Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 231
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(27): 8402-8409, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38935418

RESUMO

Two-dimensional (2D) InSe and PtTe2 have drawn extensive attention due to their intriguing properties. However, the InSe monolayer is an indirect bandgap semiconductor with a low hole mobility. van der Waals (vdW) heterostructures produce interesting electronic and optoelectronic properties beyond the existing 2D materials and endow totally new device functions. Herein, we theoretically investigated the electronic structures, transport behaviors, and electric field tuning effects of the InSe/PtTe2 vdW heterostructures. The calculated results show that the direct bandgap type-II vdW heterostructures can be realized by regulating the stacking configurations of heterostructures. By applying an external electric field, the band alignment and bandgap of the heterostructures can also be flexibly modulated. Particularly, the hole mobility of the heterostructures is improved by 2 orders of magnitude to ∼103 cm2 V-1 s-1, which overcomes the intrinsic disadvantage of the InSe monolayer. The InSe/PtTe2 vdW heterostructures have great potential applications in developing novel optoelectronic devices.

2.
Nano Lett ; 24(31): 9658-9665, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39052446

RESUMO

Dielectric phase gradient metasurfaces have emerged as promising candidates to shrink bulky optical elements to subwavelength thickness scale based on dielectric meta-atoms. These meta-atoms strongly interact with light, thus offering excellent phase manipulation of incident light. However, to fulfill 2π phase control using meta-atoms, the metasurface thickness, to date, is limited to the order of 102 nm. Here, we present the thickness scaling down of phase gradient metasurfaces to <λ/20 by using excitonic van der Waals metasurfaces. High-refractive-index enabled by exciton resonances and symmetry-breaking nanostructures in the patterned layered tungsten disulfide (WS2) corporately enable quasibound states in the continuum in WS2 metasurfaces, which consequently yield complete phase regulation of 2π with the thickness down to 35 nm. To illustrate the concept, we have experimentally demonstrated beam steering, focusing, and holographic display using WS2 metasurfaces. We envision our results unveiling new venues for ultimate thin phase gradient metasurfaces.

3.
Nano Lett ; 24(37): 11551-11558, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39225684

RESUMO

Atomically thin transition metal dichalcogenides (TMDs) with ambient stable exciton resonances have emerged as an ideal material platform for exciton-polaritons. In particular, the strong coupling between excitons in TMDs and optical resonances in anisotropic photonic nanostructures can form exciton-polaritons with polarization selectivity, which offers a new degree of freedom for the manipulation of the light-matter interaction. In this work, we present the experimental demonstration of polarization-controlled exciton-polaritons in tungsten disulfide (WS2) strongly coupled with polarization singularities in the momentum space of low-symmetry photonic crystal (PhC) nanostructures. The utilization of polarization singularities can not only effectively modulate the polarization states of exciton-polaritons in the momentum space but also facilitate or suppress their far field coupling capabilities by tuning the in-plane momentum. Our results provide new strategies for creating polarization-selective exciton-polaritons.

4.
Small ; : e2400483, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39092666

RESUMO

The development of high-energy-density cathode materials is regarded as the ultimate goal of alkali metal-ion batteries energy storage. However, the strategy of regulating specific capacity is limited by the theoretical capacity, and meanwhile focusing on improving capacity will lead to structural destructions. Herein, a novel perspective is proposed that tuning the electronic band structure by introducing highly electronegative fluoride atoms in NaxTMO2-yFy (0 < x < 1, 0 < y < 2) model compounds to improve redox potential for developing high-energy-density layered oxides. Highly electronegative fluoride atoms is introduced into P2-type Na0.67Fe0.5Mn0.5O2 (NFM), and the thus fluoride NFM (F-NFM) cathode achieved high redox potential (3.0 V) and high energy density (446 Wh kg-1). Proved by structural characterizations, fluorine atoms are successfully incorporated into oxygen sites in NFM lattice. Ultraviolet photoelectron spectroscopy is applied to quantitatively analyze the improved redox potential of F-NFM, which is achieved by the decreased valence band energy in electronic band structure due to the strongly electrophilic fluoride ions. Moreover, fluoride atoms can stabilize the local environment of NFM and improve its redox potential. The work provides a perspective to improve redox potential by tuning the electronic band structure in layered oxides and developing high-energy-density alkali metal-ion batteries.

5.
Opt Lett ; 49(14): 3990-3993, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008759

RESUMO

Atomically thin transition metal dichalcogenides (TMDS) offer a promising route to the scaling down of optoelectronic devices to the ultimate thickness limit. But the weak light-matter interaction caused by their atomically thin nature makes them inevitably rely on external photonic structures to enhance optical absorption. Here, we report chiral absorption enhancement in atomically thin tungsten diselenide (WSe2) using chiral resonances in photonic crystal (PhC) nanostructures patterned directly in WSe2 itself. We show that the quality factors (Q factors) of the resonances grow exponentially as the PhC thickness approaches atomic limit. As such, the strong interaction of high Q factor photonic resonance with the coexisting exciton resonance in WSe2 results into self-coupled exciton-polaritons. By balancing the light coupling and absorption rates, the incident light can critically couple to chiral resonances in WSe2 PhC exciton-polaritons, leading to the theoretically limited 50% optical absorptance with over 84% circular dichroism (CD).

6.
Plant Dis ; 2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39342960

RESUMO

Cotton leaf curl Multan virus(CLCuMuV; Begomovirus gossypimultanese, family Geminiviridea) is a single-stranded circular DNA virus, with a genome size of about 2.7 kb, CLCuMuV, which is commonly associated with its satellite DNA, Cotton leaf curl Multan betasatellite (CLCuMuB) (Mansoor et al., 2003), is a serious threat in cotton production causing cotton leaf curl disease (CLCuD) (Briddon et al., 2000). The spread of CLCuMuV is closely linked to its insect vector, whitefly (Bemisia tabaci), which is the exclusive vector species for CLCuMuV transmission (Pan et al., 2018). In May 2019, two spinach (Spinacia oleracea L) samples (XJBC01, XJBC02) showing upward curling of the leaf margins, vein thickening, and enation, symptoms were collected in Shihezi City, Xinjiang, China (Fig. 1B). A 570 bp fragment was amplified from the two symptomatic spinach samples using Begomovirus universal primer pair AV494 (5'-GCCYATRTAYAGRAAGCCMAG-3') and COPR (5'-GANGSATGHTRCADGCCAT ATA-3'), Sequences generated from these amplicons shared 99% nucleotide sequence identities with CLCuMuV DNA-A sequences, suggesting CLCuMuV infection in spinach. To our knowledge CLCuMuV has not been reported in spinach previously. The complete sequences of CLCuMuV and CLCuMuB were then sequenced using CLCuMuV-specific primers GD37-F (5'-GGATCCATTGTTAAACGAATTTCC-3') and GD37-R (5'-GGATCCCACATGTTTGAATTTGA-3') (Gu et al., 2015), as well as betasatellite universal primers ß01 (5'-GGTACCACTACGCTACGCAGCAGCC-3') and ß02 (5'-GGTACCTACCCTCCCAGGGGTACAC-3') (Zhou et al.,2003). The full length CLCuMuV DNA-A in spinach spans 2737 nt (GenBank accession number: MW561346), while CLCuMuB in spinach covers 1343 nt (GenBank accession number: MW561347). The 2737 nt full length CLCuMuV DNA-A and the associated 1343 nt CLCuMuB genome sequences generated from spinach samples were deposited in the GenBank with accession numbers MW561346 and MW561347. The MW561346 shared 99.5% sequence identity with CLCuMV GD37 from Hibiscus rosasinensis. Whereas the MW561347 shared 98.4% sequence identity with CLCuMuB GD37ß. Therefore, we used infectious clones of CLCuMuV (GD37) and CLCuMuB (GD37ß), provided by Xueping Zhou (Gu et al., 2015), to inoculate healthy spinach via Agrobacterium. Infected plants showed typical symptoms 14 days post-inoculation, including leaf edge curling, shrinkage, and vein enlargement, which is consistent with symptoms observed in infected spinach plants in the field (Fig. 1C). The expected 570 bp fragments were amplified in the uninoculated upper leaves of spinach showing symptoms, while not detected in the control spinach, indicating that the symptoms on spinach plants were caused by CLCuMuV associated with CLCuMuB. The transmission efficiency of CLCuMuV to spinach was assessed using two whitefly species, MEAM1 and MED, which were fed on h. rosasinensis infected with CLCuMuV. To compare the transmission efficiency between the two species, 14 spinach plants were inoculated with MEAM1, and 11 spinach plants were inoculated with MED. Each spinach plant was inoculated by releasing 10 whiteflies. After 30 days, MEAM1 transmitted CLCuMuV to spinach inducing typical symptoms (Fig. 1D), with a 78.57% (11/14) transmission efficiency. Similarly, MED also transmitted CLCuMuV to spinach but with a lower efficiency of 54.54% (6/11). These results suggested both MEAM1 and MED could transmit CLCuMuV to spinach, with MEAM1 demonstrating higher efficiency than MED. To the best of our knowledge, this study marks the first report of CLCuMuV infecting spinach, indicating an expanded host range for the virus.

7.
Int J Mol Sci ; 25(18)2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39337452

RESUMO

The enantioselective mechanism of the esterase QeH against the two enantiomers of quizalofop-ethyl (QE) has been primitively studied using computational and experimental approaches. However, it is still unclear how the esterase QeH adjusts its conformation to adapt to substrate binding and promote enzyme-substrate interactions in the catalytic kinetics. The equilibrium processes of enzyme-substrate interactions and catalytic dynamics were reproduced by performing independent molecular dynamics (MD) runs on the QeH-(R)/(S)-QE complexes with a newly developed residue-specific force field (RSFF2C). Our results indicated that the benzene ring of the (R)-QE structure can simultaneously form anion-π and cation-π interactions with the side-chain group of Glu328 and Arg384 in the binding cavity of the QeH-(R)-QE complex, resulting in (R)-QE being closer to its catalytic triplet system (Ser78-Lys81-Tyr189) with the distances measured for the hydroxyl oxygen atom of the catalytic Ser78 of QeH and the carbonyl carbon atom of (R)-QE of 7.39 Å, compared to the 8.87 Å for (S)-QE, whereas the (S)-QE structure can only form an anion-π interaction with the side chain of Glu328 in the QeH-(S)-QE complex, being less close to its catalytic site. The computational alanine scanning mutation (CAS) calculations further demonstrated that the π-π stacking interaction between the indole ring of Trp351 and the benzene ring of (R)/(S)-QE contributed a lot to the binding stability of the enzyme-substrate (QeH-(R)/(S)-QE). These results facilitate the understanding of their catalytic processes and provide new theoretical guidance for the directional design of other key enzymes for the initial degradation of aryloxyphenoxypropionate (AOPP) herbicides with higher catalytic efficiencies.


Assuntos
Esterases , Simulação de Dinâmica Molecular , Esterases/química , Esterases/metabolismo , Estereoisomerismo , Especificidade por Substrato , Domínio Catalítico , Cinética
8.
Angew Chem Int Ed Engl ; : e202410260, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39187620

RESUMO

Chemically inert hydrocarbons are the primary feedstocks used in the petrochemical industry and can be converted into more intricate and valuable chemicals. However, two major challenges impede this conversion process: selective activation of C-H bonds in hydrocarbons and systematic functionalization required to synthesize complex structures. To address these issues, we developed a multi-enzyme cascade conversion system based on internal cofactor and H2O2 recycling to achieve the one-pot deep conversion from heptane to chiral (S)-2-aminoheptanoic acid under mild conditions. First, a hydrogen-borrowing-cycle-based NADH regeneration method and H2O2in situ generation and consumption strategy were applied to realize selective C-H bond oxyfunctionalization, converting heptane into 2-hydroxyheptanoic acid. Integrating subsequent reductive amination driven by the second hydrogen-borrowing cycle, (S)-2-aminoheptanoic acid was finally accumulated at 4.57 mM with eep > 99%. Hexane, octane, 2-methylheptane, and butylbenzene were also successfully converted into the corresponding chiral amino acids with eep > 99%. Overall, the conversion system employed internal cofactor and H2O2 recycling, with O2 as the oxidant and ammonium as the amination reagent to fulfill the enzymatic conversion from chemically inert hydrocarbons into chiral amino acids under environmentally friendly conditions, which is a highly challenging transformation in traditional organic synthesis.

9.
J Am Chem Soc ; 145(48): 26308-26317, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-37983668

RESUMO

Friedel-Crafts acylation (FCA) is a highly beneficial approach in organic chemistry for creating the important C-C bonds that are necessary for building intricate frameworks between aromatic substrates and an acyl group. However, there are few reports about enzyme catalyzed FCA reactions. In this study, 4-acyl-5-aminoimidazole alkaloids (AAIAs), streptimidazoles A-C (1-3), and the enantiopure (+)-nocarimidazole C (4) as well as their ribosides, streptimidazolesides A-D (5-8), were identified from the fermentation broth of Streptomyces sp. OUCMDZ-944 or heterologous S. coelicolor M1154 mutant. The biosynthetic gene cluster (smz) was identified, and the biosynthetic pathway of AAIAs was elucidated for the first time. In vivo and in vitro studies proved the catalytic activity of the four essential genes smzB, -C, -E, and -F for AAIAs biosynthesis and clarified the biosynthetic process of the alkaloids. The ligase SmzE activates fatty acyl groups and connects them to the acyl carrier protein (ACP) holo-SmzF. Then, the acyl group is transferred onto the key residue Cys49 of SmzB, a new Friedel-Crafts acyltransferase (FCase). Subsequently, the FCA reaction between the acyl groups and 5-aminoimidazole ribonucleotide (AIR) occurs to generate the key intermediate AAIA-nucleotides catalyzed by SmzB. Finally, the hydrolase SmzC catalyzes the N-glycosidic bond cleavage of the intermediates to form AAIAs. Structural simulation, molecular modeling, and mutational analysis of SmzB showed that Tyr26, Cys49, and Tyr93 are the key catalytic residues in the C-C bond formation of the acyl chain of AAIAs, providing mechanistic insights into the enzymatic FCA reaction.


Assuntos
Aciltransferases , Imidazóis , Aciltransferases/química , Proteína de Transporte de Acila/química , Catálise
10.
Small ; 19(24): e2301086, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36919923

RESUMO

The direct growth of wafer-scale single crystal two-dimensional (2D) hexagonal boron nitride (h-BN) layer with a controllable thickness is highly desirable for 2D-material-based device applications. Here, for the first time, a facile submicron-spacing vapor deposition (SSVD) method is reported to achieve 2-inch single crystal h-BN layers with controllable thickness from monolayer to tens of nanometers on the dielectric sapphire substrates using a boron film as the solid source. In the SSVD growth, the boron film is fully covered by the same-sized sapphire substrate with a submicron spacing, leading to an efficient vapor diffusion transport. The epitaxial h-BN layer exhibits extremely high crystalline quality, as demonstrated by both a sharp Raman E2g vibration mode (12 cm-1 ) and a narrow X-ray rocking curve (0.10°). Furthermore, a deep ultraviolet photodetector and a ZrS2 /h-BN heterostructure fabricated from the h-BN layer demonstrate its fascinating properties and potential applications. This facile method to synthesize wafer-scale single crystal h-BN layers with controllable thickness paves the way to future 2D semiconductor-based electronics and optoelectronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA