Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Int J Mol Sci ; 17(1)2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26742036

RESUMO

Tea plant is known to be a hyper-accumulator of fluoride (F). Over-intake of F has been shown to have adverse effects on human health, e.g., dental fluorosis. Thus, understanding the mechanisms fluoride accumulation and developing potential approaches to decrease F uptake in tea plants might be beneficial for human health. In the present study, we found that pretreatment with the anion channel inhibitor NPPB reduced F accumulation in tea plants. Simultaneously, we observed that NPPB triggered Ca(2+) efflux from mature zone of tea root and significantly increased relative CaM in tea roots. Besides, pretreatment with the Ca(2+) chelator (EGTA) and CaM antagonists (CPZ and TFP) suppressed NPPB-elevated cytosolic Ca(2+) fluorescence intensity and CaM concentration in tea roots, respectively. Interestingly, NPPB-inhibited F accumulation was found to be significantly alleviated in tea plants pretreated with either Ca(2+) chelator (EGTA) or CaM antagonists (CPZ and TFP). In addition, NPPB significantly depolarized membrane potential transiently and we argue that the net Ca(2+) and H⁺ efflux across the plasma membrane contributed to the restoration of membrane potential. Overall, our results suggest that regulation of Ca(2+)-CaM and plasma membrane potential depolarization are involved in NPPB-inhibited F accumulation in tea plants.


Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Camellia sinensis/efeitos dos fármacos , Fluoretos/metabolismo , Bombas de Íon/antagonistas & inibidores , Nitrobenzoatos/farmacologia , Proteínas de Plantas/metabolismo , Camellia sinensis/citologia , Camellia sinensis/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Raízes de Plantas/citologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo
2.
J Sci Food Agric ; 96(12): 4224-30, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26777729

RESUMO

BACKGROUND: Generally, tea plants are grown in acid soil which is rich in aluminum (Al) and fluoride (F). A recent publication showed that pretreatment with Al(3+) promoted F accumulation in tea plants by increasing endogenous Ca(2+) and calmodulin (CaM). A high level of F in tea leaves not only impairs tea quality but also might pose a health risk for people drinking tea regularly. Therefore it is important to try to find some clues which might be beneficial in controlling F accumulation in tea plants grown in acid soil (Al(3+) ). RESULTS: It was found that diisothiocyanostilbene-2,2-disulfonic acid (DIDS) significantly reduced Al(3+) -promoted F accumulation in tea plants. Additionally, Al(3+) plus DIDS treatment stimulated significantly higher Ca(2+) efflux and decreased the CaM level in tea roots compared with Al(3+) treatment. Besides, significantly higher depolarization of membrane potential was shown in tea roots treated with Al(3+) plus DIDS than in those treated with Al(3+) , as well as higher net total H(+) efflux and plasma membrane H(+) -ATPase activity. CONCLUSION: Al(3+) -promoted F accumulation in tea plants was inhibited by an anion channel inhibitor DIDS. Ca(2+) /CaM and membrane potential depolarization may be the components involved in this process. © 2016 Society of Chemical Industry.


Assuntos
Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/farmacologia , Alumínio/farmacologia , Camellia sinensis/efeitos dos fármacos , Camellia sinensis/metabolismo , Fluoretos/farmacocinética , Adenosina Trifosfatases/metabolismo , Alumínio/química , Cálcio/metabolismo , Calmodulina/metabolismo , Camellia sinensis/química , Cátions/química , Cátions/farmacologia , Membrana Celular/metabolismo , Fluoretos/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Solo/química
3.
Plant Physiol Biochem ; 96: 288-95, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26318146

RESUMO

Tea plant (Camellia sinensis (L.) O. kuntze) is known to be a fluoride (F) and aluminum (Al(3+)) hyper-accumulator. Previous study showed that pre-treatment of Al(3+) caused a significant increase of F accumulation in tea plants. However, less is known about the intricate network of Al(3+) promoted F accumulation in tea plants. In this study, the involvement of endogenous Ca(2+) and CaM in Al(3+) pretreatment-promoted F accumulation in tea plants was investigated. Our results showed that Al(3+) induced the inverse change of intracellular Ca(2+) fluorescence intensity and stimulated Ca(2+) trans-membrane transport in the mature zone of tea root. Also, a link between internal Ca(2+) and CaM was found in tea roots under the presence of Al(3+). In order to investigate whether Ca(2+) and CaM were related to F accumulation promoted by Al(3+) pretreatment, Ca(2+) chelator EGTA and CaM antagonists CPZ and TFP were used. EGTA, CPZ, and TFP pretreatment inhibited Al(3+)-induced increase of Ca(2+) fluorescence intensity and CaM content in tea roots, and also significantly reduced Al(3+)-promoted F accumulation in tea plants. Taken together, our results suggested that the endogenous Ca(2+) and CaM are involved in Al(3+) pretreatment-promoted F accumulation in tea roots.


Assuntos
Alumínio/metabolismo , Cálcio/metabolismo , Calmodulina/metabolismo , Camellia/metabolismo , Fluoretos/metabolismo
4.
J Agric Food Chem ; 62(10): 2313-9, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24548055

RESUMO

The tea plant is a fluoride (F) and aluminum (Al) hyperaccumulator. High concentrations of F and Al have always been found in tea leaves without symptoms of toxicity, which may be related to the special localization of F and Al in tea leaves. In this study, we for the first time determined the subcellular localization of F and Al in tea roots and leaves and provided evidence of the detoxification mechanisms of high concentrations of F and Al in tea plants. Results revealed that 52.3 and 71.8% of the total F accumulated in the soluble fraction of tea roots and leaves, and vacuoles contained 98.1% of the total F measured in the protoplasts of tea leaves. Cell walls contained 69.8 and 75.2% of the total Al detected in the tea roots and leaves, respectively, and 73.2% of Al sequestered in cell walls was immobilized by pectin and hemicellulose components. Meanwhile, 88.3% of the Al measured in protoplasts was stored in the vacuoles of tea leaves. Our results suggested that the subcellular distributions of F and Al in tea plants play two important roles in the detoxification of F and Al toxicities. First, most of the F and Al was sequestered in the vacuole fractions in tea leaves, which could reduce their toxicities to organelles. Second, Al can be immobilized in the pectin and hemicellulose components of cell walls, which could suppress the uptake of Al by tea roots.


Assuntos
Alumínio/análise , Camellia sinensis , Fluoretos/análise , Folhas de Planta/química , Raízes de Plantas/química , Alumínio/farmacocinética , Parede Celular/química , Poluentes Ambientais/análise , Poluentes Ambientais/farmacocinética , Fluoretos/farmacocinética , Inativação Metabólica , Protoplastos/química , Frações Subcelulares/química , Vacúolos/química
5.
Zhonghua Liu Xing Bing Xue Za Zhi ; 28(4): 334-7, 2007 Apr.
Artigo em Zh | MEDLINE | ID: mdl-17850698

RESUMO

OBJECTIVE: To study how hepatitis B virus(HBV) 'a' determinant hotpoint mutations were influecing the hepatitis B vaccine efficacy. METHODS: Primers were designed in HBV conservative region, and the degenerate probes for detecting 16 'a' determinant hotpoint mutations were developed for gene chips. Sensitivity and specificity of the gene chips were evaluated by clone sequencing. Sera of 47 pairs of mothers and infants with immune failure and 323 mothers of children with immune protection of HB vaccine were detected by the gene chips. RESULTS: Result from clone sequencing demonstrated that the gene chips were specific for the detection of 'a' determinant hotpoint mutations. The wild type of HBV was still dominant, with the prevalence of 78.66%, and the mutation frequencies of 126A, 145R, 126S-1, 126S-2, 129H, 144A, and 129R were 11.27%, 5.76%, 5.28%, 4.56%, 1.20%, 0.72% and 0.24%, respectively. The prevalence of 126A mutation was significantly higher than that of other mutations(P < 0.01). No significant differences were found in mother-infant transmission rates of 126A, 126S-1, 126S-2 and 145R variants. CONCLUSION: The currently available hepatitis B vaccine could block mother-infant transmission of 126A, 126S and 145R variants. It appears that there is no need to develop a new hepatitis B vaccine against 126 and 145 variants at present, but the consistent epidemiological surveillance on HBV mutants should be carried out.


Assuntos
Vacinas contra Hepatite B/imunologia , Vírus da Hepatite B/genética , Hepatite B/prevenção & controle , Mutação , Complicações Infecciosas na Gravidez/virologia , Adulto , Feminino , Genótipo , Hepatite B/transmissão , Vírus da Hepatite B/imunologia , Humanos , Recém-Nascido , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Análise de Sequência com Séries de Oligonucleotídeos , Gravidez , Complicações Infecciosas na Gravidez/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA