Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38003632

RESUMO

Illicium difengpi (Schisandraceae), which is an endemic, medicinal, and endangered species found in small and isolated populations that inhabit karst mountain areas, has evolved strategies to adapt to arid environments and is thus an excellent material for exploring the mechanisms of tolerance to severe drought. In experiment I, I. difengpi plants were subjected to three soil watering treatments (CK, well-watered treatment at 50% of the dry soil weight for 18 days; DS, drought stress treatment at 10% of the dry soil weight for 18 days; DS-R, drought-rehydration treatment at 10% of the dry soil weight for 15 days followed by rewatering to 50% of the dry soil weight for another 3 days). The effects of the drought and rehydration treatments on leaf succulence, phytohormones, and phytohormonal signal transduction in I. difengpi plants were investigated. In experiment II, exogenous abscisic acid (ABA, 60 mg L-1) and zeatin riboside (ZR, 60 mg L-1) were sprayed onto DS-treated plants to verify the roles of exogenous phytohormones in alleviating drought injury. Leaf succulence showed marked changes in response to the DS and DS-R treatments. The relative concentrations of ABA, methyl jasmonate (MeJA), salicylic acid glucoside (SAG), and cis-zeatin riboside (cZR) were highly correlated with relative leaf succulence. The leaf succulence of drought-treated I. difengpi plants recovered to that observed with the CK treatment after exogenous application of ABA or ZR. Differentially expressed genes involved in biosynthesis and signal transduction of phytohormones (ABA and JA) in response to drought stress were identified by transcriptomic profiling. The current study suggested that the phytohormones ABA, JA, and ZR may play important roles in the response to severe drought and provides a preliminary understanding of the physiological mechanisms involved in phytohormonal regulation in I. difengpi, an endemic, medicinal, and highly drought-tolerant plant found in extremely small populations in the karst region of South China.


Assuntos
Illicium , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/farmacologia , Schisandraceae , Secas , Ácido Abscísico , Solo
2.
Plant J ; 107(5): 1533-1545, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34189793

RESUMO

Rhododendrons are woody plants, famous throughout the world as having high horticultural value. However, many wild species are currently threatened with extinction. Here, we report for the first time a high-quality, chromosome-level genome of Rhododendron griersonianum, which has contributed to approximately 10% of all horticultural rhododendron varieties but which in its wild form has been evaluated as critically endangered. The final genome assembly, which has a contig N50 size of approximately 34 M and a total length of 677 M, is the highest-quality genome sequenced within the genus to date, in part due to its low heterozygosity (0.18%). Identified repeats constitute approximately 57% of the genome, and 38 280 protein-coding genes were predicted with high support. We further resequenced 31 individuals of R. griersonianum as well as 30 individuals of its widespread relative R. delavayi, and performed additional conservation genomic analysis. The results showed that R. griersonianum had lower genetic diversity (θ = 2.58e-3; π = 1.94e-3) when compared not only to R. delavayi (θ = 11.61e-3, π = 12.97e-3), but also to most other woody plants. Furthermore, three severe genetic bottlenecks were detected using both the Stairway plot and fastsimcoal2 analysis, which are thought to have occurred in the late Middle Pleistocene and the Last Glacial Maximum (LGM) period. After these bottlenecks, R. griersonianum recovered and maintained a constant effective population size (>25 000) until now. Intriguingly, R. griersonianum has accumulated significantly more deleterious mutations in the homozygous state than R. delavayi, and several deleterious mutations (e.g., in genes involved in the response to heat stress) are likely to have harmed the adaptation of this plant to its surroundings. This high-quality, chromosome-level genome and the population genomic analysis of the critically endangered R. griersonianum will provide an invaluable resource as well as insights for future study in this species to facilitate conservation and in the genus Rhododendron in general.


Assuntos
Cromossomos de Plantas/genética , Genética Populacional , Genoma de Planta/genética , Rhododendron/genética , Conservação dos Recursos Naturais , Demografia , Espécies em Perigo de Extinção , Evolução Molecular , Genômica , Anotação de Sequência Molecular , Mutação , Filogenia
3.
Front Plant Sci ; 14: 1284135, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38259923

RESUMO

Illicium difengpi (Schisandraceae), an endangered medicinal plant endemic to karst areas, is highly tolerant to drought and thus can be used as an ideal material for investigating adaptive mechanism to drought stress. The understanding of the drought tolerance of I. difengpi, especially at the molecular level, is lacking. In the present study, we aimed to clarify the molecular mechanism underlying drought tolerance in endemic I. difengpi plant in karst regions. The response characteristics of transcripts and changes in metabolite abundance of I. difengpi subjected to drought and rehydration were analyzed, the genes and key metabolites responsive to drought and rehydration were screened, and some important biosynthetic and secondary metabolic pathways were identified. A total of 231,784 genes and 632 metabolites were obtained from transcriptome and metabolome analyses, and most of the physiological metabolism in drought-treated I. difengpi plants recovered after rehydration. There were more upregulated genes than downregulated genes under drought and rehydration treatments, and rehydration treatment induced stable expression of 65.25% of genes, indicating that rehydration alleviated drought stress to some extent. Drought and rehydration treatment generated flavonoids, phenolic acids, flavonols, amino acids and their derivatives, as well as metabolites such as saccharides and alcohols in the leaves of I. difengpi plants, which alleviated the injury caused by excessive reactive oxygen species. The integration of transcriptome and metabolome analyses showed that, under drought stress, I. difengpi increased glutathione, flavonoids, polyamines, soluble sugars and amino acids, contributing to cell osmotic potential and antioxidant activity. The results show that the high drought tolerance and recovery after rehydration are the reasons for the normal growth of I. difengpi in karst mountain areas.

4.
Front Plant Sci ; 13: 985628, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092442

RESUMO

Polygala fallax Hemsl. (Polygalaceae), a traditional Chinese medicinal species, requires optimal growth conditions for artificial cultivation. Irradiance is one of the primary environmental factors that affects the growth and survival of P. fallax Hemsl. plants, which seemingly grow better under weak irradiance conditions. However, the optimum light intensity for growing P. fallax Hemsl. is not clear. To determine the optimum light intensity for cultivating this medicinal plant species, P. fallax Hemsl. plants from two different habitats were grown and exposed to three shade treatments (50% shade, 70% shade and 90% shade, which resulted in photosynthetically active radiation amounts equal to 662 µmol m-2 s-1, 401 µmol m-2 s-1, and 131 µmol m-2 s-1, respectively) to evaluate survival, growth, leaf photosynthesis, and the main pharmacological active ingredients (saponins) in response to shade. Our results revealed that the P. fallax Hemsl. plants in the different habitats consistently exhibited relatively high photosynthesis rates, biomass, survival rates and saponins under 662 µmol m-2 s-1 created by the 50% shade treatment. We concluded that photosynthetically active radiation of approximately 662 µmol m-2 s-1 is suitable for the cultivation of P. fallax Hemsl. plants.

5.
Plant Divers ; 43(6): 472-479, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35024516

RESUMO

Rhododendron meddianum is a critically endangered species with important ornamental value and is also a plant species with extremely small populations. In this study, we used double digest restriction-site-associated DNA sequencing (ddRAD) technology to assess the genetic diversity, genetic structure and demographic history of the three extant populations of R. meddianum. Analysis of SNPs indicated that R. meddianum populations have a high genetic diversity (π = 0.0772 ± 0.0024, H E  = 0.0742 ± 0.002). Both F ST values (0.1582-0.2388) and AMOVA showed a moderate genetic differentiation among the R. meddianum populations. Meanwhile, STRUCTURE, PCoA and NJ trees indicated that the R. meddianum samples were clustered into three distinct genetic groups. Using the stairway plot, we found that R. meddianum underwent a population bottleneck about 70,000 years ago. Furthermore, demographic models of R. meddianum and its relative, Rhododendron cyanocarpum, revealed that these species diverged about 3.05 (2.21-5.03) million years ago. This divergence may have been caused by environmental changes that occurred after the late Pliocene, e.g., the Asian winter monsoon intensified, leading to a drier climate. Based on these findings, we recommend that R. meddianum be conserved through in situ, ex situ approaches and that its seeds be collected for germplasm.

6.
Front Plant Sci ; 12: 715683, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34456954

RESUMO

Photoperiod-regulated floral transition is vital to the flowering plant. Luculia gratissima "Xiangfei" is a flowering ornamental plant with high development potential economically and is a short-day woody perennial. However, the genetic regulation of short-day-induced floral transition in L. gratissima is unclear. To systematically research the responses of L. gratissima during this process, dynamic changes in morphology, physiology, and transcript levels were observed and identified in different developmental stages of long-day- and short-day-treated L. gratissima plants. We found that floral transition in L. gratissima occurred 10 d after short-day induction, but flower bud differentiation did not occur at any stage under long-day conditions. A total of 1,226 differentially expressed genes were identified, of which 146 genes were associated with flowering pathways of sugar, phytohormones, photoperiod, ambient temperature, and aging signals, as well as floral integrator and meristem identity genes. The trehalose-6-phosphate signal positively modulated floral transition by interacting with SQUAMOSA PROMOTER-BINDING-LIKE PROTEIN 4 (SPL4) in the aging pathway. Endogenous gibberellin, abscisic acid, cytokinin, and jasmonic acid promoted floral transition, whereas strigolactone inhibited it. In the photoperiod pathway, FD, CONSTANS-LIKE 12, and nuclear factors Y positively controlled floral transition, whereas PSEUDO-RESPONSE REGULATOR 7, FLAVIN-BINDING KELCH REPEAT F-BOX PROTEIN 1, and LUX negatively regulated it. SPL4 and pEARLI1 positively affected floral transition. Suppressor of Overexpression of Constans 1 and AGAMOUSLIKE24 integrated multiple flowering signals to modulate the expression of FRUITFULL/AGL8, AP1, LEAFY, SEPALLATAs, SHORT VEGETATIVE PHASE, and TERMINAL FLOWER 1, thereby regulating floral transition. Finally, we propose a regulatory network model for short-day-induced floral transition in L. gratissima. This study improves our understanding of flowering time regulation in L. gratissima and provides knowledge for its production and commercialization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA