Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Dairy Sci ; 106(3): 1803-1814, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36710188

RESUMO

This research aimed to investigate the effects of replacing soybean meal with high-oil pumpkin seed cake (HOPSC) on ruminal fermentation, lactation performance, milk fatty acid, and ruminal bacterial community in Chinese dairy cows. Six multiparous Chinese Holstein cows at 105.50 ± 5.24 d in milk (mean ± standard deviation) and 36.63 ± 0.74 kg/d of milk yield were randomly allocated, in a 3 × 3 Latin square design, to 3 dietary treatments in which HOPSC replaced soybean meal. Group 1 was the basal diet with no HOPSC (0HOPSC); group 2 was a 50% replacement of soybean meal with HOPSC and dried distillers grains with solubles (DDGS; 50HOPSC), and group 3 was a 100% replacement of soybean meal with HOPSC and DDGS (100HOPSC). We found no difference in the quantity of milk produced or milk composition among the 3 treatment groups. Feed efficiency tended to increase linearly as more HOPSC was consumed. In addition, rumen fermentation was not influenced when soybean meal was replaced with HOPSC and DDGS; the relative abundance of ruminal bacteria at the phylum and genus levels was altered. We also observed that as the level of HOPSC supplementation increased, the relative abundance of Firmicutes and Tenericutes linearly increased, whereas that of Bacteroidetes decreased. However, with increasing HOPSC supplementation, the relative abundance of Ruminococcus decreased linearly at the genus level in the rumen, and the relative abundance of Prevotella showed a linear downward tendency. Changes in dietary composition and rumen bacteria had no significant effect on the fatty acid composition of milk. In conclusion, our results indicated that replacing soybean meal with a combination of HOPSC and DDGS can meet the nutritional needs of high-yielding dairy cows without adversely affecting milk yield and quality; however, the composition of rumen bacteria could be modified. Further study is required to investigate the effects of long-term feeding of HOPSC on rumen fermentation and performance of dairy cows.


Assuntos
Cucurbita , Leite , Feminino , Bovinos , Animais , Lactação , Ácidos Graxos , Rúmen , Farinha , Ração Animal/análise , Dieta/veterinária , Bactérias , Sementes , Zea mays
2.
Int J Mol Sci ; 23(7)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35409428

RESUMO

Fatty acid composition is a key factor affecting the flavor and quality of goat milk. CircRNAs are now recognized as important regulators of transcription, and they play an important role in the control of fatty acid synthesis. Thus, understanding the regulatory mechanisms controlling this process in ruminant mammary glands is of great significance. In the present study, mammary tissue from dairy goats during early lactation and the dry period (nonlactating) were collected and used for high-throughput sequencing. Compared to levels during the dry period, the expression level of circ003429 during early lactation was lower (12.68-fold downregulated). In isolated goat mammary epithelial cells, circ003429 inhibited the synthesis of triglycerides (TAG) and decreased the content of unsaturated fatty acids (C16:1, C18:1, and C18:2), indicating that this circRNA plays an important role in regulating lipid synthesis. A binding site for miR-199a-3p in the circ003429 sequence was detected, and a dual-luciferase reporter system revealed that circ003429 targets miR-199a-3p. Overexpression of circ003429 (pcDNA-circ003429) downregulated the abundance of miR-199a-3p. In contrast, overexpression of miR-199a-3p increased TAG content and decreased mRNA abundance of Yes-associated protein 1 (YAP1) (a target gene of miR-199a-3p), and TAG content was decreased and mRNA abundance was increased in response to overexpression of circ003429. These results indicate that circ003429 alleviates the inhibitory effect of miR-199a-3p on the mRNA abundance of YAP1 by binding miR-199a-3p, resulting in subsequent regulation of the synthesis of TAG and unsaturated fatty acids.


Assuntos
Glândulas Mamárias Animais , MicroRNAs , Animais , Células Epiteliais/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Feminino , Cabras/genética , Cabras/metabolismo , Glândulas Mamárias Animais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular , RNA Mensageiro/genética
3.
J Sci Food Agric ; 101(8): 3386-3393, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33222225

RESUMO

BACKGROUND: Diacylglycerols as a fat substitute in meat products is a growing area of interest. This study was conducted to analyze the digestion rate, digestion extent, and changes in interfacial properties of lard, glycerolized lard (GL), and purified GL (PGL) in an emulsions system by pH-stat in vitro digestion. RESULTS: PGL had significantly higher hydrolysis rate and final digestion extent than lard (P ≤ 0.05) during in vitro digestion. The analysis on diameter variations of lard, GL, and PGL during digestion indicated that the surface- and volume-weighted mean particle diameters of all samples had the same variation trend, but variation degree was different. Concurrently, the ζ-potential analysis of the lard, GL, and PGL during the digestion process showed that the absolute values of the ζ-potentials of the three types of lipids increased at first and subsequently decreased. The microstructure changes results for lard, GL, and PGL showed there was no obvious flocculation, and the particle size of lard throughout the digestion process was larger than that of GL and PGL. CONCLUSION: This study showed that lard-based diacylglycerols had high digestibility characteristics and could be applied as a functional lipid in meat products to improve human health. © 2020 Society of Chemical Industry.


Assuntos
Diglicerídeos/química , Emulsões/química , Digestão , Diglicerídeos/metabolismo , Emulsões/metabolismo , Humanos , Hidrólise , Modelos Biológicos , Tamanho da Partícula
4.
Reprod Domest Anim ; 55(6): 711-719, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32144827

RESUMO

Bovine mammary epithelial cells (BMECs) of high-producing dairy cows are subject to constant oxidative stress as a result of high metabolic rate and physiological adaptation to intensive farming. Moringa (Moringa oleifera) leaf has been proposed to have the antioxidant potential in scavenging free radicals due to the presence of flavonoids. In this study, we investigated the cytoprotective effects of moringa leaf flavonoids in alleviating oxidative stress in BMECs in vitro. Oxidative stress was established by exposing isolated BMECs to H2 O2 for 2 hr. Doses of moringa leaf flavonoids were evaluated by treating BMECs for 12 hr. The optimal concentrations of H2 O2 and moringa leaf flavonoids were 500 µmol/L and 1.0 mg/ml, respectively. The results showed that moringa leaf flavonoids increased the activities of superoxide dismutase, catalase, and glutathione peroxidase; and reduced malondialdehyde activity and intracellular accumulation of reactive oxygen species (ROS) in the H2 O2 -induced oxidative stress system. A Hoechst33258 staining assay revealed that moringa leaf flavonoids decreased the apoptosis rate in BMECs, while leaving membrane integrity and nucleolar morphology unchanged. We concluded that moringa leaf flavonoids have the antioxidant capacity to effectively reduce oxidative stress in BMECs.


Assuntos
Células Epiteliais/efeitos dos fármacos , Flavonoides/farmacologia , Moringa oleifera/química , Estresse Oxidativo/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Bovinos , Células Cultivadas , Feminino , Flavonoides/administração & dosagem , Peróxido de Hidrogênio/farmacologia , Glândulas Mamárias Animais/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacologia , Folhas de Planta/química
5.
J Sci Food Agric ; 99(15): 6751-6760, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31353469

RESUMO

BACKGROUND: Yeast products showed beneficial effects with respect to stabilizing ruminal pH, stimulating ruminal fermentation and improving production efficiency. Batch cultures were conducted to evaluate the effects of yeast products on gas production (GP), dry matter disappearance (DMD) and fermentation characteristics of high-forage substrate. The study was a two media pH (5.8 and 6.5) × five yeasts (three live yeasts, LY: LY1, LY2, LY3; two yeast derivatives, YD: YD4, YD5) × four dosages factorial arrangement, with monensin (Mon) assigned as a positive control. RESULTS: Greater (P < 0.01) GP, DMD, volatile fatty acid (VFA) concentration, ratio of acetate to propionate (A:P) and copy numbers of Fibrobacter succinogenes and Ruminococcus flavefaciens were observed at pH 6.5 than at pH 5.8. The GP kinetics, DMD, VFA concentration, A:P and NH3 -N concentration differed (P < 0.05) among yeasts but varied with media pH or yeast dosages. Increasing doses of LY3 linearly increased DMD (P < 0.04) and VFA concentration (P < 0.001) at media pH 5.8. The DMD linearly (P < 0.02) increased with increased addition of YD4 (pH 6.5) and YD5 (pH 5.8) and the ratio of A:P linearly decreased (P < 0.01) with the addition of YD4 or YD5 at pH 5.8. Overall greater (P < 0.05) GP, A:P (pH 5.8) and DMD (pH 6.5) were observed with yeast products than with Mon. CONCLUSION: LY3 appeared to be an interesting candidate for improving rumen digestibility and fermentation efficiency, particularly at low media pH. YD4 or YD5 improved fermentation efficiency and can be potentially fed as an alternative to Mon. © 2019 Her Majesty the Queen in Right of Canada Journal of the Science of Food and Agriculture © 2019 Society of Chemical Industry.


Assuntos
Ração Animal/microbiologia , Bovinos/metabolismo , Rúmen/química , Saccharomyces cerevisiae/química , Fermento Seco/química , Ração Animal/análise , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Bovinos/crescimento & desenvolvimento , Bovinos/microbiologia , Digestão , Ácidos Graxos Voláteis/metabolismo , Microbioma Gastrointestinal , Concentração de Íons de Hidrogênio , Rúmen/metabolismo , Rúmen/microbiologia , Saccharomyces cerevisiae/classificação , Fermento Seco/classificação
6.
Asian-Australas J Anim Sci ; 30(11): 1590-1597, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28728386

RESUMO

OBJECTIVE: This study aims to identify the relationship between odd- and branched-chain fatty acids (OBCFAs) and microbial nucleic acid bases in the rumen, and to establish a model to accurately predict microbial protein flow by using OBCFA. METHODS: To develop the regression equations, data on the rumen contents of individual cows were obtained from 2 feeding experiments. In the first experiment, 3 rumen-fistulated dry dairy cows arranged in a 3×3 Latin square were fed diets of differing forage to concentration ratios (F:C). The second experiment consisted of 9 lactating Holstein dairy cows of similar body weights at the same stage of pregnancy. For each lactation stage, 3 cows with similar milk production were selected. The rumen contents were sampled at 4 time points of every two hours after morning feeding 6 h, and then to analyse the concentrations of OBCFA and microbial nucleic acid bases in the rumen samples. RESULTS: The ruminal bacteria nucleic acid bases were significantly influenced by feeding diets of differing forge to concentration ratios and lactation stages of dairy cows (p<0.05). The concentrations of OBCFAs, especially odd-chain fatty acids and C15:0 isomers, strongly correlated with the microbial nucleic acid bases in the rumen (p<0.05). The equations of ruminal microbial nucleic acid bases established by ruminal OBCFAs contents showed a good predictive capacity, as indicated by reasonably low standard errors and high R-squared values. CONCLUSION: This finding suggests that the rumen OBCFA composition could be used as an internal marker of rumen microbial matter.

7.
Asian-Australas J Anim Sci ; 30(5): 653-659, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27660023

RESUMO

OBJECTIVE: This trial was performed to examine the effects of ruminally degradable starch (RDS) levels in total mixed ration (TMR) with low corn-based starch on the milk production, whole-tract nutrient digestibility and nitrogen balance in dairy cows. METHODS: Eight multiparous Holstein cows (body weight [BW]: 717±63 kg; days in milk [DIM]: 169±29) were assigned to a crossover design with two dietary treatments: a diet containing 62.3% ruminally degradable starch (% of total starch, low RDS) or 72.1% ruminally degradable starch (% of total starch, high RDS). Changes to the ruminally degradable levels were conducted by using either finely ground corn or steam-flaked corn as the starch component. RESULTS: The results showed that dry matter intake, milk yield and composition in dairy cows were not affected by dietary treatments. The concentration of milk urea nitrogen was lower for cows fed high RDS TMR than low RDS TMR. The whole-tract apparent digestibility of neutral detergent fiber, acid detergent fiber and crude protein decreased, and that of starch increased for cows fed high RDS TMR over those fed low RDS TMR, with no dietary effect on the whole-tract apparent digestibility of dry matter and organic matter. The proportion of urinary N excretion in N intake was lower and that of fecal N excretion in N intake was higher for cows fed high RDS TMR than those fed low RDS TMR. The N secretion in milk and the retention of N were not influenced by the dietary treatments. Total purine derivative was similar in cows fed high RDS TMR and low RDS TMR. Consequently, estimated microbial N flow to the duodenum was similar in cows fed high RDS TMR and low RDS TMR. CONCLUSION: Results of this study show that ruminally degradable starch levels can influence whole-tract nutrient digestibility and nitrogen balance in dairy cows fed low corn-based starch diets, with no influence on performance.

8.
Int J Mol Sci ; 17(5)2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-27187372

RESUMO

Gene silencing with RNA interference (RNAi) technology may be capable of modifying internal structure at a molecular level. This structural modification could affect biofunctions in terms of biodegradation, biochemical metabolism, and bioactive compound availability. The objectives of this study were to (1) Detect gene silencing-induced changes in carbohydrate molecular structure in an alfalfa forage (Medicago sativa spp. sativa: alfalfa) with down-regulation of genes that encode transcription factors TT8 and HB12; (2) Determine gene silencing-induced changes in nutrient bioutilization and bioavailability in the alfalfa forage (Medicago sativa); and (3) Quantify the correlation between gene silencing-induced molecular structure changes and the nutrient bioutilization and bioavailability in animals of ruminants. The experimental treatments included: T1 = Non-transgenic and no-gene silenced alfalfa forage (code "NT"); T2 = HB12-RNAi forage with HB12 gene down regulation (code "HB12"); T3 = TT8-RNAi forage with TT8 gene down regulation (code "TT8"). The HB12 and TT8 gene silencing-induced molecular structure changes were determined by non-invasive and non-destructive advanced molecular spectroscopy in a middle infrared radiation region that focused on structural, non-structural and total carbohydrate compounds. The nutrient bioutilization and bioavailability of the modified forage were determined using NRC-2001 system in terms of total digestive nutrient (TDN), truly digestible fiber (tdNDF), non-fiber carbohydrate (tdNDF), fatty acid (tdFA), crude protein (tdCP) and bioenergy profiles (digestible energy, metabolizable energy, net energy) for ruminants. The carbohydrate subfractions were evaluated using the updated CNCPS 6.0 system. The results showed that gene silencing significantly affected tdNFC (42.3 (NT) vs. 38.7 (HB12) vs. 37.4% Dry Matter (TT8); p = 0.016) and tdCP (20.8 (NT) vs. 19.4 (HB12) vs. 22.3% DM (TT8); p = 0.009). The gene-silencing also affected carbohydrate CA4 (7.4 (NT) vs. 4.2 (HB12) and 4.4% carbohydrate (CHO) (TT8), p = 0.063) and CB1 fractions (5.3 (NT) vs. 2.0 (HB12) and 2.6% CHO (TT8), p = 0.006). The correlation study showed that the structural CHO functional group peak area intensity at ca. 1315 cm(-1) was significantly correlated to the TDN1x (r = -0.83, p = 0.042) and the tdNFC (r = -0.83, p = 0.042), the structural CHO functional group height intensity at ca. 1370 cm(-1) was significantly correlated to the tdNDF (r = -0.87, p = 0.025). The A_Non-stCHO to A_StCHO ratio and A_Non-stCHO to A_CHO ratio were significantly correlated to the tdFA (r = 0.83-0.91, p < 0.05). As to carbohydrate fractions, both CA4 and CB1 correlated with carbohydrate spectral intensity of the H_1415 and the H_1315 (p = 0.039; p = 0.059, respectively), CB3 tended to correlate with the H_1150, H_1100 and H_1025 (p < 0.10). In conclusion, RNAi-mediated silencing of HB12 and TT8 modified not only inherent CHO molecular structure but also the biofunctions. The CHO molecular structure changes induced by RNAi gene silencing were associated with biofunctions in terms of the carbohydrate subfractions and nutrient digestion.


Assuntos
Carboidratos/química , Medicago sativa/genética , Valor Nutritivo , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Ração Animal/normas , Metabolismo dos Carboidratos , Carboidratos da Dieta/normas , Inativação Gênica , Medicago sativa/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo
9.
J Sci Food Agric ; 96(14): 4736-4748, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27166615

RESUMO

BACKGROUND: Little attention has been paid on the inherent molecular structural effects among agricultural by-products. In this study, soybean meal (SM), wheat bran (WB), corn distillers dried grains with soluble (DDGS), dry brewer's grain (DBG), wet brewer's grain (WBG), and apple pomace (AP), which are widely used in the animal industry were selected to explore protein and carbohydrate molecular structural conformations. RESULTS: All the protein peak heights (including α-helix and ß-sheet) and areas were exhibited highest values in SM and lowest in AP. The SM had the highest peak area intensity of cellulosic compounds (CELC), while the remaining varieties showed the lowest absorbance level. The TSCHO (sum of structural carbohydrate (SCHO) and CELC area exhibited variations among the samples. Multivariate comparisons showed AP had no molecular structural association with other by-products within the protein amide region. Protein amides I, II and (I+II) areas, α-helix, ß-sheet and area ratio of protein amide and (TSCHO + TCHO) had strong relationships with CP, NDF, ADF, ADL, SCP, starch, PC, CA, CC and TDN contents. CONCLUSION: Inherent molecular structures varied among the selected by-product types and they might be used as potential predictors of nutritive factors, especially for protein structural information. © 2016 Society of Chemical Industry.


Assuntos
Carboidratos/química , Grão Comestível/química , Glycine max/química , Malus/química , Valor Nutritivo , Proteínas de Plantas/química , Configuração de Carboidratos , Conformação Proteica
10.
Ecotoxicol Environ Saf ; 102: 160-7, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24530732

RESUMO

To determine the distribution and sources of polycyclic aromatic hydrocarbon (PAH), sixteen common PAHs were measured in various wetland components, including groundwater, surface water, sediments and soils collected from the Qinkenpao Wetland of Daqing City in Northeast China. High levels of PAHs were observed in the wetland due to the discharge of industrial wastewater including petrochemical products, such as petroleum and carbolic acid, which can be traced back for nearly three decades. Diagnostic ratios of selected PAH compounds showed that PAHs were generated by a number of mixed sources dominated by petrogenic products. Factor analysis with nonnegative constraints (FA-NNC) was combined with Latin Hypercube Sampling (LHS) simulation, which is effective for using a relatively small sample size while preserving the desirable probabilistic features of simple random sampling, to quantitatively identify sources, source contribution, and uncertainty of PAH contamination. The profiles derived from FA-NNC coupled with LHS were compared with source fingerprints, which were modified based on the first order degradation reaction in different wetland components. Premium gasoline (high-octane) was found to be the largest contributor of PAHs in surface water, groundwater, and sediments (96.0 percent, 61.6 percent and 53.1 percent, correspondingly), while regular gasoline was the dominant source of PAHs in soils (49.0 percent). The results were in agreement with the area׳s environmental data and diagnostic ratio results. Diagnostic ratios and FA-NNC were shown to be an effective methodology for source identification of PAHs in different wetland components.


Assuntos
Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , Áreas Alagadas , China , Sedimentos Geológicos/química , Água Subterrânea/química , Hidrocarbonetos Policíclicos Aromáticos/química , Solo/química , Poluentes Químicos da Água/química
11.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(3): 857-861, 2024 Jun.
Artigo em Zh | MEDLINE | ID: mdl-38926980

RESUMO

OBJECTIVE: To identify the genetic mutation of coagulation factor Ⅶ ( F7) gene in a pedigree with coagulation factor Ⅶ (FⅦ) deficiency and explore the molecular pathogenesis. METHODS: The prothrombin time (PT), activated partial thromboplastin time (APTT), thrombin time (TT), D-dimer (DD), fibrin degradation products (FDP) and coagulation factor Ⅶ activity (FⅦ:C) of the proband and her family members were detected by Sysmex-CS5100 analyzer. All exons and exon-intron boundaries of the F7 gene were amplified by PCR followed by direct sequencing. The detected mutation was confirmed by reverse sequencing. The ClustalW software was used to analyze the conservatism of the mutant site. Pathogenicity of the mutation was assessed with Mutation Taster and PolyPhen-2 online bioinformatics software. Structure of the mutant protein was analyzed using Swiss-PdbViewer software. RESULTS: The results of routine coagulation tests showed that PT of the proband was markedly extended to 42.5 s, and her FⅦ:C significantly reduced to 2%. The FⅦ:C of her grandmother, mother and sister had slightly reduced to 49%, 51%, and 42%, respectively. These coagulant parameters of her father were within the normal range. Genetic analysis reveled a heterozygous G>A change at cDNA 646 in exon 6 of F7 gene in the proband, resulting in a replacement of glycine at 156 of FⅦ catalytic region with serine (p.Gly156Ser). The sequencing results of other exons and exon-intron boundaries of her F7 gene were normal. The proband's grandmother, mother and sister were all the carriers of this missense mutation except her father. Bioinformatics analysis showed that the p.Gly156Ser mutation caused polarity change of the amino acid at this site and formation of side chains, leading to increase of protein instability, which may affect catalytic activity of structural domain. Meanwhile, both Mutation Taster and PolyPhen-2 online bioinformatics software also predicted the pathogenicity of this missense mutation with high scores. CONCLUSION: The heterozygous p.Gly156Ser mutation is the direct cause of the reduced FⅦ in this proband.


Assuntos
Deficiência do Fator VII , Fator VII , Mutação , Linhagem , Humanos , Feminino , Fator VII/genética , Deficiência do Fator VII/genética , Éxons , Heterozigoto , Masculino
12.
iScience ; 27(6): 109955, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38840841

RESUMO

The gut microbiome plays an important role in the healthy and efficient farming of dairy cows. However, high-dimensional microbial information is difficult to interpret in a simplified manner. We collected fecal samples from 161 cows and performed 16S amplicon sequencing. We developed an interpretable machine learning framework to classify individuals based on their milk urea nitrogen (MUN) concentrations. In this framework, we address the challenge of handling high-dimensional microbial data imbalances and identify 9 microorganisms strongly correlated with MUN. We introduce the Shapley Additive Explanations (SHAP) method to provide insights into the machine learning predictions. The results of the study showed that the performance of the machine learning model improved (accuracy = 72.7%) after feature selection on high-dimensional data. Among the 9 microorganisms, g__Firmicutes_unclassified had the greatest impact in the model. This study provides a reference for precision animal husbandry.

13.
J Anim Sci Biotechnol ; 15(1): 94, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38971799

RESUMO

BACKGROUND: C16:0 and cis-9 C18:1 may have different effects on animal growth and health due to unique metabolism in vivo. This study was investigated to explore the different effects of altering the ratio of C16:0 and cis-9 C18:1 in fat supplements on growth performance, lipid metabolism, intestinal barrier, cecal microbiota, and inflammation in fattening bulls. Thirty finishing Angus bulls (626 ± 69 kg, 21 ± 0.5 months) were divided into 3 treatments according to the randomized block design: (1) control diet without additional fat (CON), (2) CON + 2.5% palmitic acid calcium salt (PA, 90% C16:0), and (3) CON + 2.5% mixed fatty acid calcium salt (MA, 60% C16:0 + 30% cis-9 C18:1). The experiment lasted for 104 d, after which all the bulls were slaughtered and sampled for analysis. RESULTS: MA tended to reduce 0-52 d dry matter intake compared to PA (DMI, P = 0.052). Compared with CON and MA, PA significantly increased 0-52 d average daily gain (ADG, P = 0.027). PA tended to improve the 0-52 d feed conversion rate compared with CON (FCR, P = 0.088). Both PA and MA had no significant effect on 52-104 days of DMI, ADG and FCR (P > 0.05). PA tended to improve plasma triglycerides compared with MA (P = 0.077), significantly increased plasma cholesterol (P = 0.002) and tended to improve subcutaneous adipose weight (P = 0.066) when compared with CON and MA. Both PA and MA increased visceral adipose weight compared with CON (P = 0.021). Only PA increased the colonization of Rikenellaceae, Ruminococcus and Proteobacteria in the cecum, and MA increased Akkermansia abundance (P < 0.05). Compared with CON, both PA and MA down-regulated the mRNA expression of Claudin-1 in the jejunum (P < 0.001), increased plasma diamine oxidase (DAO, P < 0.001) and lipopolysaccharide (LPS, P = 0.045). Compared with CON and MA, PA down-regulated the ZO-1 in the jejunum (P < 0.001) and increased plasma LPS-binding protein (LBP, P < 0.001). Compared with CON, only PA down-regulated the Occludin in the jejunum (P = 0.013). Compared with CON, PA and MA significantly up-regulated the expression of TLR-4 and NF-κB in the visceral adipose (P < 0.001) and increased plasma IL-6 (P < 0.001). Compared with CON, only PA up-regulated the TNF-α in the visceral adipose (P = 0.01). Compared with CON and MA, PA up-regulated IL-6 in the visceral adipose (P < 0.001), increased plasma TNF-α (P < 0.001), and reduced the IgG content in plasma (P = 0.035). Compared with CON, PA and MA increased C16:0 in subcutaneous fat and longissimus dorsi muscle (P < 0.05), while more C16:0 was also deposited by extension and desaturation into C18:0 and cis-9 C18:1. However, neither PA nor MA affected the content of cis-9 C18:1 in longissimus dorsi muscle compared with CON (P > 0.05). CONCLUSIONS: MA containing 30% cis-9 C18:1 reduced the risk of high C16:0 dietary fat induced subcutaneous fat obesity, adipose tissue and systemic low-grade inflammation by accelerating fatty acid oxidative utilization, improving colonization of Akkermansia, reducing intestinal barrier damage, and down-regulating NF-κB activation.

14.
PLoS One ; 19(1): e0282547, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38206945

RESUMO

Little information exists on the variation in morphological characteristics, nutritional value, ruminal degradability, and molecular structural makeup of diverse whole-plant silage corn (WPSC) cultivars among different growing regions. This study investigated the between-regions (Beijing, Urumchi, Cangzhou, Liaoyuan, Tianjin) discrepancies in five widely used WPSC cultivars in China (FKBN, YQ889, YQ23, DK301 and ZD958), in terms of 1) morphological characteristics; 2) crude protein (CP) chemical profile; 3) Cornell Net Carbohydrate and Protein System (CNCPS) CP subfractions; 4) in situ CP degradation kinetics; and 5) CP molecular structures. Our results revealed significant growing region and WPSC cultivar interaction for all estimated morphological characteristics (P < 0.001), CP chemical profile (P < 0.001), CNCPS subfractions (P < 0.001) and CP molecular structural features (P < 0.05). Except ear weight (P = 0.18), all measured morphological characteristics varied among different growing regions (P < 0.001). Besides, WPSC cultivars planted in different areas had remarkably different CP chemical profiles and CNCPS subfractions (P < 0.001). All spectral parameters of protein primary structure of WPSC differed (P < 0.05) due to the growing regions, except amide II area (P = 0.28). Finally, the area ratio of amide I to II was negatively correlated with the contents of soluble CP (δ = -0.66; P = 0.002), CP (δ = -0.61; P = 0.006), non-protein nitrogen (δ = -0.56; P = 0.004) and acid detergent insoluble CP (δ = -0.43; P = 0.008), in conjunction with a positive correlation with moderately degradable CP (PB1; δ = 0.58; P = 0.01). In conclusion, the cultivar of DK301 exhibited high and stable CP content. The WPSC planted in Beijing showed high CP, SCP and NPN. The low rumen degradable protein of WPSC was observed in Urumchi. Meanwhile, above changes in protein profiles and digestibility were strongly connected with the ratio of amide I and amide II.


Assuntos
Silagem , Zea mays , Animais , Estrutura Molecular , Zea mays/metabolismo , Ração Animal/análise , Rúmen/metabolismo , Digestão , Carboidratos , Amidas , Proteínas Alimentares/metabolismo
15.
Animals (Basel) ; 14(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38254459

RESUMO

The aim of this study is to identify an alternative approach for simulating the in vitro fermentation and quantifying the production of rumen methane and rumen acetic acid during the rumen fermentation process with different total mixed rations. In this experiment, dietary nutrient compositions (neutral detergent fiber (NDF), acid detergent fiber (ADF), crude protein (CP), and dry matter (DM)) were selected as input parameters to establish three prediction models for rumen fermentation parameters (methane and acetic acid): an artificial neural network model, a genetic algorithm-bp model, and a support vector machine model. The research findings show that the three models had similar simulation results that aligned with the measured data trends (R2 ≥ 0.83). Additionally, the root mean square errors (RMSEs) were ≤1.85 mL/g in the rumen methane model and ≤2.248 mmol/L in the rumen acetic acid model. Finally, this study also demonstrates the models' capacity for generalization through an independent verification experiment, as they effectively predicted outcomes even when significant trial factors were manipulated. These results suggest that machine learning-based in vitro rumen models can serve as a valuable tool for quantifying rumen fermentation parameters, guiding the optimization of dietary structures for dairy cows, rapidly screening methane-reducing feed options, and enhancing feeding efficiency.

16.
Anim Nutr ; 16: 130-146, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38357571

RESUMO

Animal nutritionists have incessantly worked towards providing livestock with high-quality plant protein feed resources. Soybean meal (SBM) has been an essential and predominantly adopted vegetable protein source in livestock feeding for a long time; however, several SBM antinutrients could potentially impair the animal's performance and growth, limiting its use. Several processing methods have been employed to remove SBM antinutrients, including fermentation with fungal or bacterial microorganisms. According to the literature, fermentation, a traditional food processing method, could improve SBM's nutritional and functional properties, making it more suitable and beneficial to livestock. The current interest in health-promoting functional feed, which can enhance the growth of animals, improve their immune system, and promote physiological benefits more than conventional feed, coupled with the ban on the use of antimicrobial growth promoters, has caused a renewed interest in the use of fermented SBM (FSBM) in livestock diets. This review details the mechanism of SBM fermentation and its impacts on animal health and discusses the recent trend in the application and emerging advantages to livestock while shedding light on the research gap that needs to be critically addressed in future studies. FSBM appears to be a multifunctional high-quality plant protein source for animals. Besides removing soybean antinutrients, beneficial bioactive peptides and digestive enzymes are produced during fermentation, providing probiotics, antioxidants, and immunomodulatory effects. Critical aspects regarding FSBM feeding to animals remain uncharted, such as the duration of fermentation, the influence of feeding on digestive tissue development, choice of microbial strain, and possible environmental impact.

17.
Sci Bull (Beijing) ; 69(7): 978-987, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38242834

RESUMO

Aerosol ammonium (NH4+), mainly produced from the reactions of ammonia (NH3) with acids in the atmosphere, has significant impacts on air pollution, radiative forcing, and human health. Understanding the source and formation mechanism of NH4+ can provide scientific insights into air quality improvements. However, the sources of NH3 in urban areas are not well understood, and few studies focus on NH3/NH4+ at different heights within the atmospheric boundary layer, which hinders a comprehensive understanding of aerosol NH4+. In this study, we perform both field observation and modeling studies (the Community Multiscale Air Quality, CMAQ) to investigate regional NH3 emission sources and vertically resolved NH4+ formation mechanisms during the winter in Beijing. Both stable nitrogen isotope analyses and CMAQ model suggest that combustion-related NH3 emissions, including fossil fuel sources, NH3 slip, and biomass burning, are important sources of aerosol NH4+ with more than 60% contribution occurring on heavily polluted days. In contrast, volatilization-related NH3 sources (livestock breeding, N-fertilizer application, and human waste) are dominant on clean days. Combustion-related NH3 is mostly local from Beijing, and biomass burning is likely an important NH3 source (∼15%-20%) that was previously overlooked. More effective control strategies such as the two-product (e.g., reducing both SO2 and NH3) control policy should be considered to improve air quality.

18.
Vet Med Sci ; 9(2): 917-923, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36495154

RESUMO

BACKGROUND: Unreasonable use of antibiotics in animals is a major concern and will remain so, thus affecting people's health. However, the application of plant extracts can better solve this problem. OBJECTIVES: The purpose of this study was to study the effect of Moringa leaf flavonoids on the production performance, immunity, and rumen fermentation of dairy cows. METHODS: Nine Holstein multiparous cows (average weight: 550 kg; days of lactation: 150 ± 6 days) were used in the experiment, using a 3 × 3 Latin square design. Cows were divided into three groups, each of which was supplemented with 0, 50, or 100 mg/body weight (BW) Moringa oleifera leaf flavonoids. Each experimental period consisted of three periods of 21 days, and the prefeeding period lasted 15 days. RESULTS: Our results indicated that supplementation with Moringa leaf flavonoids increased the protein content and decreased the number of somatic cells in milk; had little effect on the biochemical indices of blood, the rumen fermentation, and serum biochemical indicators; and improved the activity of antioxidant enzymes, the antioxidant capacity, and immunity. CONCLUSIONS: Addition of 50 mg/BW Moringa leaf flavonoids to cow enhanced the antioxidant and immunity capacity in dairy cows but did not affect physiological levels of common biochemical parameters in blood or fermentation parameters in rumen.


Assuntos
Dieta , Rúmen , Feminino , Bovinos , Animais , Dieta/veterinária , Antioxidantes/metabolismo , Fermentação , Digestão , Ração Animal/análise , Lactação/fisiologia , Sistema Imunitário , Folhas de Planta
19.
Front Immunol ; 14: 1099186, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36756118

RESUMO

The mitigation and prevention of acute immune stress are essential for livestock production. Clostridium butyricum (C. butyricum) has shown positive effects in stabilizing intestinal microbiota disorders, improving immune function and inhibiting disease development, but its effects on ruminants are unclear. Therefore, the current trial hypothesized that C. butyricum could improve goats' immune function and antioxidant capacity by regulating bacterial communities and blood metabolism and effectively alleviating the acute immune stress induced by Lipopolysaccharides (LPS). Sixteen healthy goats were fed C. butyricum for 70 days, and the goats were challenged with LPS on day 71. Blood and feces were collected at 0 h and 6 h after the challenge to evaluate the effects of C. butyricum on their intestinal microbiota, immune function, antioxidant function, and plasma metabolites. The results showed that C. butyricum had no significant effect on plasma biochemical parameters at the beginning of the LPS challenge. However, supplementation with C. butyricum increased plasma levels of IgA, IgG, T-SOD, and T-AOC (P < 0.05), but TNF-α, IL-6, and MDA were decreased (P < 0.05). In contrast, IL-10 showed an increasing trend (P < 0.10). Rectal microbiota analysis showed that C. butyricum significantly increased the relative abundance of Epsilonbacteraeota at the phylum level of goats; at the genus level, the relative abundances of Campylobacter and Anaerorhabdus]_furcosa_group were also significantly increased (P < 0.05). Christensenellaceae_R-7_group as the dominant microbiota also showed a significant increase in their abundance values, while Clostridium and Lachnospiraceae_UCG-001 were significantly lower (P < 0.05). When the LPS challenge continued up to 6 h, dietary supplementation with C. butyricum still resulted in significantly higher plasma concentrations of IgA, IL-10, and T-SOD in goats than in the control group, reducing TNF-α levels (P < 0.05). In addition, plasma levels of T-CHOL and LDL were significantly reduced, and the expression of d-proline was significantly upregulated according to metabolomic analysis (P < 0.05). In conclusion, dietary supplementation with C. butyricum helped optimize the expression of bacterial communities and plasma metabolites to enhance the ability of goats to alleviate acute immune stress.


Assuntos
Clostridium butyricum , Probióticos , Animais , Intestinos/microbiologia , Clostridium butyricum/fisiologia , Antioxidantes , Lipopolissacarídeos , Interleucina-10 , Cabras , Fator de Necrose Tumoral alfa , Bactérias , Imunoglobulina A , Superóxido Dismutase
20.
Animals (Basel) ; 13(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36978603

RESUMO

This study aimed to determine changes and interactions of ruminal microbiota and chemical parameters in dairy cows fed FTMR. Twelve multiparous Holstein dairy cows (Body weight = 616 ± 13.4 kg; day in milk = 106 ± 7.55 d; and parity = 2.31 ± 0.49; mean ± standard deviation) were divided randomly into two treatments depending on the day in milk, milk production, and parity. The two treatments were: (1) total mixed ration (TMR) and (2) FTMR. Illumina MiSeq sequencing was used to explore the changes in the ruminal microbiota. The results revealed that the bacterial and fungal diversity of the FTMR group were significantly higher than the TMR group. The predominant microbiota phyla in the bacteria and fungi showed significant differences between TMR and FTMR, as follows: Verrucomicrobia (p = 0.03) and Tenericutes (p = 0.01), Ascomycota (p = 0.04) and Basidiomycota (p = 0.04). The dominant bacterial genera in the bacteria, fungi, protozoan, and archaea that showed significant differences between TMR and FTMR were Unclassified_Bacteroidales (p = 0.02), Unclassified_RFP12 (p = 0.03), Candida (p = 0.0005), Bullera (p = 0.002), Cryptococcus (p = 0.007), and Ostracodinium (p = 0.01). LefSe analysis was performed to reveal the biomarker genera of the rumen microbiota community (bacteria, fungi, protozoan, and archaea) in the TMR and FTMR were the genera Shuttleworthia, Ruminococcus, Cryptococcus, Mycosphaerella, Bullera, Candida, and Ostracodinium. NH3-N concentration (p < 0.0001), total VFA concentration (p = 0.003), and molar proportion in total VFA of acetate (p = 0.01) were higher for the cows fed FTMR compared with the cows fed the TMR. Several bacterial genera showed significant correlations with rumen fermentation parameters. The genus Unclassified_Bacteroidales and Bullera were positively correlated with total volatile fatty acids (VFA) and acetate, whereas Candida and Ostracodinium showed negative correlations. Meanwhile, propionate was positively correlated with Candida and negatively correlated with Bullera. The PICRUSt functional profile prediction indicated that the xenobiotics biodegradation and metabolism, the lipid, amino acid, terpenoids, and polyketides metabolisms of the FTMR group were significantly higher than that of the TMR group. The results imply that FTMR can increase lipid and amino acid metabolism, and modulate the rumen microbiome and improve ruminal fermentation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA