Ob, Mackenzie, Yukon and Kolyma) draining to the Arctic Ocean. From 2003 to 2017, annual DOC and POC export to the Arctic Ocean was approximately 21612 Gg and 2728 Gg, and the exports of Hg and MeHg to the Arctic Ocean were approximately 20090 kg and 110 kg (0.002% of the total Hg stored in the northern hemisphere active layer). There were great variations in seasonal OC and Hg concentrations and chemical characteristics, with higher fluxes in spring and lower fluxes in winter (baseline). DOC and Hg concentrations are significantly positively correlated to discharge, as discharge continues to increase in response to a deepening active layer thickness during recent past decades. This study shows that previous results likely underestimated DOC exports from rivers in the circum-Arctic regions, and both OC and Hg exports will increase under predicted climate warming scenarios.


Assuntos
Mercúrio , Pergelissolo , Poluentes Químicos da Água , Regiões Árticas , Carbono , Monitoramento Ambiental , Oceanos e Mares , Rios , Yukon
15.
PLoS One ; 13(2): e0192591, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29470510

RESUMO

The paucity of studies on permafrost runoff generation processes, especially in mountain permafrost, constrains the understanding of permafrost hydrology and prediction of hydrological responses to permafrost degradation. This study investigated runoff generation processes, in addition to the contribution of summer thaw depth, soil temperature, soil moisture, and precipitation to streamflow in a small upland permafrost basin in the northern Tibetan Plateau. Results indicated that the thawing period and the duration of the zero-curtain were longer in permafrost of the northern Tibetan Plateau than in the Arctic. Limited snowmelt delayed the initiation of surface runoff in the peat permafrost in the study area. The runoff displayed intermittent generation, with the duration of most runoff events lasting less than 24 h. Precipitation without runoff generation was generally correlated with lower soil moisture conditions. Combined analysis suggested runoff generation in this region was controlled by soil temperature, thaw depth, precipitation frequency and amount, and antecedent soil moisture. This study serves as an important baseline to evaluate future environmental changes on the Tibetan Plateau.


Assuntos
Pergelissolo , Chuva , Hidrologia , Solo , Tibet
16.
Environ Pollut ; 234: 339-346, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29195175

RESUMO

Antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) can be identified with metagenomic analyses comparing relatively pristine and human-impacted environments. We collected samples from 3 different environments: glacial soil little affected by anthropogenic activity, deep permafrost dated to 5821 BP (before human antibiotics), and sediment from the Pearl River. Sulfonamides, tetracyclines, and fluoroquinolones were common in the sediment samples. Sulfonamides and tetracycline were not found in permafrost; tetracycline was also not found in glacial soil. ARGs from the sediment were more abundant and diverse than those from glacial soil and permafrost. More types of resistance mechanisms were also present in the sediment. The diversity of MGEs was significantly correlated with the abundance and diversity of ARGs. The result will help future workers to better understand the distribution of ARGs among environments more or less impacted by anthropogenic activities.


Assuntos
Antibacterianos/análise , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Sedimentos Geológicos/análise , Pergelissolo/química , Solo/química , Monitoramento Ambiental , Fluoroquinolonas/análise , Humanos , Metagenômica , Rios , Sulfonamidas/análise , Tetraciclina/análise
17.
Environ Sci Pollut Res Int ; 25(15): 15174-15190, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29560591

RESUMO

Airborne pollutant characteristics, potential sources, and variation trends of cause are investigated based on the hourly air concentrations of gaseous pollutants and particulate matter from 2013 to 2016 in Lanzhou. The mean concentration of SO2, NO2, CO, 8-hO3, PM2.5, and PM10 was 25.2 ± 16.0 µg m-3, 46.5 ± 21.1 µg m-3, 1.3 ± 0.7 mg m-3, 77.8 ± 45.5 µg m-3, 58.7 ± 32.9 µg m-3, and 131.1 ± 86.2 µg m-3, respectively. The concentrations of SO2, PM10, and PM2.5 present decreasing trends while NO2, CO, and O3 present increasing trends. PM is the most frequent major pollutants with much higher value than standard limit. However, NO2 pollution had obvious trends to reach the limit and was more serious in Lanzhou compared with other Chinese cities. Relationship between air pollutants and meteorological parameters suggested that lower primary pollutants were associated with higher wind speed from north and west. Modeled back trajectory demonstrated that the transport of air masses from the Hexi Corridor and Inner Mongolia was responsible for the high concentrations of the air pollutants in wintertime, and high PM10 level in springtime was related to long-range transport of dust from desert areas of the Sinkiang and the Central Asia. Effects of local pollutant emissions and meteorological condition were preliminary analyzed. Improvement of air quality might be related to the decreasing of pollutant emissions due to strict emissions controls, and the contribution of meteorological condition was not explicit and should be further investigated.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental/métodos , Gases/análise , Material Particulado/análise , China , Cidades , Poeira/análise , Vento
18.
Sci Rep ; 8(1): 4205, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29523853

RESUMO

Deep carbon pool in permafrost regions is an important component of the global terrestrial carbon cycle. However, the greenhouse gas production from deep permafrost soils is not well understood. Here, using soils collected from 5-m deep permafrost cores from meadow and wet meadow on the northern Qinghai-Tibetan Plateau (QTP), we investigated the effects of temperature on CO2 and N2O production under aerobic incubations and CH4 production under anaerobic incubations. After a 35-day incubation, the CO2, N2O and CH4 production at -2 °C to 10 °C were 0.44~2.12 mg C-CO2/g soil C, 0.0027~0.097 mg N-N2O/g soil N, and 0.14~5.88 µg C-CH4/g soil C, respectively. Greenhouse gas production in deep permafrost is related to the C:N ratio and stable isotopes of soil organic carbon (SOC), whereas depth plays a less important role. The temperature sensitivity (Q10) values of the CO2, N2O and CH4 production were 1.67-4.15, 3.26-5.60 and 5.22-10.85, without significant differences among different depths. These results indicated that climate warming likely has similar effects on gas production in deep permafrost and surface soils. Our results suggest that greenhouse gas emissions from both the deep permafrost and surface soils to the air will increase under future climate change.

19.
ISME J ; 8(1): 139-49, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23985750

RESUMO

Microbial metabolic activity occurs at subzero temperatures in permafrost, an environment representing ∼25% of the global soil organic matter. Although much of the observed subzero microbial activity may be due to basal metabolism or macromolecular repair, there is also ample evidence for cellular growth. Unfortunately, most metabolic measurements or culture-based laboratory experiments cannot elucidate the specific microorganisms responsible for metabolic activities in native permafrost, nor, can bulk approaches determine whether different members of the microbial community modulate their responses as a function of changing subzero temperatures. Here, we report on the use of stable isotope probing with (13)C-acetate to demonstrate bacterial genome replication in Alaskan permafrost at temperatures of 0 to -20 °C. We found that the majority (80%) of operational taxonomic units detected in permafrost microcosms were active and could synthesize (13)C-labeled DNA when supplemented with (13)C-acetate at temperatures of 0 to -20 °C during a 6-month incubation. The data indicated that some members of the bacterial community were active across all of the experimental temperatures, whereas many others only synthesized DNA within a narrow subzero temperature range. Phylogenetic analysis of (13)C-labeled 16S rRNA genes revealed that the subzero active bacteria were members of the Acidobacteria, Actinobacteria, Chloroflexi, Gemmatimonadetes and Proteobacteria phyla and were distantly related to currently cultivated psychrophiles. These results imply that small subzero temperature changes may lead to changes in the active microbial community, which could have consequences for biogeochemical cycling in permanently frozen systems.


Assuntos
Bactérias/genética , Replicação do DNA/genética , Congelamento , Genoma Bacteriano/genética , Microbiologia do Solo , Alaska , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Isótopos de Carbono/análise , Isótopos de Carbono/metabolismo , Filogenia , RNA Ribossômico 16S/genética
20.
Sci Total Environ ; 409(10): 1836-42, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21356544

RESUMO

Soil water content strongly affects permafrost dynamics by changing the soil thermal properties. However, the movement of liquid water, which plays an important role in the heat transport of temperate soils, has been under-represented in boreal studies. Two different heat transport models with and without convective heat transport were compared to measurements of soil temperatures in four boreal sites with different stand ages and drainage classes. Overall, soil temperatures during the growing season tended to be over-estimated by 2-4°C when movement of liquid water and water vapor was not represented in the model. The role of heat transport in water has broad implications for site responses to warming and suggests reduced vulnerability of permafrost to thaw at drier sites. This result is consistent with field observations of faster thaw in response to warming in wet sites compared to drier sites over the past 30 years in Canadian boreal forests. These results highlight that representation of water flow in heat transport models is important to simulate future soil thermal or permafrost dynamics under a changing climate.


Assuntos
Mudança Climática , Água Doce/química , Temperatura Alta , Solo/química , Movimentos da Água , Clima Frio , Meio Ambiente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA