Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genomics ; 115(6): 110728, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37858843

RESUMO

The anthocyanin is a protective substance in various plants, and plays important roles in resisting to low-temperature. Here, we explored transcriptome analysis of pink flower (as CK) and the natural mutant red flower (as research objects) under low-temperature conditions, and aimed to reveal the potential functions of anthocyanins and anthocyanin-related regulatory factors in resistance to low-temperature. Our results showed that most of the differentially expressed genes (DEGs) encoding key enzymes in the late stage of anthocyanin metabolism in the mutant were significantly up-regulated. Meanwhile, several genes significantly differentially expressed in CK or mutant were obtained by classification and analysis of transcription factors (TFs), phytohormones and osmoregulators. Additionally, WGCNA was carried out to mine hub genes resistanted to low-temperature stress in flavonoid pathway. Finally, one UFGT family gene, three MYB and one bHLH were obtained as the future hub genes of this study. Combined with the above information, we concluded that the ability of the red flower mutant to grow and develop normally at low-temperatures was the result of a combination of flavonoids and cold resistance genes.


Assuntos
Antocianinas , Transcriptoma , Antocianinas/genética , Temperatura , Flores/genética , Flores/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pigmentação/genética
2.
BMC Plant Biol ; 23(1): 204, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37076827

RESUMO

BACKGROUND: Uridine disphosphate (UDP) glycosyltransferases (UGTs) act upon a huge variety of highly diverse and complex substrates, such as phytohormones and specialized metabolites, to regulate plant growth, development, disease resistance, and environmental interactions. However, a comprehensive investigation of UGT genes in tobacco has not been conducted. RESULTS: In this study, we carried out a genome-wide analysis of family-1 UDP glycosyltransferases in Nicotiana tabacum. We predicted 276 NtUGT genes, which were classified into 18 major phylogenetic subgroups. The NtUGT genes were invariably distributed among all the 24 chromosomes with structural diversity in exon/intron structure, conserved motifs, and cis-acting elements of promoters. Three groups of proteins which involved in flavonoid biosynthesis, plant growth and development, transportation and modification were identified that interact with NtUGT proteins using the PPI analysis. Expression analysis of NtUGT genes in cold stress, drought stress and different flower color using both online RNA-Seq data and the realtime PCR analysis, suggested the distinct role of NtUGT genes in resistance of cold, drought and in flavonoid biosynthesis. The enzymatic activities of seven NtUGT proteins that potentially involved in flavonoid glycosylation were analyzed, and found that all seven exhibited activity on myricetin; six (NtUGT108, NtUGT123, NtUGT141, NtUGT155, NtUGT179, and NtUGT195) showed activity on cyanidin; and three (NtUGT108, NtUGT195, and NtUGT217) were active on the flavonol aglycones kaempferol and quercetin, which catalyzing the substrates (myricetin, cyanidin or flavonol) to form new products. We further investigated the enzymatic products and enzymatic properties of NtUGT108, NtUGT195, and NtUGT217, suggested their diverse enzymatic activity toward flavonol, and NtUGT217 showed the highest catalyzed efficient toward quercetin. Overexpression of NtUGT217 significantly increase the content levels of the quercetin-3-O-glucoside, quercetin-3-O-rutinoside and kaempferol-3-O-rutinoside in transgenic tobacco leaves. CONCLUSION: We identified 276 UGT genes in Nicotiana tabacum. Our study uncovered valuable information about the phylogenetic structure, distribution, genomic characters, expression patterns and enzymatic activity of NtUGT genes in tobacco. We further identified three NtUGT genes involved in flavonoid biosynthesis, and overexpressed NtUGT217 to validate its function in catalyze quercetin. The results provide key candidate NtUGT genes for future breeding of cold and drought resistance and for potential metabolic engineering of flavonoid compounds.


Assuntos
Glicosiltransferases , Nicotiana , Quercetina , Flavonoides/metabolismo , Flavonóis , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Filogenia , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Quercetina/metabolismo , Estresse Fisiológico/genética , Nicotiana/genética , Nicotiana/metabolismo , Uridina/metabolismo , Difosfato de Uridina/metabolismo
3.
Appl Opt ; 62(17): 4642-4649, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37707162

RESUMO

This paper presents the optical design of a high-resolution double-grating spectrometer for extracting the multiple lines in the Stokes or anti-Stokes branch of the pure rotational Raman spectra of nitrogen. The spectrometer is composed of collimating and focusing mirrors, two reflective gratings, and a linear detector. The structural parameters were calculated using geometric configuration, dispersion, and aberrational theory, and conditions for first-order correction of keystone distortion with divergent grating illumination were derived. Based on this method, we simulated a spectrometer with a 16-channel linear array photomultiplier tube, resulting in uniformly distributed single-branch lines on each detector channel. The resolution reached 0.225 nm per channel, and the keystone distortion was less than 0.7%. The spectrometer avoids the interference of elastic signals by not detecting them, enabling the extraction of atmospheric temperature profiles via separated single-branch lines with high precision. Our design provides a promising solution to extract atmospheric temperature profiles for pure rotational Raman lidar.

4.
BMC Genomics ; 23(1): 50, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35026983

RESUMO

BACKGROUND: Long non-coding RNAs (lncRNAs) play important roles in response to abiotic stresses in plants, by acting as cis- or trans-acting regulators of protein-coding genes. As a widely cultivated crop worldwide, maize is sensitive to salt stress particularly at the seedling stage. However, it is unclear how the expressions of protein-coding genes are affected by non-coding RNAs in maize responding to salt tolerance. RESULTS: The whole transcriptome sequencing was employed to investigate the differential lncRNAs and target transcripts responding to salt stress between two maize inbred lines with contrasting salt tolerance. We developed a flexible, user-friendly, and modular RNA analysis workflow, which facilitated the identification of lncRNAs and novel mRNAs from whole transcriptome data. Using the workflow, 12,817 lncRNAs and 8,320 novel mRNAs in maize seedling roots were identified and characterized. A total of 742 lncRNAs and 7,835 mRNAs were identified as salt stress-responsive transcripts. Moreover, we obtained 41 cis- and 81 trans-target mRNA for 88 of the lncRNAs. Among these target transcripts, 11 belonged to 7 transcription factor (TF) families including bHLH, C2H2, Hap3/NF-YB, HAS, MYB, WD40, and WRKY. The above 8,577 salt stress-responsive transcripts were further classified into 28 modules by weighted gene co-expression network analysis. In the salt-tolerant module, we constructed an interaction network containing 79 nodes and 3081 edges, which included 5 lncRNAs, 18 TFs and 56 functional transcripts (FTs). As a trans-acting regulator, the lncRNA MSTRG.8888.1 affected the expressions of some salt tolerance-relative FTs, including protein-serine/threonine phosphatase 2C and galactinol synthase 1, by regulating the expression of the bHLH TF. CONCLUSIONS: The contrasting genetic backgrounds of the two inbred lines generated considerable variations in the expression abundance of lncRNAs and protein-coding transcripts. In the co-expression networks responding to salt stress, some TFs were targeted by the lncRNAs, which further regulated the salt tolerance-related functional transcripts. We constructed a regulatory pathway of maize seedlings to salt stress, which was mediated by the hub lncRNA MSTRG.8888.1 and participated by the bHLH TF and its downstream target transcripts. Future work will be focused on the functional revelation of the regulatory pathway.


Assuntos
RNA Longo não Codificante , Estresse Salino , Zea mays , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA de Plantas , Plântula/genética , Zea mays/genética
5.
Opt Express ; 30(1): 180-194, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-35201198

RESUMO

Wind vector estimation method with high accuracy in the low signal-to-noise ratio region improves the performance of pulsed coherent Doppler lidar. The key to improving accuracy is to process the incorrect radial wind estimates or the distorted power spectra better. The smoothed accumulated spectra based weighted sine wave fitting method proposed here minimizes the effects of bad radial wind estimates by considering both signal intensity and wind spatial continuity. Leveraging spatial continuity from smoothed accumulated spectra, the weight coefficients and real-time wind vector profiles can be quickly determined with non-looped operations. Simulations and field experiments showed that the proposed method provides comparable or even slightly better quality and more available wind vector estimates than the filtered sine wave fitting method.

6.
Appl Opt ; 61(17): 5067-5075, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-36256185

RESUMO

A 64-channel detection system for laser-induced fluorescence (LIF) detection at the cell level is established and applied to single event counting. Generally, fluorescence detection at the cellular level requires a dyeing label to enhance the scattered light intensity for the photodetector. However, the dyeing labels, such as fluorophores, probes, and dyes, complicate sample preparation and increase cytotoxicity in the process. Therefore, label-free detection becomes essential for in vivo research. The presented 64-channel detection system is designed for label-free detection with the ability to record feeble emissions. Two linear photodetector devices are included in the system, extending the wavelength detection range to 366-680 nm with an improved spectral resolution at an average of 4.9 nm. The performance of the system was validated by detecting unlabeled human hepatocytes (L-02) and other cell-level biologic samples. In addition, the 64-channel detection system was also used for particle counting with a quartz microfluidic chip. The counting method is based on fluorescence spectra differs from those of other devices (i.e., flow cytometry and cell-sorting equipment), which use isolated irradiance intensities.


Assuntos
Produtos Biológicos , Técnicas Analíticas Microfluídicas , Humanos , Fluorescência , Quartzo , Microfluídica , Corantes Fluorescentes
7.
Appl Opt ; 61(10): 2881-2887, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35471365

RESUMO

The gain ratio is a critical parameter in a polarization Mie lidar. Calibrating the gain ratio is essential in aerosol classification studies. We developed a ray-tracing-based simulation method to investigate the impact of mounting errors on the gain ratio. In this method, a computational model for each element of the lidar was built, and Zemax was used to simulate the lidar receiver to obtain the optical gain ratio by theoretical calculations. This method can analyze the influence of each element's mounting errors and offer a theoretical foundation for the machining and mounting accuracy of the lidar design. The correctness of the model was verified by applying it to a single-wavelength polarization Mie Raman lidar.

8.
Appl Opt ; 61(12): 3510, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35471449

RESUMO

This publisher's note serves to correct an error in Appl. Opt.61, 2881 (2022)APOPAI0003-693510.1364/AO.453852.

9.
Appl Opt ; 60(21): 6140-6146, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34613278

RESUMO

The laser-induced fluorescence (LIF) technique, which has been widely used for food testing, can be combined with various algorithms to classify and recognize different kinds of honey. This paper proposes the Kolmogorov-Smirnov test-Gaussian mixture model (KS-GMM) algorithm, which is coupled with the LIF technique to realize accurate classification and recognition of different types of pure honey. The experiments are designed and carried out to obtain a set of LIF spectrum data from various honey and syrup samples. The proposed KS-GMM algorithm is applied for classification and recognition, with GMM, k-nearest neighbor (kNN), and decision tree algorithms as cross-validation methods. By comparing recognition results of training sets containing different amounts of data, it is found that the KS-GMM algorithm exhibits a maximum recognition accuracy of 96.52%. The research results prove that the KS-GMM algorithm outperforms, to the best of our knowledge, the other three algorithms in classifying and recognizing the honey types.


Assuntos
Algoritmos , Mel/classificação , Lasers , Distribuição Normal , Espectrometria de Fluorescência , Estatísticas não Paramétricas , Fluorescência , Mel/análise , Reprodutibilidade dos Testes
10.
Appl Opt ; 60(14): 4120-4126, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33983164

RESUMO

Accurate and rapid spectrum fitting is very important for quantitatively analyzing laser-induced breakdown spectroscopy (LIBS). The Voigt function is often used to fit LIBS spectral lines. We propose a new approximate Voigt function formula. Based on the classic Lorentz-Gauss linear combination formula, a summation term was added that contained a specific convolution operation to improve the Voigt function's calculation and fitting accuracy. This formula can be used for the approximate calculation of the Voigt function with an overall accuracy of 0.31% and a full width at half-maximum internal accuracy of 0.25% when the ratio of Lorentzian linewidth to Gaussian linewidth is 1:1. The formula was then applied to LIBS data processing to fit four element spectral lines of calcium (Ca-393.37, 396.85, and 422.67 nm) and potassium (K-766.49 nm). The fitting results showed that this new approximate formula could fit at least seven data points, and compared with the complex plane partition method and the classic linear combination formula, the new formula had better fitting speed and accuracy.

11.
Sensors (Basel) ; 21(8)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33917729

RESUMO

Although it is quite challenging to image and analyze the spatial distribution of bioaerosols in a confined space, a three-dimensional (3D) modeling system based on the planar laser-induced fluorescence (PLIF) technique is proposed in this paper, which is designed to analyze the temporal and spatial variations of bioaerosol particles in a confined chamber. The system employs a continuous planar laser source to excite the fluoresce, and a scientific complementary metal oxide semiconductor (sCMOS) camera to capture images of 2048 × 2048 pixels at a frame rate of 12 Hz. While a sliding platform is moving back and forth on the track, a set of images are captured at different positions for 3D reconstruction. In this system, the 3D reconstruction is limited to a maximum measurement volume of about 50 cm × 29.7 cm × 42 cm, with a spatial resolution of about 0.58 mm × 0.82 mm × 8.33 mm, and a temporal resolution of 5 s. Experiments were carried out to detect the PLIF signals from fluorescein aerosols in the chamber, and then 3D reconstruction was used to visualize and analyze the diffusion of aerosol particles. The results prove that the system can be applied to clearly reconstruct the 3D distribution and record the diffusion process of aerosol particles in a confined space.

12.
Mol Genet Genomics ; 295(2): 409-420, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31807910

RESUMO

Kernel weight in a unit volume is referred to as kernel test weight (KTW) that directly reflects maize (Zea mays L.) grain quality. In this study, an inter-mated B73 × Mo17 (IBM) Syn10 doubled haploid (DH) population and an association panel were used to identify loci responsible for KTW of maize across multiple environments. A total of 18 significant KTW-related single-nucleotide polymorphisms (SNPs) were identified using genome-wide association study (GWAS); they were closely linked to 12 candidate genes. In the IBM Syn10 DH population, linkage analysis detected 19 common quantitative trait loci (QTL), five of which were repeatedly detected among multiple environments. Several verified genes that regulate maize seed development were found in the confidence intervals of the mapped QTL and the LD regions of GWAS, such as ZmYUC1, BAP2, ZmTCRR-1, dek36 and ZmSWEET4c. Combined QTL mapping and GWAS identified one significant SNP that was co-identified in the both populations. Based on the co-localized SNP across the both populations, 17 candidate genes were identified. Of them, Zm00001d044075, Zm00001d044086, and Zm00001d044081 were further identified by candidate gene association study for KTW. Zm00001d044081 encodes homeobox-leucine zipper protein ATHB-4, which has been demonstrated to control apical embryo development in Arabidopsis. Our findings provided insights into the mechanism underlying maize KTW and contributed to the application of molecular-assisted selection of high KTW breeding in maize.


Assuntos
Estudo de Associação Genômica Ampla , Proteínas de Plantas/genética , Locos de Características Quantitativas/genética , Zea mays/genética , Arabidopsis/genética , Cruzamento , Mapeamento Cromossômico , Grão Comestível/genética , Estudos de Associação Genética , Ligação Genética , Genoma de Planta/genética , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Sementes/genética , Sementes/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento
13.
Plant Biotechnol J ; 18(1): 207-221, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31199064

RESUMO

Kernel size-related traits are the most direct traits correlating with grain yield. The genetic basis of three kernel traits of maize, kernel length (KL), kernel width (KW) and kernel thickness (KT), was investigated in an association panel and a biparental population. A total of 21 single nucleotide polymorphisms (SNPs) were detected to be most significantly (P < 2.25 × 10-6 ) associated with these three traits in the association panel under four environments. Furthermore, 50 quantitative trait loci (QTL) controlling these traits were detected in seven environments in the intermated B73 × Mo17 (IBM) Syn10 doubled haploid (DH) population, of which eight were repetitively identified in at least three environments. Combining the two mapping populations revealed that 56 SNPs (P < 1 × 10-3 ) fell within 18 of the QTL confidence intervals. According to the top significant SNPs, stable-effect SNPs and the co-localized SNPs by association analysis and linkage mapping, a total of 73 candidate genes were identified, regulating seed development. Additionally, seven miRNAs were found to situate within the linkage disequilibrium (LD) regions of the co-localized SNPs, of which zma-miR164e was demonstrated to cleave the mRNAs of Arabidopsis CUC1, CUC2 and NAC6 in vitro. Overexpression of zma-miR164e resulted in the down-regulation of these genes above and the failure of seed formation in Arabidopsis pods, with the increased branch number. These findings provide insights into the mechanism of seed development and the improvement of molecular marker-assisted selection (MAS) for high-yield breeding in maize.


Assuntos
Mapeamento Cromossômico , Ligação Genética , Locos de Características Quantitativas , Sementes/crescimento & desenvolvimento , Zea mays/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Zea mays/crescimento & desenvolvimento
14.
Theor Appl Genet ; 133(10): 2881-2895, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32594266

RESUMO

KEY MESSAGE: Using GWAS and QTL mapping identified 100 QTL and 138 SNPs, which control yield-related traits in maize. The candidate gene GRMZM2G098557 was further validated to regulate ear row number by using a segregation population. Understanding the genetic basis of yield-related traits contributes to the improvement of grain yield in maize. This study used an inter-mated B73 × Mo17 (IBM) Syn10 doubled-haploid (DH) population and an association panel to identify the genetic loci responsible for nine yield-related traits in maize. Using quantitative trait loci (QTL) mapping, 100 QTL influencing these traits were detected across different environments in the IBM Syn10 DH population, with 25 co-detected in multiple environments. Using a genome-wide association study (GWAS), 138 single-nucleotide polymorphisms (SNPs) were identified as correlated with these traits (P < 2.04E-06) in the association panel. Twenty-one pleiotropic QTL/SNPs were identified to control different traits in both populations. A combination of QTL mapping and GWAS uncovered eight significant SNPs (PZE-101097575, PZE-103169263, ZM011204-0763, PZE-104044017, PZE-104123110, SYN8062, PZE-108060911, and PZE-102043341) that were co-located within seven QTL confidence intervals. According to the eight co-localized SNPs by the two populations, 52 candidate genes were identified, among which the ear row number (ERN)-associated SNP SYN8062 was closely linked to SBP-transcription factor 7 (GRMZM2G098557). Several SBP-transcription factors were previously demonstrated to modulate maize ERN. We then validated the phenotypic effects of SYN8062 in the IBM Syn10 DH population, indicating that the ERN of the lines with the A-allele in SYN8062 was significantly (P < 0.05) larger than that of the lines with the G-allele in SYN8062 in each environment. These findings provide valuable information for understanding the genetic mechanisms of maize grain yield formation and for improving molecular marker-assisted selection for the high-yield breeding of maize.


Assuntos
Mapeamento Cromossômico , Estudos de Associação Genética , Zea mays/genética , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Genes de Plantas , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Sementes/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento
15.
Physiol Plant ; 170(4): 508-518, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32754968

RESUMO

The free moisture in crop kernels after being naturally dried is referred to as kernel moisture content (KMC). Maize KMC reflects grain quality and influences transportation and storage of seeds. We used an IBM Syn10 DH maize population consisting of 249 lines and an association panel comprising 310 maize inbred lines to identify the genetic loci affecting maize KMC in three environments. Using the IBM population detected 13 QTL on seven chromosomes, which were clustered into nine common QTL. Genome-wide association analysis (GWAS) identified 16 significant SNPs across the 3 environments, which were linked to 158 genes across the three environments. Combined QTL mapping and GWAS found two SNPs that were located in two of the mapped QTL, respectively. Twenty-three genes were linked with the loci co-localized in both populations. Of these 181 genes, five have previously been reported to be associated with KMC or to regulate seed development. These associations were verified by candidate gene association analysis. Two superior alleles and one favorable haplotype for Zm00001d007774 and Zm00001d047868 were found to influence KMC. These findings provide insights into molecular mechanisms underlying maize KMC and contribute to the use of marker-assisted selection for breeding low-KMC maize.


Assuntos
Estudo de Associação Genômica Ampla , Zea mays , Mapeamento Cromossômico , Ligação Genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Sementes/genética , Zea mays/genética
16.
Physiol Plant ; 170(1): 27-39, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32175598

RESUMO

Ear tip-barrenness (ETB) phenotype threatens crop yield, because it reduces the kernel number per ear. The genetic basis of ETB in maize remains largely unknown. Herein, a genome-wide association study (GWAS) and quantitative trait loci (QTL) mapping were jointly applied to identify the significant genetic loci interrelated with ETB. Six significant SNPs were detected at a stringent P-value threshold (1.95 × 10-6 ). Additionally, four environment-stable SNPs were co-detected across a single environment and best linear unbiased prediction (BLUP) model at a less stringent P-value threshold (1 × 10-4 ). The above 10 SNPs were closely linked to 6 candidate genes, which mainly involved seed development, photosynthesis and ethylene response. Moreover, the ratio of superior allele at each significant SNP ranged from 0 to 83.33% in 30 investigated maize elite lines. QTL mapping identified 14 QTL with phenotypic variation explained (PVE) ranging from 3.64 to 7.09%, of which one QTL (qETB2-1) was repeatedly identified in two environments. Combined analysis of GWAS and QTL mapping showed that one SNP (PZE-102175229, chromosome 2: 217 66 Mb) was located in the QTL (qETB2-2, chromosome 2: 215 90-217 82 Mb). Eighteen gene models situated in the linkage disequilibrium (LD) region of the co-localized SNP were further used to evaluate their correlation with ETB by candidate gene association analysis. Two superior haplotypes and two superior alleles were detected among 74 lines for Zm00001d007195, Zm00001d007197 and Zm00001d007201. These results provide more information for clarifying the molecular mechanism of ETB and for speeding up the genetic improvement of maize varieties.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas/genética , Mapeamento Cromossômico , Desequilíbrio de Ligação , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Zea mays/genética
17.
Surg Endosc ; 34(12): 5274-5282, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-31834511

RESUMO

BACKGROUND: Transoral endoscopic thyroid surgery via the vestibular approach (TOETVA) has been gradually accepted worldwide due to its scar-free effect on the neck. Even central cervical lymphadenectomy has been performed in some cases of papillary thyroid carcinoma (PTC). However, there are few reports involving lateral neck dissection with TOETVA. In this study, we attempted to perform selective lateral neck dissection (SLND) for PTC via a transoral vestibular approach. METHODS: This prospective study was conducted from January 2016 to December 2018 in twenty PTC patients with unilateral T1 tumors without capsular invasion and patients with abnormal level III and IV lymph nodes who underwent SLND via a transoral vestibular approach. RESULTS: Endoscopic surgery was successfully accomplished in all 20 PTC patients. The mean age was 29.2 ± 5.5 (20-41) years. The mean operation time was 146.0 ± 18.7 (114-193) min. The average postoperative hospital stay was 6.8 ± 1.3 (5-10) days. The mean number of removed nodes was 7.4 ± 2.5 (4-12) in the central neck and 10.9 ± 2.8 (6-16) in the lateral neck, and the positive yield amounts were 2.0 ± 1.2 (0-4) and 2.7 ± 1.9 (0-6), respectively. No major complications occurred except for 1 case of transient unilateral recurrent laryngeal nerve palsy and two cases of effusion in the operative area. No evidence of persistent or recurrent disease was observed in these patients during a mean follow-up of 24.3 ± 9.1 (6-36) months. The cosmetic results and protection of personal privacy of this procedure were excellent. CONCLUSION: Endoscopic SLND via the transoral vestibular approach is feasible, safe, and effective for selected PTCs. A multicenter large comparative study is necessary.


Assuntos
Endoscopia/métodos , Esvaziamento Cervical/métodos , Câncer Papilífero da Tireoide/cirurgia , Neoplasias da Glândula Tireoide/cirurgia , Adulto , Feminino , Humanos , Masculino , Projetos Piloto , Estudos Prospectivos , Adulto Jovem
18.
Appl Opt ; 59(3): 607-613, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-32225184

RESUMO

We present a dual-channel mobile lidar system based on laser-induced fluorescence (LIF) for real-time standoff detection and concentration distribution analysis of tryptophan. The system employs an ultraviolet laser excitation source and signal detectors for receiving fluorescence signals within two different wavelength bands. The performed experiments measured tryptophan aerosols at two different standoff distances. Moreover, distilled water and ethanol solutions were also detected for comparison. The results show that the system can detect LIF signals of tryptophan, give early warnings, locate the diffusion sources, and monitor the variation of the aerosol concentration distribution in real time.


Assuntos
Monitoramento Ambiental/instrumentação , Espectrometria de Fluorescência/instrumentação , Triptofano/análise , Aerossóis , Difusão , Monitoramento Ambiental/métodos , Desenho de Equipamento , Etanol , Fluorescência , Lasers , Processamento de Sinais Assistido por Computador , Espectrometria de Fluorescência/métodos , Triptofano/química , Água
19.
BMC Genomics ; 20(1): 159, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30813896

RESUMO

BACKGROUND: Maize is one of the primary crops of genetic manipulation, which provides an excellent means of promoting stress resistance and increasing yield. However, the differences in induction and regeneration capacity of embryonic callus (EC) among various genotypes result in genotypic dependence in genetic transformation. RESULTS: In this study, embryonic calli of two maize inbred lines with strong redifferentiation capacity and two lines with weak redifferentiation capability were separately subjected to transcriptome sequencing analysis during the early redifferentiation stages (stage I, 1-3 d; stage II, 4-6 d; stage III, 7-9 d) along with their corresponding controls. A total of ~ 654.72 million cDNA clean reads were yielded, and 62.64%~ 69.21% clean reads were mapped to the reference genome for each library. In comparison with the control, the numbers of differentially expressed genes (DEGs) for the four inbred lines identified in the three stages ranged from 1694 to 7193. By analyzing the common and specific DEGs of the four materials, we found that there were 321 upregulated genes and 386 downregulated genes identified in the high-regeneration lines (141 and DH40), whereas 611 upregulated genes and 500 downregulated genes were specifically expressed in the low-regeneration lines (ZYDH381-1 and DH3732). Analysis of the DEG expression patterns indicated a sharp change at stage I in both the high- and low-regeneration lines, which suggested that stage I constitutes a crucial period for EC regeneration. Notably, the specific common DEGs of 141 and DH40 were mainly associated with photosynthesis, porphyrin and chlorophyll metabolism, ribosomes, and plant hormone signal transduction. In contrast, the DEGs in ZYDH381-1 and DH3732 were mainly related to taurine and hypotaurine metabolism, nitrogen metabolism, fatty acid elongation, starch and sucrose metabolism, phenylpropanoid biosynthesis, and plant circadian rhythm. More importantly, WOX genes, which have an ancestral role in embryo development in seed plants and promote the regeneration of transformed calli, were specifically upregulated in the two high-regeneration lines. CONCLUSIONS: Our research contributes to the elucidation of molecular regulation during early redifferentiation in the maize embryonic callus.


Assuntos
Zea mays/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Fenótipo , Reação em Cadeia da Polimerase em Tempo Real , Regeneração/genética , Análise de Sequência de RNA , Zea mays/embriologia , Zea mays/metabolismo , Zea mays/fisiologia
20.
Mol Genet Genomics ; 294(6): 1421-1440, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31289944

RESUMO

Maize tassel architecture is a complex quantitative trait that is significantly correlated with biomass yield and grain yield. The present study evaluated the major trait of maize tassel architecture, namely, tassel branch number (TBN), in an association population of 359 inbred lines and an IBM Syn 10 population of 273 doubled haploid lines across three environments. Approximately 43,958 high-quality single nucleotide polymorphisms were utilized to detect significant QTNs associated with TBN based on new multi-locus genome-wide association study methods. There were 30, 38, 73, 40, 47, and 53 QTNs associated with tassel architecture that were detected using the FastmrEMMA, FastmrMLM, EM-BLASSO, mrMLM, pkWMEB, and pLARmEB models, respectively. Among these QTNs, 51 were co-identified by at least two of these methods. In addition, 12 QTNs were consistently detected across multiple environments. Furthermore, 19 QTLs distributed on chromosomes 1, 2, 3, 4, 6, and 7 were detected in 3 environments and the BLUP model based on 6618 bin markers, which explained 3.64-10.96% of the observed phenotypic variations in TBN. Of these, three QTLs were co-detected in two environments. One QTN associated with TBN was localized to one QTL. Approximately 55 candidate genes were detected by common QTNs and LD criteria. One candidate gene, Zm00001d016615, was identified as a putative target of the RA1 gene. Meanwhile, RA1 was previously validated to plays an important role in tassel development. In addition, the newly identified candidate genes Zm00001d003939, Zm00001d030212, Zm00001d011189, and Zm00001d042794 have been reported to involve in a spikelet meristem identity module. The findings of the present study improve our understanding of the genetic basis of tassel architecture in maize.


Assuntos
Locos de Características Quantitativas , Zea mays/genética , Alelos , Interação Gene-Ambiente , Genes de Plantas , Estudo de Associação Genômica Ampla , Fenótipo , Zea mays/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA