Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 278
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36567255

RESUMO

Underlying medical conditions, such as cancer, kidney disease and heart failure, are associated with a higher risk for severe COVID-19. Accurate classification of COVID-19 patients with underlying medical conditions is critical for personalized treatment decision and prognosis estimation. In this study, we propose an interpretable artificial intelligence model termed VDJMiner to mine the underlying medical conditions and predict the prognosis of COVID-19 patients according to their immune repertoires. In a cohort of more than 1400 COVID-19 patients, VDJMiner accurately identifies multiple underlying medical conditions, including cancers, chronic kidney disease, autoimmune disease, diabetes, congestive heart failure, coronary artery disease, asthma and chronic obstructive pulmonary disease, with an average area under the receiver operating characteristic curve (AUC) of 0.961. Meanwhile, in this same cohort, VDJMiner achieves an AUC of 0.922 in predicting severe COVID-19. Moreover, VDJMiner achieves an accuracy of 0.857 in predicting the response of COVID-19 patients to tocilizumab treatment on the leave-one-out test. Additionally, VDJMiner interpretively mines and scores V(D)J gene segments of the T-cell receptors that are associated with the disease. The identified associations between single-cell V(D)J gene segments and COVID-19 are highly consistent with previous studies. The source code of VDJMiner is publicly accessible at https://github.com/TencentAILabHealthcare/VDJMiner. The web server of VDJMiner is available at https://gene.ai.tencent.com/VDJMiner/.


Assuntos
Asma , COVID-19 , Humanos , Inteligência Artificial , Curva ROC , Software
2.
J Infect Dis ; 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39378326

RESUMO

BACKGROUND: Hemodialysis (HD) patients represent a high-risk group for hepatitis B infection. It is crucial to administer hepatitis B vaccination and stimulate higher and more sustained levels of anti-HBs. Our aim is to enhance the immunogenicity and persistence by implementing high-dose and prolonged hepatitis B vaccine schedule regimen in HD patients. METHODS: We conducted this multicenter, randomized, parallel-controlled trial between July 2020 and February 2023 at 11 hospitals in Shanxi province, China. A total of 504 HD patients were enrolled. All participants randomly allocated in a ratio of 1:1:1 to receive recombinant HBV vaccine of 3 standard doses (20 µg) at 0-1-6 months (IM20×3 group), 4 standard doses at 0-1-2-6 months (IM20×4 group), or 4 triple doses (60 µg) at 0-1-2-6 months (IM60×4 group). RESULTS: The vaccine-elicited antibody response peaked at month 7. The follow-up outcomes ranging from month 7 to 30 revealed that the response rates of anti-HBs decreased from 85.9% (134/156) to 33.0% (33/100) in IM20×3 group, from 92.5% (135/146) to 53.9% (56/104) in IM20×4 group and from 95.4% (145/152) to 57.3% (55/96) in IM60×4 group. The duration of vaccine-induced response with 75% of patients maintained protective antibody were 21.0 months in IM20×3 group, 25.7 months in IM20×4 group (vs. IM20×3 group, P=0.056) and 29.2 months in IM60×4 group (vs. IM20×3 group, P=0.034). All the adverse reactions were mild. CONCLUSIONS: The four-triple-dose hepatitis B vaccination regimens could enhance the immunogenicity and 2-year duration in HD patients.The trial was registered with Clinical Trials.gov, number NCT03962881. https://classic.clinicaltrials.gov/ct2/show/NCT03962881?term=NCT03962881&draw=2&rank=1.

3.
Oncologist ; 29(7): e932-e940, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38529688

RESUMO

BACKGROUND: The efficacy of neoadjuvant treatment with epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) monotherapy in patients with stage III-N2 EGFR-mutant remains unsatisfactory. This study explored the potential benefits of combining first-generation EGFR-TKI with chemotherapy as a neoadjuvant treatment for patients with stage III-N2 EGFR-mutant non-small cell lung cancer (NSCLC). PATIENTS AND METHODS: The medical records of patients with III-N2 EGFR-mutant NSCLC who received neoadjuvant therapy with EGFR-TKI at Shanghai Chest Hospital from October 2011 to October 2022 were retrospectively reviewed. Patients with stage III-N2 EGFR-mutant NSCLC who received first-generation TKI combined with chemotherapy as neoadjuvant treatment were included in the combination group, and those who received EGFR-TKI monotherapy were included in the monotherapy group. The study assessed the objective response rate (ORR) according to Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1, disease-free survival (DFS), overall survival (OS), downstaging rates of pathologic lymph nodes (from stage N2 to N1 or N0), major pathologic response (MPR) rate, pathological complete response (PCR) rate, and safety. RESULTS: A total of 74 631 patients with EGFR-mutant NSCLC were screened, and 60 patients were included, 7 of whom did not undergo surgery after neoadjuvant targeted therapy. Of the remaining 53 patients, 15 received first-generation EGFR-TKI combined with chemotherapy as neoadjuvant treatment, and 38 received EGFR-TKI monotherapy. The median follow-up time was 44.12 months. The ORR was 50.0% (9/18) in the combination group and 40.5% (17/42) in the monotherapy group (P = .495). The MPR rate was 20.0% (3/15) and 10.5% (4/38) in the combination and monotherapy groups, respectively (P = .359). No patients achieved PCR in the combination group, while 3 (7.89%) attained PCR in the monotherapy group. The 2 groups did not differ in N2 downstaging rate (P = .459). The median DFS was not reached in the combination group, while it was 23.6 months (95% CI: 8.16-39.02) in the monotherapy group (P = .832). Adverse events observed were consistent with those commonly associated with the 2 treatments. CONCLUSION: Combination therapy with first-generation EGFR-TKI and chemotherapy could be considered a neoadjuvant treatment option for patients with stage III-N2 EGFR-mutant NSCLC, exhibiting acceptable toxicity. However, regarding short-term efficacy, combination therapy did not demonstrate superiority over EGFR-TKI monotherapy. Long-term follow-up is warranted for a more accurate assessment of the DFS and OS.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Receptores ErbB , Neoplasias Pulmonares , Mutação , Terapia Neoadjuvante , Estadiamento de Neoplasias , Inibidores de Proteínas Quinases , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Masculino , Receptores ErbB/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Terapia Neoadjuvante/métodos , Pessoa de Meia-Idade , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/efeitos adversos , Estudos Retrospectivos , Idoso , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia
4.
Anal Chem ; 96(1): 92-101, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38110328

RESUMO

Herein, we synthesized anemone-like copper-based metal-organic frameworks (MOFs) loaded with gold-palladium nanoparticles (AuPd@Cu-MOFs) and polyethylenimine-reduced graphene oxide/gold-silver nanosheet composites (PEI-rGO/AuAg NSs) for the first time to construct the sensor and to detect T-2 toxin (T-2) using triple helix molecular switch (THMS) and signal amplification by swing-arm robot. The aptasensor used PEI-rGO/hexagonal AuAg NSs as the electrode modification materials and anemone-like AuPd@Cu-MOFs as the signal materials. The prepared PEI-rGO/hexagonal AuAg NSs had a large specific surface area, excellent electrical conductivity, and good stability, which successfully improved the electrochemical performance of the sensors. The AuPd@Cu-MOFs with high porosity provided a great deal of attachment sites for the signaling molecule thionine (Thi), thereby increasing the signal response. The aptasensor developed in this study demonstrated a remarkable detection limit of 0.054 fg mL-1 under optimized conditions. Furthermore, the successful detection of T-2 in real samples was achieved using the fabricated sensor. The simplicity of the THMS-based method, which entails modifying the aptamer sequence, allows for easy adaptation to different target analytes. Thus, the sensor holds immense potential for applications in quality supervision and food safety.


Assuntos
Anemone , Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Grafite , Nanopartículas Metálicas , Estruturas Metalorgânicas , Robótica , Toxina T-2 , Estruturas Metalorgânicas/química , Cobre/química , Nanopartículas Metálicas/química , Aptâmeros de Nucleotídeos/química , Paládio , Grafite/química , Ouro/química , Técnicas Eletroquímicas/métodos , Limite de Detecção , Técnicas Biossensoriais/métodos
5.
BMC Plant Biol ; 24(1): 431, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773421

RESUMO

BACKGROUND: The flower colour of H. syriacus 'Qiansiban' transitions from fuchsia to pink-purple and finally to pale purple, thereby enhancing the ornamental value of the cultivars. However, the molecular mechanism underlying this change in flower colour in H. syriacus has not been elucidated. In this study, the transcriptomic data of H. syriacus 'Qiansiban' at five developmental stages were analysed to investigate the impact of flavonoid components on flower colour variation. Additionally, five cDNA libraries were constructed from H. syriacus 'Qiansiban' during critical blooming stages, and the transcriptomes were sequenced to investigate the molecular mechanisms underlying changes in flower colouration. RESULTS: High-performance liquid chromatography‒mass spectrometry detected five anthocyanins in H. syriacus 'Qiansiban', with malvaccin-3-O-glucoside being the predominant compound in the flowers of H. syriacus at different stages, followed by petunigenin-3-O-glucoside. The levels of these five anthocyanins exhibited gradual declines throughout the flowering process. In terms of the composition and profile of flavonoids and flavonols, a total of seven flavonoids were identified: quercetin-3-glucoside, luteolin-7-O-glucoside, Santianol-7-O-glucoside, kaempferol-O-hexosyl-C-hexarbonoside, apigenin-C-diglucoside, luteolin-3,7-diglucoside, and apigenin-7-O-rutinoside. A total of 2,702 DEGs were identified based on the selected reference genome. Based on the enrichment analysis of differentially expressed genes, we identified 9 structural genes (PAL, CHS, FLS, DRF, ANS, CHI, F3H, F3'5'H, and UFGT) and 7 transcription factors (3 MYB, 4 bHLH) associated with flavonoid biosynthesis. The qRT‒PCR results were in good agreement with the high-throughput sequencing data. CONCLUSION: This study will establish a fundamental basis for elucidating the mechanisms underlying alterations in the flower pigmentation of H. syriacus.


Assuntos
Antocianinas , Flavonoides , Flores , Hibiscus , Metaboloma , Transcriptoma , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Hibiscus/genética , Hibiscus/metabolismo , Hibiscus/crescimento & desenvolvimento , Flavonoides/metabolismo , Antocianinas/metabolismo , Pigmentação/genética , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica , Cor
6.
Respir Res ; 25(1): 233, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840238

RESUMO

BACKGROUND: There is inconclusive evidence to suggest that the expression of programmed cell death ligand 1 (PD-L1) is a putative predictor of response to EGFR-TKI therapy in advanced EGFR-mutant non-small cell lung cancer (NSCLC). We evaluated the heterogeneity in PD-L1 expression in the primary lung site and metastatic lymph nodes to analyze the association between PD-L1 expression and response for patients treated with EGFR-TKI. METHODS: This study reviewed 184 advanced NSCLC patients with EGFR mutations who received first-generation EGFR-TKI as first-line treatment from 2020 to 2021 at Shanghai Chest Hospital. The patients were divided into the primary lung site group (n = 100) and the metastatic lymph nodes group (n = 84) according to the biopsy site. The patients in each group were divided into TPS < 1%, TPS 1-49%, and TPS ≥ 50% groups according to PD-L1 expression. RESULTS: The median PFS was 7 (95% CI: 5.7-8.3) months, and the median OS was 26 (95% CI: 23.5-28.5) months for all patients. No correlation existed between PFS or OS and PD-L1 expression. The median PFS in the primary lung site group was 11 months (95% CI: 9.6-12.4) in the TPS < 1% group, 8 months (95% CI: 6.6-9.4) in TPS 1-49% group, and 4 months (95% CI: 3.2-4.8) in TPS ≥ 50% group, with statistically significant differences (p = 0.000). The median OS of the TPS < 1% group and TPS ≥ 50% group showed a statistically significant difference (p = 0.008) in the primary lung site group. In contrast, PD-L1 expression in the lymph nodes of EGFR-mutant patients was unrelated to PFS or OS after EGFR-TKI therapy. CONCLUSION: PD-L1 expression from the primary lung site might predict clinical benefit from EGFR-TKI, whereas PD-L1 from metastatic lymph nodes did not. TRIAL REGISTRATION: This retrospective study was approved by the Ethics Committee of Shanghai Chest Hospital (ID: IS23060) and performed following the Helsinki Declaration of 1964 (revised 2008).


Assuntos
Antígeno B7-H1 , Carcinoma Pulmonar de Células não Pequenas , Receptores ErbB , Neoplasias Pulmonares , Metástase Linfática , Inibidores de Proteínas Quinases , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Antígeno B7-H1/biossíntese , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Feminino , Masculino , Pessoa de Meia-Idade , Receptores ErbB/biossíntese , Receptores ErbB/genética , Receptores ErbB/metabolismo , Receptores ErbB/antagonistas & inibidores , Idoso , Inibidores de Proteínas Quinases/uso terapêutico , Estudos Retrospectivos , Linfonodos/patologia , Linfonodos/efeitos dos fármacos , Linfonodos/metabolismo , Adulto , Idoso de 80 Anos ou mais , Resultado do Tratamento , Valor Preditivo dos Testes , Mutação , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/análise
7.
J Nutr ; 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39424071

RESUMO

BACKGROUND: NAD+ level declines with age and boosting it can improve multi-organ functions and lifespan. OBJECTIVE: NMN (Nicotinamide mononucleotide), a natural NAD+ (Nicotinamide adenine dinucleotide)precursor with the ability to enhance NAD+ biosynthesis. Numerous studies have shown that a high-fat diet can accelerate the process of aging and many diseases. We hypothesized that long-term administration of NMN could exert protective effects on adipose, muscle, and kidney tissues in mice on a high-fat diet act by affecting the autophagic pathway. METHODS: Mice at 14 months of age were fed a high-fat diet and NMN was added to their drinking water at a dose of 400 mg/kg for 7 months. The locomotor ability of the mice was assessed by behavioral experiments such as grip test, wire hang test, rotarod, and beam-walking test. At the end of the behavioral experiments, the pathological changes of each peripheral organ and the expression of autophagy-related proteins as well as the markers of the senescence and inflammaging were analyzed by pathological staining, immunohistochemical staining and western blotting, respectively. RESULTS: We found that NMN supplementation increased NAD+ levels and ultimately attenuated age- and diet-related physiological decline in mice. NMN inhibited high-fat-diet-induced obesity, promoted physical activity, improved glucose and lipid metabolism, improved skeletal muscle function and renal damage as well as mitigated the senescence and inflammaging as demonstrated by p16, IL-1ß and TNF-α levels. In addition, the present study further emphasizes the potential mechanisms underlying the bidirectional relationship between NAD+ and autophagy. We detected changes in autophagy levels in various tissue organs, and NMN may play a protective role by inhibiting excessive autophagy induced by high-fat diet. CONCLUSION: Our findings demonstrated that NMN administration attenuated high fat diet-induced metabolic disorders and physiological decline in aging mice.

8.
Mol Cell Biochem ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138750

RESUMO

Postoperative cognitive dysfunction (POCD) impacts a significant number of patients annually, frequently impairing their cognitive abilities and resulting in unfavorable clinical outcomes. Aimed at addressing cognitive impairment, vagus nerve stimulation (VNS) is a therapeutic approach, which was used in many mental disordered diseases, through the modulation of vagus nerve activity. In POCD model, the enhancement of cognition function provided by VNS was shown, demonstrating VNS effect on cognition in POCD. In the present study, we primarily concentrates on elucidating the role of the VNS improving the cognitive function in POCD, via two potential mechanisms: the inflammatory microenvironment and epigenetics. This study provided a theoretical support for the feasibility that VNS can be a potential method to enhance cognition function in POCD.

9.
Nutr Cancer ; 76(4): 379-392, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38332562

RESUMO

Idebenone, a mitochondrial regulator, has exhibited anti-cancer activity in neurogenic and prostate tumor cells; however, its efficacy and specific targets in the treatment of triple-negative breast cancer (TNBC) remain unclear. This study aims to evaluate the potential of Idebenone as a therapeutic agent for TNBC. TNBC cell lines and Xenograft mouse models were used to assess the effect of Idebenone on TNBC both in vitro and in vivo. To investigate the underlying mechanism of Idebenone's effect on TNBC, cell viability assay, transwell invasion assay, cell cycle analysis, apoptosis assay, mitochondrial membrane potential assay, immunofluorescence staining, and transcriptome sequencing were utilized. The results showed that Idebenone impeded the proliferation, colony formation, migration, and invasion of TNBC cells, suppressed apoptosis, and halted the cell cycle in the G2/M phase. The inhibitory effect of Idebenone on TNBC was associated with the GADD45/CyclinB/CDK1 signaling pathway. By disrupting the mitochondrial membrane potential (MMP) and promoting mitophagy, Idebenone promoted cell autophagy through the AMPK/mTOR pathway, thus further suppressing the proliferation of TNBC cells. Furthermore, we found that Idebenone inhibited the development of TNBC in vivo. In conclusion, Idebenone may be a promising therapeutic option for TNBC as it is capable of inducing autophagy and apoptosis.


Assuntos
Neoplasias de Mama Triplo Negativas , Ubiquinona/análogos & derivados , Humanos , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Proliferação de Células , Linhagem Celular Tumoral , Transdução de Sinais , Modelos Animais de Doenças
10.
Arterioscler Thromb Vasc Biol ; 43(12): 2348-2368, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37881938

RESUMO

BACKGROUND: Hemangioblasts are mesoderm-derived multipotent stem cells for differentiation of all hematopoietic and endothelial cells in the circulation system. However, the underlying molecular mechanism is poorly understood. METHODS: CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (type II CRISPR RNA-guided endonuclease) editing was used to develop aggf1-/- and emp2-/- knockout zebra fish. Whole-mount in situ hybridization and transgenic Tg(gata1-EGFP [enhanced green fluorescent protein]), Tg(mpx-EGFP), Tg(rag2-DsRed [discosoma sp. red fluorescent protein]), Tg(cd41-EGFP), Tg(kdrl-EGFP), and Tg(aggf1-/-;kdrl-EGFP) zebra fish were used to examine specification of hemangioblasts and hematopoietic stem and progenitor cells (HSPCs), hematopoiesis, and vascular development. Quantitative real-time polymerase chain reaction and Western blot analyses were used for expression analysis of genes and proteins. RESULTS: Knockout of aggf1 impaired specification of hemangioblasts and HSPCs, hematopoiesis, and vascular development in zebra fish. Expression of npas4l/cloche-the presumed earliest marker for hemangioblast specification-was significantly reduced in aggf1-/- embryos and increased by overexpression of aggf1 in embryos. Overexpression of npas4l rescued the impaired specification of hemangioblasts and HSPCs and development of hematopoiesis and intersegmental vessels in aggf1-/- embryos, placing aggf1 upstream of npas4l in hemangioblast specification. To identify the underlying molecular mechanism, we identified emp2 as a key aggf1 downstream gene. Similar to aggf1, emp2 knockout impaired the specification of hemangioblasts and HSPCs, hematopoiesis, and angiogenesis by increasing the phosphorylation of ERK1/2 (extracellular signal-regulated protein kinase 1/2). Mechanistic studies showed that aggf1 knockdown and knockout significantly decreased the phosphorylated levels of mTOR (mammalian target of rapamycin) and p70 S6K (ribosomal protein S6 kinase), resulting in reduced protein synthesis of Emp2 (epithelial membrane protein 2), whereas mTOR activator MHY1485 (4,6-dimorpholino-N-(4-nitrophenyl)-1,3,5-triazin-2-amine) rescued the impaired specification of hemangioblasts and HSPCs and development of hematopoiesis and intersegmental vessels and reduced Emp2 expression induced by aggf1 knockdown. CONCLUSIONS: These results indicate that aggf1 acts at the top of npas4l and becomes the earliest marker during specification of hemangioblasts. Our data identify a novel signaling axis of Aggf1 (angiogenic factor with G-patch and FHA domain 1)-mTOR-S6K-ERK1/2 for specification of hemangioblasts and HSPCs, primitive and definitive hematopoiesis, and vascular development. Our findings provide important insights into specification of hemangioblasts and HSPCs essential for the development of the circulation system.


Assuntos
Hemangioblastos , Animais , Animais Geneticamente Modificados , Diferenciação Celular , Hemangioblastos/metabolismo , Hematopoese/genética , Mamíferos , Serina-Treonina Quinases TOR/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
11.
Intervirology ; 67(1): 72-82, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38934174

RESUMO

INTRODUCTION: This study aimed to investigate the differences between pregnant women with chronic hepatitis B virus (HBV) infection and intrafamilial infection and those without intrafamilial infection. METHODS: HBV-DNA was extracted from the sera of 16 pregnant women with chronic hepatitis B (CHB) and their family members for gene sequencing and phylogenetic analyses. A total of 74 pregnant women with CHB were followed up from the second trimester to 3 months postpartum. Viral markers and other laboratory indicators were compared between pregnant women with CHB with and without intrafamilial infection. RESULTS: The phylogenetic tree showed that HBV lines in the mother-spread pedigree shared a node, whereas there was an unrelated genetic background for HBV lines in individuals without intrafamilial infection. From delivery to 3 months postpartum, compared with those without intrafamilial infection, pregnant women with intrafamilial infection were related negatively to HBV-DNA (ß = -0.43, 95% confidence interval [CI]: -0.76 to -0.12, p = 0.009), HBeAg (ß = -195.15, 95% CI: -366.35 to -23.96, p = 0.027), and hemoglobin changes (ß = -8.09, 95% CI: -15.54 to -0.64, p = 0.035) and positively to changes in the levels of alanine aminotransferase (ß = 73.9, 95% CI: 38.92-108.95, p < 0.001) and albumin (ß = 2.73, 95% CI: 0.23-5.23, p = 0.033). CONCLUSION: The mother-spread pedigree spread model differs from that of non-intrafamilial infections. Pregnant women with intrafamilial HBV infection have less hepatitis flares and liver damage, but their HBV-DNA and HBeAg levels rebound faster after delivery, than those without intrafamilial infection by the virus.


Assuntos
DNA Viral , Vírus da Hepatite B , Hepatite B Crônica , Filogenia , Complicações Infecciosas na Gravidez , Humanos , Feminino , Gravidez , Hepatite B Crônica/virologia , Vírus da Hepatite B/genética , Vírus da Hepatite B/classificação , Adulto , DNA Viral/genética , DNA Viral/sangue , Complicações Infecciosas na Gravidez/virologia , Antígenos E da Hepatite B/sangue , Adulto Jovem , Transmissão Vertical de Doenças Infecciosas , Genótipo , Análise de Sequência de DNA
12.
Appl Microbiol Biotechnol ; 108(1): 290, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587616

RESUMO

For the development of a competitive ELISA (cELISA) to detect serum antibodies against the Mycoplasma mycoides subsp. Mycoides (Mmm) (strain PG1), the causative agent of contagious bovine pleuropneumonia (CBPP), all the proteins of this pathogen were analyzed. Then, a specific extracellular region of a transmembrane protein with the potential for diagnosis was identified. After that, a monoclonal antibody (Mab) named 3A8 was obtained using this extracellular region as an immunogen. Finally, a cELISA was established with the extracellular domain of this transmembrane protein as the coating antigen, Mab 3A8 as the competitive antibody, and HRP-labeled goat anti-mouse IgG as the enzyme-labeled antibody. This established method was used to detect the antibody dynamic regularity of goats which are artificially immunized Mmm and was also compared with a commercial ELISA kit. Further, the sera of 1011 different cattle from border provinces of China were monitored using a candidate Mab 3A8 cELISA. The detection results of known background sera used in this study indicate that a candidate diagnostic marker was successfully identified by analyzing all the coding proteins of Mmm in this research, and the cELISA established based on the Mab 3A8 against this protein can detect CBPP-positive serum with specificity and has no cross-reaction with other related epidemic disease-positive sera. In addition, we tested the sera collected from the border areas of China using the established ELISA, and no positive sample was detected. The research protocol of the CBPP cELISA established in this study is different from the traditional method, which can greatly reduce the investment of manpower and capital and save development time. We believe that this study's protocol could serve as a reference for the development of detection methods for mycoplasma and other complex pathogens. KEY POINTS: • A Mmm-specific diagnostic marker was obtained based on protein characteristics. • A cELISA was established for CBPP serum antibody detection. • The serological investigation was conducted for CBPP in the border areas of China.


Assuntos
Anticorpos Monoclonais , Pleuropneumonia , Animais , Bovinos , Proteínas de Membrana , China , Ensaio de Imunoadsorção Enzimática , Cabras
13.
Artigo em Inglês | MEDLINE | ID: mdl-38532551

RESUMO

PM2.5 is an important risk factor for the development and progression of cognitive impairment-related diseases. Ferroptosis, a new form of cell death driven by iron overload and lipid peroxidation, is proposed to have significant implications. To verify the possible role of ferroptosis in PM2.5-induced neurotoxicity, we investigated the cytotoxicity, intracellular iron content, iron metabolism-related genes, oxidative stress indices and indicators involving in Nrf2 and ferroptosis signaling pathways. Neurotoxicity biomarkers as well as the ferroptotic cell morphological changes were determined by Western Blot and TEM analysis. Our results revealed that PM2.5 induced cytotoxicity, lipid peroxidation, as indicated by MDA content, and neurotoxicity via Aß deposition in a dose-related manner. Decreased cell viability and excessive iron accumulation in HT-22 cells can be partially blocked by ferroptosis inhibitors. Interestingly, GPX activity, Nrf2, and its regulated ferroptotic-related proteins (i.e. GPX4 and HO-1) were significantly up-regulated by PM2.5. Moreover, gene expression of DMT1, TfR1, IRP2 and FPN1 involved in iron homeostasis and NCOA4-dependent ferritinophagy were activated after PM2.5 exposure. The results demonstrated that PM2.5 triggered ferritinophagy-dependent ferroptotic cell death due to iron overload and redox imbalance. Activation of Nrf2 signaling pathways may confer a protective mechanism for PM2.5-induced oxidative stress and ferroptosis.


Assuntos
Ferroptose , Sobrecarga de Ferro , Humanos , Fator 2 Relacionado a NF-E2/genética , Oxirredução , Ferro , Material Particulado/toxicidade
14.
Zhongguo Yi Liao Qi Xie Za Zhi ; 48(2): 217-220, 2024 Mar 30.
Artigo em Zh | MEDLINE | ID: mdl-38605625

RESUMO

Objective: The applications of personalized abutments and abutment crown bridge products have increased year by year, but there is no clear requirement for clinical evaluation of the same variety of such products. This study mainly introduces the clinical evaluation concerns of personalized abutments and abutment crown bridge products, in order to provide reference for the declaration and registration of such products. Methods: The clinical evaluation of personalized abutments and crown bridge products are summarized, and the research content of clinical evaluation is clarified. Results: The clinical evaluation requirements that need to be considered by enterprises are introduced. Conclusion: Personalized abutment and abutment crown bridge products can refer to this study when they are launched in China, mainly using in vitro performance comparison tests for equivalence verification.


Assuntos
Prótese Parcial , China
15.
Biochem Biophys Res Commun ; 662: 47-57, 2023 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-37099810

RESUMO

BACKGROUND: Tumor-associated macrophages (TAMs) play an important role in tumor development. Increasing research suggests that miR-210 may promote the progression of tumor virulence, but whether its pro-carcinogenic effect in primary hepatocellular carcinoma (HCC) is via an action on M2 macrophages has not been examined. METHODS: Differentiation of THP-1 monocytes into M2-polarized macrophages was induced with phorbol myristate acetate (PMA) and IL-4, IL-13. M2 macrophages were transfected with miR-210 mimics or miR-210 inhibitors. Flow cytometry was used to identify macrophage-related markers and apoptosis levels. The autophagy level of M2 macrophages, expression of PI3K/AKT/mTOR signaling pathway-related mRNAs and protein were detected by qRT-PCR and Western blot. HepG2 and MHCC-97H HCC cell lines were cultured with M2 macrophages conditioned medium to explore the effects of M2 macrophage-derived miR-210 on the proliferation, migration, invasion and apoptosis of HCC cells. RESULTS: qRT-PCR showed increased expression of miR-210 in M2 macrophages. Autophagy-related gene and protein expression was enhanced in M2 macrophages transfected with miR-210 mimics, while apoptosis-related proteins were decreased. MDC staining and transmission electron microscopy observed the accumulation of MDC-labeled vesicles and autophagosomes in M2 macrophages in the miR-210 mimic group. The expression of PI3K/AKT/mTOR signaling pathway in M2 macrophages was reduced in miR-210 mimic group. HCC cells co-cultured with M2 macrophages transfected with miR-210 mimics exhibited enhanced proliferation and invasive ability as compared to the control group, while apoptosis levels were reduced. Moreover, promoting or inhibiting autophagy could enhance or abolish the above observed biological effects, respectively. CONCLUSIONS: miR-210 can promote autophagy of M2 macrophages via PI3K/AKT/mTOR signaling pathway. M2 macrophage-derived miR-210 promotes the malignant progression of HCC via autophagy, suggesting that macrophage autophagy may serve as a new therapeutic target for HCC, and targeting miR-210 may reset the effect of M2 macrophages on HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Macrófagos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Linhagem Celular Tumoral
16.
Small ; 19(46): e2304793, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37470205

RESUMO

Recently, sodium-ion batteries (SIBs) have received considerable attention for large-scale energy storage applications. However, the low initial Coulombic efficiency of traditional SIBs severely impedes their further development. Here, a highly active Na2 S-based composite is employed as a self-sacrificial additive for sodium compensation in SIBs. The in situ synthesized Na2 S is wrapped in a carbon matrix with nanoscale particle size and good electrical conductivity, which helps it to achieve a significantly enhanced electrochemical activity as compare to commercial Na2 S. As a highly efficient presodiation additive, the proposed Na2 S/C composite can reach an initial charge capacity of 407 mAh g-1 . When 10 wt.% Na2 S/C additive is dispersed in the Na3 V2 (PO4 )3 cathode, and combined with a hard carbon anode, the full cell achieves 24.3% higher first discharge capacity, which corresponds to a 18.3% increase in the energy density from 117.2 to 138.6 Wh kg-1 . Meanwhile, it is found that the Na2 S additive does not generate additional gas during the initial charging process, and under an appropriate content, its reaction product has no adverse impact on the cycling stability and rate performance of SIBs. Overall, this work establishes Na2 S as a highly effective additive for the construction of advanced high-energy-density SIBs.

17.
J Vasc Surg ; 77(4): 1016-1027.e9, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36410607

RESUMO

OBJECTIVE: In the present report, we have described the outcomes of endovascular repair, hybrid arch repair, and open surgical repair for type B dissection involving the aortic arch (B1-2, D). METHODS: Cases of endovascular repair, hybrid arch repair, and open surgical repair performed between January 2015 and December 2019 for aortic dissection designated as B1-2, D by the Society for Vascular Surgery/Society of Thoracic Surgeons classification were retrospectively analyzed. The primary end point was all-cause mortality at follow-up. The secondary end points included early mortality, early morbidities, and aortic-related late events. Kaplan-Meier curves were created to analyze survival from all-cause mortality and freedom from aortic-related late events in the endovascular, hybrid, and open groups. Propensity score matching and stratification (stratified by proximal dissection extension: B1, D and B2, D) were performed as sensitivity analyses to compare the outcomes among the three treatment patterns after controlling for major confounders. RESULTS: The present study included 151 patients (men, 79.5%; mean age, 47.3 ± 10.5 years), with 72 (47.7%) in the endovascular group, 46 (30.5%) in the hybrid group, and 33 (21.8%) in the open group. No significant difference was noted in early mortality between the endovascular, hybrid, and open groups (1.4% vs 2.2% vs 3.0%; P = .791). The incidence of early endoleak was significantly greater (33.3% vs 13.0% vs 6.1%; P = .002) and the incidence of renal function deterioration was less (4.2% vs 26.1% vs 24.2%; P = .001) after endovascular repair vs hybrid arch repair and open surgery. After a median follow-up of 40.0 months (range, 0-84.0 months), no significant differences were found in all-cause mortality (5.6% vs 4.3% vs 3.0%; P = 1.0), aortic-related late events (16.7% vs 15.2% vs 12.1%; P = .834), or late endoleak (9.7% vs 4.3% vs 6.1%; P = .630) after endovascular, hybrid, and open surgery. The propensity score matching and stratification analyses displayed consistent outcomes for early mortality, all-cause mortality, and aortic-related late events among the three groups. CONCLUSIONS: The mid- to long-term outcomes after endovascular repair, hybrid arch repair, and open surgical repair for type B dissection involving the aortic arch (B1-2, D) were favorable and comparable in selected patients. Extensive experience and multidisciplinary teamwork are prerequisites for individualized strategies for repair of B1-2, D.


Assuntos
Aneurisma da Aorta Torácica , Dissecção Aórtica , Implante de Prótese Vascular , Procedimentos Endovasculares , Masculino , Humanos , Adulto , Pessoa de Meia-Idade , Aorta Torácica/diagnóstico por imagem , Aorta Torácica/cirurgia , Endoleak/cirurgia , Estudos Retrospectivos , Implante de Prótese Vascular/efeitos adversos , Procedimentos Endovasculares/efeitos adversos , Dissecção Aórtica/diagnóstico por imagem , Dissecção Aórtica/cirurgia , Aneurisma da Aorta Torácica/diagnóstico por imagem , Aneurisma da Aorta Torácica/cirurgia , Resultado do Tratamento , Prótese Vascular
18.
Proteome Sci ; 21(1): 1, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36597095

RESUMO

BACKGROUND: Dl-3-n-butylphthalide (NBP) is an important medial therapy for acute ischemic stroke in China. Recent studied have revealed that NBP not only rescued the loss of dopaminergic neurons in cellular and animal models of Parkinson's disease (PD), but also could improve motor symptoms in PD patients. However, the protective mechanism is not fully understood. P53 is a multifunctional protein implicated in numerous cellular processes, including apoptosis, DNA repair, mitochondrial functions, redox homeostasis, autophagy and protein aggregations. In PD, p53 integrated with various neurodegeneration-related signals inducing neuronal loss, indicating the suppression of P53 might be a promising target for PD treatment. Therefore, the purpose of the current study was to systemically screen new therapeutic targets of NBP in PD. METHOD: In our study, we constructed mpp + induced N2A cells to investigate the benefit effect of NBP in PD. MTT assay was performed to evaluate the cell viability; TMT-based LC-MS/MS was applied to determine the different expressed proteins (DEPs) of NBP pretreatment; online bioinformatics databases such as DAVID, STRING, and KEGG was used to construe the proteomic data. After further analyzed and visualized the protein-protein interactions (PPI) by Cytoscape, DEPs were verified by western blot. RESULT: A total of 5828 proteins were quantified in the comparative proteomics experiments and 417 proteins were considered as DEPs (fold change > 1.5 and p < 0.05). Among the 417 DEPs, 140 were upregulated and 277 were downregulated in mpp + -induced N2A cells with NBP pretreatment. KEGG pathway analysis indicated that lysosome, phagosome, apoptosis, endocytosis and ferroptosis are the mainly enriched pathways. By using MCL clustering in PPI analysis, 48 clusters were generated and the subsequent KEGG analysis of the top 3 clusters revealed that P53 signaling pathway was recognized as the dominant pathway for NBP treatment. CONCLUSION: NBP significantly relived mpp + -induced cell toxicity. The neuroprotective role of NBP was implicated with P53 signaling pathway in some extent. These findings will reinforce the understanding of the mechanism of NBP in PD and identify novel therapeutic targets.

19.
Artigo em Inglês | MEDLINE | ID: mdl-37971464

RESUMO

Cerebral infarction, also known as ischemic stroke, is caused by various regional blood supply disorders in the brain tissue, leading to ischemic hypoxic lesions and necrosis of the brain tissue and then the corresponding clinical manifestations of neurological loss, which has high mortality and disability. This study comprehensively reviews the potential molecular mechanisms of TRPC6 in neuroprotection in cerebral infarction and provides a summary of TRPC6 as a targeted drug or prognostic biomarker for cerebral infarction patients. We will screen and synthesize evidence about the molecular mechanisms of TRPC6 in cerebral infarction from the current literature to obtain comprehensive knowledge on this topic. In the pathogenesis, neuroinflammation and intracellular calcium accumulation play an important role in the onset and development of cerebral infarction. Transient receptor potential cation channel subfamily C6 (TRPC6) is the main component of calcium store-operated calcium channels. It plays a central role in ischemic cerebrovascular disease by mediating the calcium ion signaling pathway. In this review, evidence on the neuroprotective effects of TRPC6 has been shown, including inhibiting neuroinflammation and inhibiting nerve cell apoptosis, thereby alleviating nerve injury. However, at the same time, TRPC6 promotes inflammation in other organs. Generally, although an increasing number of researches support the protective role of TRPC6 in cerebral infarction, there is still evidence showing that overexpression of TRPC6 increases inflammatory tissue damage in other organs. Therefore, clarifying the molecular mechanism of TRPC6 will help develop targeted drugs or prognostic biomarkers for cerebral infarction to promote and predict neurological function recovery. More evidence to elucidate the molecular mechanism of TRPC6 in cerebral infarction is needed. Enriching TRPC6 in neuroinflammation areas and modifying its cell specificity might be the orientation of drug development that increases the effect of stroke treatment and reduces the impact on other organs. In conclusion, in cerebral infarction, TRPC6 has been proven to alleviate neuroinflammation and inhibit nerve cell apoptosis. However, at the same time, TRPC6 may promote inflammation in other organs. Therefore, the targeting potential of TRPC6 in cerebral infarction needs to be further explored.

20.
J Integr Neurosci ; 22(2): 33, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36992579

RESUMO

OBJECTIVE: Ginkgolide B (GB) possesses anti-inflammatory, antioxidant, and anti-apoptotic properties against neurotoxicity induced by amyloid beta (Aß), but the potential neuroprotective effects of GB in Alzheimer's therapies remain elusive. We aimed to conduct proteomic analysis of Aß1-42 induced cell injury with GB pretreatment to uncover the underlying pharmacological mechanisms of GB. METHODS: Tandem mass tag (TMT) labeled liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was applied to analyze protein expression in Aß1-42 induced mouse neuroblastoma N2a cells with or without GB pretreatment. Proteins with fold change >1.5 and p < 0.1 from two independent experiments were regarded as differentially expressed proteins (DEPs). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to analyze the functional annotation information of DEPs. Two key proteins osteopontin (SPP1) and ferritin heavy chain 1 (FTH1) were validated in another three samples using western blot and quantitative real-time PCR. RESULTS: We identified a total of 61 DEPs in GB treated N2a cells, including 42 upregulated and 19 downregulated proteins. Bioinformatic analysis showed that DEPs mainly participated in the regulation of cell death and ferroptosis by down-regulating SPP1 protein and up-regulating FTH1 protein. CONCLUSIONS: Our findings demonstrate that GB treatment provides neuroprotective effects on Aß1-42 induced cell injury, which may be related to the regulation of cell death and ferroptosis. The research puts forward new insights into the potential protein targets of GB in the treatment of Alzheimer's disease (AD).


Assuntos
Neuroblastoma , Fármacos Neuroprotetores , Camundongos , Animais , Peptídeos beta-Amiloides , Cromatografia Líquida , Fármacos Neuroprotetores/farmacologia , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA