Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Bioresour Technol ; 366: 128023, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36167177

RESUMO

This study evaluated the independent and combined effects of biochar and microbial agents on food waste composting. The results indicated that combined addition increased the peak temperature to 63.5 °C and extended the thermophilic periods to 8 days, resulting in the highest organic matter degradation rate (12.7%). Analysis of enzymatic activity indicated that combined addition increased urease and dehydrogenase activity by 22.9% and 26.5%. Furthermore, the degradation of volatile fatty acids also increased by 37.4% with combined addition. Microbial analysis demonstrated that combined addition effectively increased the relative abundances of Enterobacter, Sphingobacterium and Aspergillus, which could be attributed to the optimal environment provided by biochar and stimulation of microbial agents. Moreover, correlation analysis showed a strong interaction between the microbial community and environment with combined addition. In general, combined addition could be beneficial for composting based on the synergistic effects of biochar and inoculation on microorganism.


Assuntos
Compostagem , Microbiota , Eliminação de Resíduos , Alimentos , Solo , Carvão Vegetal , Esterco/microbiologia
2.
Bioresour Technol ; 351: 126939, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35247558

RESUMO

The effects of iron-carbon (Fe-C) particle amendment on organic matter degradation, product quality and functional microbial community in food waste composting were investigated. Fe-C particles (10%) were added to the material and composted for 32 days in a lab-scale composting system. The results suggested that Fe-C particle enhanced organic matter degradation by 12.3%, particularly lignocellulose, leading to a greater humification process (increased by 15.5%). In addition, NO3--N generation was enhanced (15.9%) by nitrification with more active ammonia monooxygenase and nitrite oxidoreductase activities in the cooling and maturity periods. Fe-C particles not only significantly increased the relative abundances of Bacillus and Aspergillus for organic matter decomposition, but also decreased the relative abundances of acid-producing bacteria. RDA analysis demonstrated that the bacterial community was significantly influenced by dissolved organic matter, C/N, NO3--N, humic acid, volatile fatty acids and pH, while electrical conductivity was the key factor affecting the fungal community.


Assuntos
Compostagem , Microbiota , Eliminação de Resíduos , Bactérias , Carbono , Alimentos , Ferro , Esterco , Solo
3.
Bioresour Technol ; 360: 127623, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35850391

RESUMO

In this study, the effects of multifunctional microbial inoculation on food waste composting based on the synergistic property between organic matter degradation and nitrogen fixation were investigated. The results showed that inoculation simultaneously strengthened organic matter degradation by 9.9% and improved the nitrogen content by 20.6% compared with that of the control group. Additionally, spectral analysis demonstrated that inoculation was conducive to the enhanced humification, which was supported by the improvement in polyphenol oxidase activity. Microbial analysis showed that most of the introduced microorganisms (Bacillus, Streptomyces, Saccharomonospora) successfully colonized, and stimulated the growth of other indigenous microorganisms (Enterobacter, Paenibacillus). Meanwhile, the change in microbial community structure was accompanied by the enhanced tricarboxylic acid cycle and amino acid metabolism. Furthermore, network analysis and structural equation model revealed that the enhanced cooperation of microorganisms, in which more carbon sources could be provided by cellulose decomposition for nitrogen fixation.


Assuntos
Compostagem , Microbiota , Eliminação de Resíduos , Carbono/metabolismo , Alimentos , Esterco , Nitrogênio/metabolismo , Fixação de Nitrogênio , Eliminação de Resíduos/métodos , Solo
4.
Sci Rep ; 6: 24314, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-27074882

RESUMO

A low cost and non-precious metal composite material g-C3N4-LaNiO3 (CNL) was synthesized as a bifunctional electrocatalyst for the air electrode of lithium-oxygen (Li-O2) batteries. The composition strategy changed the electron structure of LaNiO3 and g-C3N4, ensures high Ni(3+)/Ni(2+) ratio and more absorbed hydroxyl on the surface of CNL that can promote the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The composite catalyst presents higher activities than the individual components g-C3N4 and LaNiO3 for both ORR and OER. In non-aqueous Li-O2 batteries, CNL shows higher capacity, lower overpotentials and better cycling stability than XC-72 carbon and LaNiO3 catalysts. Our results suggest that CNL composite is a promising cathode catalyst for Li-O2 batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA