Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Pediatr Hematol Oncol ; 39(6): 549-560, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35139734

RESUMO

Low expression of CTBP2 and CASP8AP2 correlated with poor outcome and predicted risk of relapse in pediatric B-cell acute lymphoblastic leukemia (B-ALL). This study aimed to investigate the molecular mechanism by which CASP8AP2 regulates LEF1 expression by interacting with CtBP2 and ZEB2 in Acute lymphoblastic lymphoma (ALL). There was an interaction between CASP8AP2, ZEB2, and CtBP2, and then the interaction between CtBP2 and ZEB2 was observed after downregulating the expression of CASP8AP2. The wild type (containing the ZEB2 binding site) or mutant (containing a mutant binding site) LEF1 gene promoter sequence was inserted into the pGL3-basic plasmid, and a dual-luciferase reporter gene detection system was used to observe how CASP8AP2, ZEB2, and CtBP2 regulate the transcription of the LEF1 gene. We conclude that CASP8AP2, CtBP2, and ZEB2 can all bind to the LEF1 gene promoter region and reduce the luciferase activity of the LEF1 promoter. Meanwhile, the interaction of ZEB2 and the LEF1 promoter was significantly weakened after downregulation of CASP8AP2. Knockdown of CASP8AP2 in the 697 cell lines resulted in the significant upregulation of the mRNA expression levels of the stemness-related genes CD44, JAG1, and SALL4. In conclusion, CASP8AP2 is vital for the interaction between CtBP2 and ZEB2, inhibiting LEF1 and stemness-related genes expression ALL.Supplemental data for this article is available online at https://doi.org/10.1080/08880018.2022.2033369 .


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Correpressoras/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas de Ligação ao Cálcio/genética , Linhagem Celular Tumoral , Criança , Expressão Gênica , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Fatores de Transcrição/genética
2.
Am J Med Sci ; 360(6): 701-710, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33012486

RESUMO

BACKGROUND: Lung squamous cell carcinoma (LUSC) accounts up for approximately 30% of all lung cancers with a high mortality. The study was aimed at finding genes critical in the diagnosis and prognosis of LUSC. MATERIALS AND METHODS: The differentially expressed (DE) genes (DEGs) and DE lncRNAs (DELs) from 501 LUSC and 49 normal lung tissues, and DE miRNAs (DEMs) from 478 LUSC and 45 normal lung tissues were respectively obtained via the TCGA database. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and co-expression network analyses were performed. Survival analysis and receiver operating characteristic curve of hub mRNAs were also analyzed. Competitive endogenous RNA networks of lncRNAs, miRNAs and mRNAs were constructed. RESULTS: A total of 5747 DEGs, 378 DEMs and 3141 DELs in LUSC were identified in LUSC. The DEGs including AUARK, CDK1, KIF11 and EXO1 were proven to be significant metastatic indicators in LUSC, and 2 DEGs were significantly associated with the survival in LUSC patients. Some genes might have connections with many other gene nodes through a co-expression network. Four lncRNAs, 2 mRNAs and 2 miRNAs were identified as the candidates for the competitive miRNA-mRNA-lncRNA network and might serve as prognostic markers in LUSC. CONCLUSIONS: We identified the differentially expressed lncRNAs, miRNAs and mRNAs in LUSC, providing further insights into the molecular mechanism of LUSC tumorigenesis and the potential prognostic biomarkers or therapeutic targets for LUSC.


Assuntos
Carcinoma de Células Escamosas/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , Carcinoma de Células Escamosas/diagnóstico , Ontologia Genética , Redes Reguladoras de Genes , Humanos , Pulmão , Neoplasias Pulmonares/diagnóstico , Prognóstico , Curva ROC , Análise de Sobrevida
3.
Curr Top Med Chem ; 20(10): 835-846, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32141418

RESUMO

BACKGROUND: Although the involvement of individual microRNA and lncRNA in the regulation of p21 expression has largely been evidenced, less is known about the roles of functional interactions between miRNAs and lncRNAs in p21 expression. Our previous work demonstrated that miR-509- 3-5p could block cancer cell growth. METHODS: To gain an insight into the role of miR-509-3-5p in the regulation of p21 expression, we performed in silico prediction and showed that miR-509-3-5p might target the NONHSAT112228.2, a sense-overlapping lncRNA transcribed by a non-code gene overlapping with p21 gene. Mutation and luciferase report analysis suggested that miR-509-3-5p could target NONHSAT112228.2, thereby blocking its expression. Consistently, NONHSAT112228.2 expression was inversely correlated with both miR-509-3-5p and p21 expression in cancer cells. Ectopic expression of miR-509-3-5p and knockdown of NONHSAT112228.2 both promoted proliferation and migration of cancer cells. RESULTS: Interestingly, high-expression of NONHSAT112228.2 accompanied by low-expression of p21 was observed in lung cancer tissues and associated with lower overall survival. CONCLUSION: Taken together, our study found a new regulatory pathway of p21, in which MiR-509-3-5p functionally interacts with NONHSAT112228.2 to release p21 expression. MiR-509-3-5p- NONHSAT112228.2 regulatory axis can inhibit the proliferation and migration of lung cancer cells.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Neoplasias Pulmonares/metabolismo , MicroRNAs/metabolismo , Proteínas Mutantes/genética , Sequência de Aminoácidos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Biologia Computacional , Simulação por Computador , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Luciferases/genética , Luciferases/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação , RNA Longo não Codificante/metabolismo , Transfecção , Cicatrização/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA