Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 267
Filtrar
1.
J Am Chem Soc ; 146(23): 15908-15916, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38809425

RESUMO

Efficient transformation of platform chemicals into key intermediates has been increasingly important for the pharmaceutical industry. The development of the catalytic reduction of abundant carboxylic acids with molecular hydrogen has been of both practical and theoretical value. We herein report the homogeneous hydrogenation of dicarboxylic acids with the strategy of desymmetrization. Using a rhodium/bisphosphine catalyst, one carboxyl group of meso-diacids was selectively reduced to yield chiral lactones with satisfactory enantioselectivity. This method provides a straightforward approach to produce chiral lactone intermediates for the manufacture of biotin, telaprevir, and other antivirus drugs. Both experimental and computational investigations were carried out, revealing a novel neighboring group coordination mechanism in the catalytic cycle.

2.
J Am Chem Soc ; 146(11): 7419-7430, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38447583

RESUMO

The first earth-abundant transition metal Ni-catalyzed highly regio- and enantioselective semihydrogenation of racemic tetrasubstituted allenes via a kinetic resolution process as a challenging task was well established. This protocol furnishes expedient access to a diversity of structurally important enantioenriched tetrasubstituted allenes and chiral allylic molecules with high regio-, enantio-, and Z/E-selectivity. Remarkably, this semihydrogenation proceeded with one carbon-carbon double bond of allenes, which was regioselective complementary to the Rh-catalyzed asymmetric version. Deuterium labeling experiments and density functional theory (DFT) calculations were carried out to reveal the reasonable reaction mechanism and explain the regio-/stereoselectivity.

3.
J Org Chem ; 89(1): 527-533, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38095905

RESUMO

Transition metal catalysts with a million turnovers and excellent selectivity are rarely reported but are crucial for the industrial manufacture of optical pure pharmaceuticals, natural products, and fine chemicals. In this paper, we report an unprecedented aninoic Ir-f-phamidol catalyst for asymmetric hydrogenation of γ-amino ketones followed by stereoselective cyclization for construction of valuable chiral 2-aryl-pyrrolidine pharmacophores. The Ir-f-phamidol catalyst showed up to 1,000,000 TON and >99% ee, as well as excellent tolerance of substrates and protecting groups, providing various chiral amino alcohol intermediates. Upon optimization of the conditions, the stereoselective cyclization reaction was highly smooth and efficient (quantitative conversions, 92 to >99% ee). Finally, this solution was applied in the preparation of high-value chiral entities containing such chiral 2-aryl-pyrrolidine pharmacophores.

4.
Angew Chem Int Ed Engl ; 63(14): e202319662, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38366812

RESUMO

Owing to their distinctive 1,3-dipolar structure, the catalytic asymmetric hydrogenation of nitrones to hydroxylamines has been a formidable and longstanding challenge, characterized by intricate enantiocontrol and susceptibility to N-O bond cleavage. In this study, the asymmetric hydrogenation and transfer hydrogenation of nitrones were accomplished with a tethered TsDPEN-derived cyclopentadienyl rhodium(III) catalyst (TsDPEN: p-toluenesulfonyl-1,2-diphenylethylene-1,2-diamine), the reaction proceeds via a novel 7-membered cyclic transition state, producing chiral hydroxylamines with up to 99 % yield and >99 % ee. The practical viability of this methodology was underscored by gram-scale catalytic reactions and subsequent transformations. Furthermore, mechanistic investigations and DFT calculations were also conducted to elucidate the origin of enantioselectivity.

5.
Chemistry ; 29(9): e202203189, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36401594

RESUMO

Arene hydrogenation is the most straightforward method to prepare carbo- and heterocycles. However, the high resonance energy prevents aromatic substrates from hydrogenation. Herein the homogeneous, nucleophilic hydrogenation of less electron-rich arenes and heteroarenes is reported. The Co(P4 N2 )H species that has been demonstrated to be a strong hydride donor could deliver a hydride ion to the cyano (hetero)arene substrates. Deuterium labeling experiments supported a Michael-type reaction pathway. Theoretical analyses have been conducted to investigate the hydricity of the catalytically active CoH species and the electrophilicity of the arene substrates. An outlook for the synthesis of more challenging substituted benzenes was proposed based on the in silico modification of the CoH species.

6.
Chemistry ; 29(56): e202301609, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37486704

RESUMO

We herein reported the design and synthesis of a ferrocene-based tetradentate ligand that is featured with modular synthesis and rigid skeleton. Its iron(II) complex facilitates asymmetric direct hydrogenation of ketones without the participation of extra strong-field ligand such as CO and isocyanide. Hydride donor lithium aluminum hydride (LAH) converted non-reactive Fe(II) species to reactive Fe(II) hydride species. With this catalyst, various chiral alcohols including the intermediate for montelukast could be prepared with satisfactory yields and enantioinduction.

7.
Chem Rev ; 121(13): 7530-7567, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34014646

RESUMO

Asymmetric hydrogenation (AH) of double bonds has been one of the most effective methods for the preparation of chiral molecules and for the synthesis of important chiral building blocks. In the past 60 years, noble metals with bidentate ligands have shown marvelous reactivity and enantioselectivity in asymmetric hydrogenation of a series of prochiral substrates. In recent years, developing chiral tridentate ligands has played an increasingly important role in AH. With modular frameworks and a variety of functionalities on the side arms, chiral tridentate ligand complexes enable both reactivities and stereoselectivities. Although great achievements have been made for noble metal catalysts with chiral tridentate ligands since the 1990s, the design of chiral tridentate ligands for earth abundant metal catalysts has still been in high demand. This review summarizes the development of chiral tridentate ligands for homogeneous asymmetric hydrogenation. The philosophy of ligand design and the reaction mechanisms are highlighted and discussed as well.

8.
Angew Chem Int Ed Engl ; 62(21): e202302777, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36939162

RESUMO

By combining the concept of flash chemistry and radial synthesis, a novel microreactor (Flashstop reactor) was designed to study isomerization process of hydroformylation by a Rh/tetraphosphite catalyst in a time scale of seconds. It was found that in the initial 313 seconds, 60-99 % of 1-octene was isomerized to 2- and 3-octenes before the formation of aldehydes. Within this period, two different types of isomerization reactions were observed. It was proposed that a monohydride complex without CO ligand accounts for the ultrafast isomerization in the initial 30 seconds. The isomerization rate with such monohydride species was calculated much faster than that with the well-known H(CO)Rh(P-P) species. Both experimental and DFT computational studies were carried out to support this assumption. Fast transformations early on in catalytic cycles have been rarely studied due to the lack of proper tools. We believe that the Flashstop reactor is a powerful tool for analysis of kinetics in gas-liquid biphasic reactions within a time scale of seconds to minutes.

9.
Angew Chem Int Ed Engl ; 62(25): e202303868, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37086028

RESUMO

The atom- and step-efficient synthesis of chiral fused tricyclic lactams from readily available ketoesters using cheap ammonium salts as the nitrogen source is reported. This ruthenium-catalyzed system operates through an efficient tandem dynamic kinetic asymmetric reductive amination (ARA)/lactamization and produces chiral fused tricyclic lactams in high yields with excellent diastereo- and enantioselectivity (up to >99 % ee, >20 : 1 dr and 98 % yield). The robust method was also applied to the concise synthesis of key intermediates in the synthesis of rivastigmine analogues and chiral N-heterocyclic carbene catalysts.


Assuntos
Compostos de Amônio , Lactamas , Aminação , Sais , Catálise
10.
J Am Chem Soc ; 144(39): 17763-17768, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36166275

RESUMO

Due to their low reactivity, difficult enantiocontrol, and proneness to N-O bond cleavage, the catalytic asymmetric hydrogenation of oximes to hydroxylamines has remained a significant challenge. Herein, a Lewis and Brønsted acid cooperation strategy was established for the asymmetric hydrogenation of oximes, providing the corresponding hydroxylamines with up to 95% yield and up to 96% ee. Addition of Lewis and Brønsted acid was crucial to obtain high conversion and enantioselectivity. Mechanistic investigations indicates that the thiourea fragment of the ligand, Lewis acid (In(OTf)3 or Zn(OAc)2), as well as the Brønsted acid (l-CSA) played vital roles in the control of reactivity and enantioselectivity of the reaction. In addition, the synthetic elaboration of this transformation was demonstrated by gram scale experiment with retention of the yield and enantioselectivity.


Assuntos
Ácidos de Lewis , Oximas , Hidrogenação , Ligantes , Estereoisomerismo , Tioureia
11.
J Org Chem ; 87(24): 16941-16946, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36473047

RESUMO

Converting cheap and abundant internal alkenes to value-added linear aldehydes is of great importance but not an addressed issue. In this paper, an integration of a Milstein-type Ru-PNN catalyst and our Rh-Tribi/Tetrabi catalyst was first demonstrated in highly improved isomerization linear selective hydroformylation of 2-, 3-, and 4-alkenes, yielding excellent linear selectivities and activities (linear selectivity improvements of 2.2-58%, up to 94.2-98.6%, and turnover numbers improvements of 61-335 TON, up to 385-851) compared to the Ru-PNN/Rh-Bisbi system.

12.
Chem Soc Rev ; 50(5): 3211-3237, 2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33480901

RESUMO

This review provides a comprehensive view of the application of first-row transition metals in asymmetric hydrogenation and asymmetric transfer hydrogenation. The catalytic behavior of 3d metals is significantly different from that of 4d and 5d metals. The replacement of noble metals with first-row transition metals has encountered challenges such as different reaction mechanisms and unexpected deactivation of the catalyst. The potential involvement of a single-electron process has been the most notorious feature of first-row metals. This review aims to give readers a picture of how first-row transition metals catalyze hydrogenation reactions and the corresponding enantioinduction models. Although this article is partitioned according to the substrate type, it is mechanism-oriented and is focused on catalytic systems. A certain catalytic system could be applied in the hydrogenation of different types of double bonds. Similarities within first-row metals and differences from their 4d and 5d congeners were emphasized.

13.
Angew Chem Int Ed Engl ; 61(33): e202206577, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35715337

RESUMO

The first rhodium-catalyzed highly chemo-, regio- and enantioselective hydroformylation of cyclopropyl-functionalized trisubstituted alkenes affording useful chiral cyclopropyl entities is reported. Compared to generally used diphosphine ligands for asymmetric catalysis, the modified hybrid phosphorus ligand, named (R,S)-DTBM-Yanphos, can convert a series of readily available cyclopropyl-functionalized trisubstituted alkenes into high-value chiral cyclopropyl-functionalized aldehydes with high selectivities (81-98 % ee). Gram-scale reactions (TON up to 1500) and follow-up transformations to the corresponding alcohol, acid, esters and nitrile are also presented. Finally, a possible hydroformylation mechanism involving ring-open-hydroformylation pathways is proposed based on control and deuteroformylation reactions.

14.
Angew Chem Int Ed Engl ; 61(25): e202202552, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35332974

RESUMO

An unprecedented highly enantioselective Ru-catalyzed direct asymmetric reductive amination of α-keto amides with ammonium salts has been disclosed, efficiently offering valuable enantioenriched N-unprotected unnatural α-amino acid derivatives bearing a broad range of aryl or alkyl α-substituents. This protocol features easily accessible substrates, good functional-group tolerance and excellent enantiocontrol, making it a good complementary approach to the known methods. Moreover, this method is also applicable to the preparation of N-unprotected unnatural α-amino acid derivatives containing an additional stereogenic center at the ß-position through a dynamic kinetic resolution (DKR) process. Convenient transformations of the obtained products into chiral N-unprotected unnatural α-amino acids, drug intermediates, peptides, and organocatalysts/ligands further showcase the utility of this method.


Assuntos
Rutênio , Aminação , Aminoácidos/química , Catálise , Estereoisomerismo
15.
Angew Chem Int Ed Engl ; 61(24): e202203212, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35357071

RESUMO

A phosphine-catalyzed highly enantioselective and diastereoselective (up to 98 % ee and >20 : 1 dr) (3+2) annulation between vinylcyclopropanes and N-tosylaldimines has been developed, which allows facile access to a range of highly functionalized chiral pyrrolidines. Notably, this method makes use of vinylcyclopropanes as a synthon for phosphine-mediated asymmetric annulation reaction, which will offer new opportunities for potential applications of cyclopropanes substrates in phosphine-catalyzed organic transformations.


Assuntos
Iminas , Pirrolidinas , Catálise , Fosfinas , Estereoisomerismo
16.
Angew Chem Int Ed Engl ; 61(23): e202201739, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35302709

RESUMO

Due to the linear coordination nature of gold(I) catalysts, achieving high enantiocontrol in asymmetric gold catalysis is a great challenge. To improve the enantiocontrol of gold catalysis, an ion-pairing strategy was therefore proposed. A series of bifunctional P,N ligands based on chiral spirocyclic and biaryl scaffolds were synthesized and applied in the gold(I)-catalyzed desymmetric lactonization of alkynylmalonic acids. A wide range of chiral lactones containing an α-position quaternary stereocenter were synthesized with high yields, excellent regioselectivity and enantioselectivity under mild reaction conditions. The synthetic utilities of the current reaction were demonstrated by gram-scale synthesis and transformations of chiral lactones. The origin of enantioselectivity and the role of the alcohol additive were elucidated via control experiments and DFT calculations.


Assuntos
Ouro , Lactonas , Catálise , Ligantes , Estereoisomerismo
17.
J Am Chem Soc ; 143(6): 2477-2483, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33529522

RESUMO

A catalytic protocol for the enantio- and diastereoselective reduction of α-substituted-ß-keto carbonitriles is described. The reaction involves a DKR-ATH process with the simultaneous construction of ß-hydroxy carbonitrile scaffolds with two contiguous stereogenic centers. A wide range of α-substituted-ß-keto carbonitriles were obtained in high yields (94%-98%) and excellent enantio- and diastereoselectivities (up to >99% ee, up to >99:1 dr). The origin of the diastereoselectivity was also rationalized by DFT calculations. Furthermore, this methodology offers rapid access to the pharmaceutical intermediates of Ipenoxazone and Tapentadol.

18.
Acc Chem Res ; 53(9): 1905-1921, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32852187

RESUMO

Noncovalent interactions are ubiquitous in nature and are responsible for the precision control in enzyme catalysis via the cooperation of multiple active sites. Inspired by this principle, noncovalent interaction-assisted transition metal catalysis has emerged recently as a powerful tool and has attracted intense interest. However, it is still highly desirable to develop efficient and operationally convenient ligands along this line with new structural motifs. Based on the specific nature of hydrogen bonding and ion pairing interactions, we developed a series of noncovalent interaction-assisted chiral ferrocenyl phosphine ligands, including Zhaophos, Wudaphos, and miscellaneous SPO-Wudaphos. Due to the assistance of noncovalent interactions, this catalytic mode is capable of achieving transition metal catalyzed asymmetric hydrogenation and other transformations with remarkable improvement of reactivity and selectivity. In some specific challenging cases, this probably represents one of the most productive methods. Moreover, these ligands are easily prepared, air stable, and highly tunable, meeting the requirements of industrial application.In this Account, we give a concise review of recent advances in asymmetric catalysis. By means of hydrogen bonding interactions, Rh- and Ir-Zhaophos complexes exhibited excellent activities and enantioselectivities in asymmetric hydrogenation of a wide range of substrates: C═C bonds of substituted conjugate alkenes with neutral hydrogen bond acceptors, including nitro groups, carbonyl groups (ketones, esters, amides, maleinimides, and anhydrides), ethers, and sulfones; C═N bonds of substituted iminium salts with chloride as an anionic hydrogen bond acceptor, including N-H imines and cyclic imines; N-heteroaromatic compounds with HCl as an additive, including unprotected quinolines, isoquinolines, and indoles; carbocation of substituted oxocarbenium ions. By means of ion pairing interactions, Rh-Wudaphos complexes enabled the catalytic asymmetric hydrogenation of α-substituted unsaturated carboxylic acids, carboxy-directed α,α-disubstituted terminal olefins, and sodium α-arylethenylsulfonates. Rh-SPO-Wudaphos utilized both hydrogen bonding and ion pairing interactions in asymmetric hydrogenation of α-substituted unsaturated carboxylic acids and phosphonic acids. In addition, Zhaophos has achieved highly selective intramolecular reductive amination and inter- and intramolecular asymmetric decarboxylative allylation. Investigations into mechanism implied that noncovalent interactions were involved in the catalytic cycle and played a critical role for both high reactivity and selectivity. Notably, a rare ionic hydrogenation pathway has been proposed in some cases. Furthermore, these catalytic systems have been used in the gram-scale synthesis of natural products and pharmaceuticals.

19.
Org Biomol Chem ; 19(41): 8934-8939, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34636833

RESUMO

A series of half-sandwich Ir(III) complexes 1-6 bearing an amidato bidentate ligand were conveniently synthesized and applied to the catalytic Leuckart-Wallach reaction to produce racemic α-chiral primary amines. With 0.1 mol% of complex 1, a broad range of ketones, including aryl ketones, dialkyl ketones, cyclic ketones, α-keto acids, α-keto esters and diketones, could be transformed to their corresponding primary amines with moderate to excellent yields (40%-95%). Asymmetric transformation was also attempted with chiral Ir complexes 3-6, and 16% ee of the desired primary amine was obtained. Despite the unsatisfactory enantio-control achieved so far, the current exploration might stimulate more efforts towards the discovery of better chiral catalysts for this challenging but important transformation.

20.
Chem Soc Rev ; 49(17): 6141-6153, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32666962

RESUMO

α-Chiral primary amines are one among the most valuable and versatile building blocks for the synthesis of numerous amine-containing pharmaceuticals and natural compounds. They also serve as chiral ligands or organo-catalysts for asymmetric catalysis. However, most of the existing chemocatalytic methods toward enantiopure primary amines rely on multistep manipulations on N-substituted substrates, which are not ideally atom-economical and cost-effective. Among the catalytic methods including the asymmetric transformations of the pre-prepared or in situ formed NH imines, biomimetic chemocatalysis inspired by enzymatic transaminations has recently emerged as an appealing and straightforward method to access chiral primary amines. This tutorial review highlights the state-of-the-art catalytic methods for the direct asymmetric synthesis of α-chiral primary amines and demonstrates their utility in the construction of molecular complexities, which may attract extensive attention and inspire applications in synthetic and medicinal chemistry.


Assuntos
Aminas/síntese química , Catálise , Estrutura Molecular , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA