Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Magn Reson Imaging ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38258496

RESUMO

BACKGROUND: Vesical Imaging-Reporting and Data System (VI-RADS) is a pathway for the standardized imaging and reporting of bladder cancer staging using multiparametric (mp) MRI. PURPOSE: To investigate additional role of morphological (MOR) measurements to VI-RADS for the detection of muscle-invasive bladder cancer (MIBC) with mpMRI. STUDY TYPE: Retrospective. POPULATION: A total of 198 patients (72 MIBC and 126 NMIBC) underwent bladder mpMRI was included. FIELD STRENGTH/SEQUENCE: 3.0 T/T2-weighted imaging with fast-spin-echo sequence, spin-echo-planar diffusion-weighted imaging and dynamic contrast-enhanced imaging with fast 3D gradient-echo sequence. ASSESSMENT: VI-RADS score and MOR measurement including tumor location, number, stalk, cauliflower-like surface, type of tumor growth, tumor-muscle contact margin (TCM), tumor-longitudinal length (TLL), and tumor cellularity index (TCI) were analyzed by three uroradiologists (3-year, 8-year, and 15-year experience of bladder MRI, respectively) who were blinded to histopathology. STATISTICAL TESTS: Significant MOR measurements associated with MIBC were tested by univariable and multivariable logistic regression (LR) analysis with odds ratio (OR). Area under receiver operating characteristic curve (AUC) with DeLong's test and decision curve analysis (DCA) were used to compared the performance of unadjusted vs. adjusted VI-RADS. A P-value <0.05 was considered statistically significant. RESULTS: TCM (OR 9.98; 95% confidence interval [CI] 4.77-20.8), TCI (OR 5.72; 95% CI 2.37-13.8), and TLL (OR 3.35; 95% CI 1.40-8.03) were independently associated with MIBC at multivariable LR analysis. VI-RADS adjusted by three MORs achieved significantly higher AUC (reader 1 0.908 vs. 0.798; reader 2 0.906 vs. 0.855; reader 3 0.907 vs. 0.831) and better clinical benefits than unadjusted VI-RADS at DCA. Specially in VI-RADS-defined equivocal lesions, MOR-based adjustment resulted in 55.5% (25/45), 70.4% (38/54), and 46.4% (26/56) improvement in accuracy for discriminating MIBC in three readers, respectively. DATA CONCLUSION: MOR measurements improved the performance of VI-RADS in detecting MIBC with mpMRI, especially for equivocal lesions. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 2.

2.
AJR Am J Roentgenol ; 222(1): e2329674, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37493322

RESUMO

BACKGROUND. Pure ground-glass nodules (pGGNs) on chest CT representing invasive adenocarcinoma (IAC) warrant lobectomy with lymph node resection. For pGGNs representing other entities, close follow-up or sublobar resection without node dissection may be appropriate. OBJECTIVE. The purpose of this study was to develop and validate an automated deep learning model for differentiation of pGGNs on chest CT representing IAC from those representing atypical adenomatous hyperplasia (AAH), adenocarcinoma in situ (AIS), and minimally invasive adenocarcinoma (MIA). METHODS. This retrospective study included 402 patients (283 women, 119 men; mean age, 53.2 years) with a total of 448 pGGNs on noncontrast chest CT that were resected from January 2019 to June 2022 and were histologically diagnosed as AAH (n = 29), AIS (n = 83), MIA (n = 235), or IAC (n = 101). Lung-PNet, a 3D deep learning model, was developed for automatic segmentation and classification (probability of IAC vs other entities) of pGGNs on CT. Nodules resected from January 2019 to December 2021 were randomly allocated to training (n = 327) and internal test (n = 82) sets. Nodules resected from January 2022 to June 2022 formed a holdout test set (n = 39). Segmentation performance was assessed with Dice coefficients with radiologists' manual segmentations as reference. Classification performance was assessed by ROC AUC and precision-recall AUC (PR AUC) and compared with that of four readers (three radiologists, one surgeon). The code used is publicly available (https://github.com/XiaodongZhang-PKUFH/Lung-PNet.git). RESULTS. In the holdout test set, Dice coefficients for segmentation of IACs and of other lesions were 0.860 and 0.838, and ROC AUC and PR AUC for classification as IAC were 0.911 and 0.842. At threshold probability of 50.0% or greater for prediction of IAC, Lung-PNet had sensitivity, specificity, accuracy, and F1 score of 50.0%, 92.0%, 76.9%, and 60.9% in the holdout test set. In the holdout test set, accuracy and F1 score (p values vs Lung-PNet) for individual readers were as follows: reader 1, 51.3% (p = .02) and 48.6% (p = .008); reader 2, 79.5% (p = .75) and 75.0% (p = .10); reader 3, 66.7% (p = .35) and 68.3% (p < .001); reader 4, 71.8% (p = .48) and 42.1% (p = .18). CONCLUSION. Lung-PNet had robust performance for segmenting and classifying (IAC vs other entities) pGGNs on chest CT. CLINICAL IMPACT. This automated deep learning tool may help guide selection of surgical strategies for pGGN management.


Assuntos
Adenocarcinoma in Situ , Adenocarcinoma , Aprendizado Profundo , Neoplasias Pulmonares , Lesões Pré-Cancerosas , Masculino , Humanos , Feminino , Pessoa de Meia-Idade , Neoplasias Pulmonares/patologia , Estudos Retrospectivos , Invasividade Neoplásica/patologia , Adenocarcinoma/patologia , Pulmão/patologia , Adenocarcinoma in Situ/patologia , Tomografia Computadorizada por Raios X/métodos , Hiperplasia/patologia , Lesões Pré-Cancerosas/patologia
3.
J Am Chem Soc ; 145(49): 26550-26556, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38019148

RESUMO

A catalytic enantioselective polycyclization of tertiary enamides with terminal silyl enol ethers has been developed by virtue of Cu(OTf)2 catalysis with a novel spiropyrroline-derived oxazole (SPDO) ligand. This tandem reaction offers an effective approach to assemble bicyclic and tricyclic N-heterocycles bearing both aza- and oxa-quaternary stereogenic centers, which are primal subunits in a range of natural alkaloids. Strategic application of this methodology and a late-stage radical cyclization as key steps have been showcased in the concise total synthesis of (-)-cephalocyclidin A.

4.
Br J Cancer ; 128(6): 1019-1029, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36599915

RESUMO

BACKGROUND: This study aims to develop and validate an artificial intelligence (AI)-aided Prostate Imaging Reporting and Data System (PI-RADSAI) for prostate cancer (PCa) diagnosis based on MRI. METHODS: The deidentified MRI data of 1540 biopsy-naïve patients were collected from four centres. PI-RADSAI is a two-stage, human-in-the-loop AI capable of emulating the diagnostic acumen of subspecialists for PCa on MRI. The first stage uses a UNet-Seg model to detect and segment biopsy-candidate prostate lesions, whereas the second stage leverages UNet-Seg segmentation is trained specifically with subspecialist' knowledge-guided 3D-Resnet to achieve an automatic AI-aided diagnosis for PCa. RESULTS: In the independent test set, UNet-Seg identified 87.2% (628/720) of target lesions, with a Dice score of 44.9% (range, 22.8-60.2%) in segmenting lesion contours. In the ablation experiment, the model trained with the data from three centres was superior (kappa coefficient, 0.716 vs. 0.531) to that trained with single-centre data. In the internal and external tests, the triple-centre PI-RADSAI model achieved an overall agreement of 58.4% (188/322) and 60.1% (92/153) with a referential subspecialist in scoring target lesions; when one-point margin of error was permissible, the agreement rose to 91.3% (294/322) and 97.3% (149/153), respectively. In the paired test, PI-RADSAI outperformed 5/11 (45.5%) and matched the performance of 3/11 (27.3%) general radiologists in achieving a clinically significant PCa diagnosis (area under the curve, internal test, 0.801 vs. 0.770, p < 0.01; external test, 0.833 vs. 0.867, p = 0.309). CONCLUSIONS: Our closed-loop PI-RADSAI outperforms or matches the performance of more than 70% of general readers in the MRI assessment of PCa. This system might provide an alternative to radiologists and offer diagnostic benefits to clinical practice, especially where subspecialist expertise is unavailable.


Assuntos
Próstata , Neoplasias da Próstata , Masculino , Humanos , Próstata/patologia , Neoplasias da Próstata/patologia , Imageamento por Ressonância Magnética/métodos , Inteligência Artificial , Biópsia , Estudos Retrospectivos , Biópsia Guiada por Imagem/métodos
5.
Br J Cancer ; 128(7): 1267-1277, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36646808

RESUMO

BACKGROUND: To develop and test a Prostate Imaging Stratification Risk (PRISK) tool for precisely assessing the International Society of Urological Pathology Gleason grade (ISUP-GG) of prostate cancer (PCa). METHODS: This study included 1442 patients with prostate biopsy from two centres (training, n = 672; internal test, n = 231 and external test, n = 539). PRISK is designed to classify ISUP-GG 0 (benign), ISUP-GG 1, ISUP-GG 2, ISUP-GG 3 and ISUP GG 4/5. Clinical indicators and high-throughput MRI features of PCa were integrated and modelled with hybrid stacked-ensemble learning algorithms. RESULTS: PRISK achieved a macro area-under-curve of 0.783, 0.798 and 0.762 for the classification of ISUP-GGs in training, internal and external test data. Permitting error ±1 in grading ISUP-GGs, the overall accuracy of PRISK is nearly comparable to invasive biopsy (train: 85.1% vs 88.7%; internal test: 85.1% vs 90.4%; external test: 90.4% vs 94.2%). PSA ≥ 20 ng/ml (odds ratio [OR], 1.58; p = 0.001) and PRISK ≥ GG 3 (OR, 1.45; p = 0.005) were two independent predictors of biochemical recurrence (BCR)-free survival, with a C-index of 0.76 (95% CI, 0.73-0.79) for BCR-free survival prediction. CONCLUSIONS: PRISK might offer a potential alternative to non-invasively assess ISUP-GG of PCa.


Assuntos
Aprendizado Profundo , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/cirurgia , Gradação de Tumores , Próstata/diagnóstico por imagem , Próstata/cirurgia , Próstata/patologia , Imageamento por Ressonância Magnética
6.
Br J Cancer ; 129(10): 1625-1633, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37758837

RESUMO

BACKGROUND: To investigate the predictive ability of high-throughput MRI with deep survival networks for biochemical recurrence (BCR) of prostate cancer (PCa) after prostatectomy. METHODS: Clinical-MRI and histopathologic data of 579 (train/test, 463/116) PCa patients were retrospectively collected. The deep survival network (iBCR-Net) is based on stepwise processing operations, which first built an MRI radiomics signature (RadS) for BCR, and predicted the T3 stage and lymph node metastasis (LN+) of tumour using two predefined AI models. Subsequently, clinical, imaging and histopathological variables were integrated into iBCR-Net for BCR prediction. RESULTS: RadS, derived from 2554 MRI features, was identified as an independent predictor of BCR. Two predefined AI models achieved an accuracy of 82.6% and 78.4% in staging T3 and LN+. The iBCR-Net, when expressed as a presurgical model by integrating RadS, AI-diagnosed T3 stage and PSA, can match a state-of-the-art histopathological model (C-index, 0.81 to 0.83 vs 0.79 to 0.81, p > 0.05); and has maximally 5.16-fold, 12.8-fold, and 2.09-fold (p < 0.05) benefit to conventional D'Amico score, the Cancer of the Prostate Risk Assessment (CAPRA) score and the CAPRA Postsurgical score. CONCLUSIONS: AI-aided iBCR-Net using high-throughput MRI can predict PCa BCR accurately and thus may provide an alternative to the conventional method for PCa risk stratification.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Estudos Retrospectivos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/cirurgia , Neoplasias da Próstata/patologia , Próstata/patologia , Antígeno Prostático Específico , Prostatectomia/métodos , Hidrolases , Imageamento por Ressonância Magnética/métodos , Medição de Risco
7.
J Magn Reson Imaging ; 57(5): 1352-1364, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36222324

RESUMO

BACKGROUND: The high level of expertise required for accurate interpretation of prostate MRI. PURPOSE: To develop and test an artificial intelligence (AI) system for diagnosis of clinically significant prostate cancer (CsPC) with MRI. STUDY TYPE: Retrospective. SUBJECTS: One thousand two hundred thirty patients from derivation cohort between Jan 2012 and Oct 2019, and 169 patients from a publicly available data (U-Net: 423 for training/validation and 49 for test and TrumpeNet: 820 for training/validation and 579 for test). FIELD STRENGTH/SEQUENCE: 3.0T/scanners, T2 -weighted imaging (T2 WI), diffusion-weighted imaging, and apparent diffusion coefficient map. ASSESSMENT: Close-loop AI system was trained with an Unet for prostate segmentation and a TrumpetNet for CsPC detection. Performance of AI was tested in 410 internal and 169 external sets against 24 radiologists categorizing into junior, general and subspecialist group. Gleason score >6 was identified as CsPC at pathology. STATISTICAL TESTS: Area under the receiver operating characteristic curve (AUC-ROC); Delong test; Meta-regression I2 analysis. RESULTS: In average, for internal test, AI had lower AUC-ROC than subspecialists (0.85 vs. 0.92, P < 0.05), and was comparable to junior (0.84, P = 0.76) and general group (0.86, P = 0.35). For external test, both AI (0.86) and subspecialist (0.86) had higher AUC than junior (0.80, P < 0.05) and general reader (0.83, P < 0.05). In individual, it revealed moderate diagnostic heterogeneity in 24 readers (Mantel-Haenszel I2  = 56.8%, P < 0.01), and AI outperformed 54.2% (13/24) of readers in summary ROC analysis. In multivariate test, Gleason score, zonal location, PI-RADS score and lesion size significantly impacted the accuracy of AI; while effect of data source, MR device and parameter settings on AI performance is insignificant (P > 0.05). DATA CONCLUSION: Our AI system can match and to some case exceed clinicians for the diagnosis of CsPC with prostate MRI. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 2.


Assuntos
Imageamento por Ressonância Magnética , Neoplasias da Próstata , Masculino , Humanos , Imageamento por Ressonância Magnética/métodos , Neoplasias da Próstata/patologia , Inteligência Artificial , Estudos Retrospectivos , Imagem de Difusão por Ressonância Magnética/métodos
8.
Biocell ; 47(2): 373-384, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36570878

RESUMO

Since 2019, the coronavirus disease-19 (COVID-19) has been spreading rapidly worldwide, posing an unignorable threat to the global economy and human health. It is a disease caused by severe acute respiratory syndrome coronavirus 2, a single-stranded RNA virus of the genus Betacoronavirus. This virus is highly infectious and relies on its angiotensin-converting enzyme 2-receptor to enter cells. With the increase in the number of confirmed COVID-19 diagnoses, the difficulty of diagnosis due to the lack of global healthcare resources becomes increasingly apparent. Deep learning-based computer-aided diagnosis models with high generalisability can effectively alleviate this pressure. Hyperparameter tuning is essential in training such models and significantly impacts their final performance and training speed. However, traditional hyperparameter tuning methods are usually time-consuming and unstable. To solve this issue, we introduce Particle Swarm Optimisation to build a PSO-guided Self-Tuning Convolution Neural Network (PSTCNN), allowing the model to tune hyperparameters automatically. Therefore, the proposed approach can reduce human involvement. Also, the optimisation algorithm can select the combination of hyperparameters in a targeted manner, thus stably achieving a solution closer to the global optimum. Experimentally, the PSTCNN can obtain quite excellent results, with a sensitivity of 93.65%±1.86%, a specificity of 94.32%±2.07%, a precision of 94.30%±2.04%, an accuracy of 93.99%±1.78%, an F1-score of 93.97%±1.78%, Matthews Correlation Coefficient of 87.99%±3.56%, and Fowlkes-Mallows Index of 93.97%±1.78%. Our experiments demonstrate that compared to traditional methods, hyperparameter tuning of the model using an optimisation algorithm is faster and more effective.

9.
Appl Soft Comput ; 144: 110511, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37346824

RESUMO

The outbreak of the corona virus disease (COVID-19) has changed the lives of most people on Earth. Given the high prevalence of this disease, its correct diagnosis in order to quarantine patients is of the utmost importance in the steps of fighting this pandemic. Among the various modalities used for diagnosis, medical imaging, especially computed tomography (CT) imaging, has been the focus of many previous studies due to its accuracy and availability. In addition, automation of diagnostic methods can be of great help to physicians. In this paper, a method based on pre-trained deep neural networks is presented, which, by taking advantage of a cyclic generative adversarial net (CycleGAN) model for data augmentation, has reached state-of-the-art performance for the task at hand, i.e., 99.60% accuracy. Also, in order to evaluate the method, a dataset containing 3163 images from 189 patients has been collected and labeled by physicians. Unlike prior datasets, normal data have been collected from people suspected of having COVID-19 disease and not from data from other diseases, and this database is made available publicly. Moreover, the method's reliability is further evaluated by calibration metrics, and its decision is interpreted by Grad-CAM also to find suspicious regions as another output of the method and make its decisions trustworthy and explainable.

10.
Radiology ; 303(3): 578-587, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35258368

RESUMO

Background Recently developed time-dependent diffusion MRI has potential in characterizing cellular tissue microstructures; however, its value in imaging prostate cancer (PCa) remains unknown. Purpose To investigate the feasibility of time-dependent diffusion MRI-based microstructural mapping for noninvasively characterizing cellular properties of PCa and for discriminating between clinically significant PCa and clinically insignificant disease. Materials and Methods Men with a clinical suspicion of PCa were enrolled prospectively between October 2019 and August 2020. Time-dependent diffusion MRI data were acquired with pulsed and oscillating gradient diffusion MRI sequences at an equivalent diffusion time of 7.5-30 msec on a 3.0-T scanner. Time-dependent diffusion MRI-based microstructural parameters, including cell diameter, intracellular volume fraction, cellularity, and diffusivities, were estimated with a two-compartment model. These were compared for different International Society of Urological Pathology grade groups (GGs), and their performance in discriminating clinically significant PCa (GG >1) from clinically insignificant disease (benign and GG 1) was determined with a linear discriminant analysis. The fitted microstructural parameters were validated by means of correlation with histopathologic measurements. Results In the 48 enrolled men, the time-dependent diffusion MRI measurements showed that higher GG was correlated with higher intracellular volume fraction and higher cellularity (intracellular volume fraction = 0.22, 0.36, 0.34, 0.37, and 0.40 in GGs 1-5, respectively; P < .001 at one-way analysis of variance), while lower cell diameter was found at higher GGs (diameter = 23.4, 18.3, 19.2, 17.9, and 18.5 µm in GGs 1-5, respectively; P = .002). Among all measurements derived from time-dependent diffusion MRI, cellularity achieved the highest diagnostic performance, with an accuracy of 92% (44 of 48 participants) and area under the receiver operating characteristic curve of 0.96 (95% CI: 0.87, 0.99) in discriminating clinically significant PCa from clinically insignificant disease. Microstructural mapping was supported by positive correlations between time-dependent diffusion MRI-based and pathologic examination-based intracellular volume fraction (r = 0.83; P < .001). Conclusion Time-dependent diffusion MRI-based microstructural mapping correlates with pathologic findings and demonstrates promise for characterizing prostate cancer. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Chatterjee and Oto in this issue.


Assuntos
Imagem de Difusão por Ressonância Magnética , Neoplasias da Próstata , Imagem de Difusão por Ressonância Magnética/métodos , Humanos , Imageamento por Ressonância Magnética , Masculino , Gradação de Tumores , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Curva ROC
11.
Phys Rev Lett ; 129(11): 112002, 2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36154401

RESUMO

In this Letter, we study the exclusive decay of ϒ into J/ψ in association with η_{c} (χ_{c0,1,2}). The decay widths for different helicity configurations are evaluated up to QCD next-to-leading order within the nonrelativistic QCD framework. We find that the QCD corrections notably mitigate the renormalization scale dependence of the decay widths for all the processes. The branching fraction of ϒ→J/ψ+χ_{c1} is obtained as 3.73_{-2.06-1.19}^{+5.10+0.10}×10^{-6}, which agrees well with the Belle measurement, i.e., Br(ϒ→J/ψ+χ_{c1})=(3.90±1.21±0.23)×10^{-6}. For the other processes, our results of the branching fractions are compatible with the upper limits given by the Belle experiments, except for ϒ(2S)→J/ψ+χ_{c1}, where some tension exists between theory and experiment. Having the polarized decay widths, we study the J/ψ polarization, which turns out to be independent of any nonperturbative parameters. Further, according to our calculation, it is promising to measure all the processes at Super B factory thanks to the high luminosity.

12.
Nephrol Dial Transplant ; 37(12): 2581-2590, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-35020923

RESUMO

BACKGROUND: Reliable diagnosis of the cause of renal allograft dysfunction is of clinical importance. The aim of this study is to develop a hybrid deep-learning approach for determining acute rejection (AR), chronic allograft nephropathy (CAN) and renal function in kidney-allografted patients by multimodality integration. METHODS: Clinical and magnetic resonance imaging (MRI) data of 252 kidney-allografted patients who underwent post-transplantation MRI between December 2014 and November 2019 were retrospectively collected. An end-to-end convolutional neural network, namely RtNet, was designed to discriminate between AR, CAN and stable renal allograft recipient (SR), and secondarily, to predict the impaired renal graft function [estimated glomerular filtration rate (eGFR) ≤50 mL/min/1.73 m2]. Specially, clinical variables and MRI radiomics features were integrated into the RtNet, resulting in a hybrid network (RtNet+). The performance of the conventional radiomics model RtRad, RtNet and RtNet+ was compared to test the effect of multimodality interaction. RESULTS: Out of 252 patients, AR, CAN and SR was diagnosed in 20/252 (7.9%), 92/252 (36.5%) and 140/252 (55.6%) patients, respectively. Of all MRI sequences, T2-weighted imaging and diffusion-weighted imaging with stretched exponential analysis showed better performance than other sequences. On pairwise comparison of resulting prediction models, RtNet+ produced significantly higher macro-area-under-curve (macro-AUC) (0.733 versus 0.745; P = 0.047) than RtNet in discriminating between AR, CAN and SR. RtNet+ performed similarly to the RtNet (macro-AUC, 0.762 versus 0.756; P > 0.05) in discriminating between eGFR ≤50 mL/min/1.73 m2 and >50 mL/min/1.73 m2. With decision curve analysis, adding RtRad and RtNet to clinical variables resulted in more net benefits in diagnostic performance. CONCLUSIONS: Our study revealed that the proposed RtNet+ model owned a stable performance in revealing the cause of renal allograft dysfunction, and thus might offer important references for individualized diagnostics and treatment strategy.


Assuntos
Glomerulosclerose Segmentar e Focal , Transplante de Rim , Imageamento por Ressonância Magnética Multiparamétrica , Humanos , Transplante de Rim/efeitos adversos , Rejeição de Enxerto/diagnóstico por imagem , Rejeição de Enxerto/etiologia , Estudos Retrospectivos , Redes Neurais de Computação , Aloenxertos/diagnóstico por imagem
13.
IEEE Sens J ; 22(18): 17431-17438, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36346097

RESUMO

(Aim) To detect COVID-19 patients more accurately and more precisely, we proposed a novel artificial intelligence model. (Methods) We used previously proposed chest CT dataset containing four categories: COVID-19, community-acquired pneumonia, secondary pulmonary tuberculosis, and healthy subjects. First, we proposed a novel VGG-style base network (VSBN) as backbone network. Second, convolutional block attention module (CBAM) was introduced as attention module into our VSBN. Third, an improved multiple-way data augmentation method was used to resist overfitting of our AI model. In all, our model was dubbed as a 12-layer attention-based VGG-style network for COVID-19 (AVNC) (Results) This proposed AVNC achieved the sensitivity/precision/F1 per class all above 95%. Particularly, AVNC yielded a micro-averaged F1 score of 96.87%, which is higher than 11 state-of-the-art approaches. (Conclusion) This proposed AVNC is effective in recognizing COVID-19 diseases.

14.
Pattern Recognit ; 122: 108255, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34456369

RESUMO

COVID-19 has emerged as one of the deadliest pandemics that has ever crept on humanity. Screening tests are currently the most reliable and accurate steps in detecting severe acute respiratory syndrome coronavirus in a patient, and the most used is RT-PCR testing. Various researchers and early studies implied that visual indicators (abnormalities) in a patient's Chest X-Ray (CXR) or computed tomography (CT) imaging were a valuable characteristic of a COVID-19 patient that can be leveraged to find out virus in a vast population. Motivated by various contributions to open-source community to tackle COVID-19 pandemic, we introduce SARS-Net, a CADx system combining Graph Convolutional Networks and Convolutional Neural Networks for detecting abnormalities in a patient's CXR images for presence of COVID-19 infection in a patient. In this paper, we introduce and evaluate the performance of a custom-made deep learning architecture SARS-Net, to classify and detect the Chest X-ray images for COVID-19 diagnosis. Quantitative analysis shows that the proposed model achieves more accuracy than previously mentioned state-of-the-art methods. It was found that our proposed model achieved an accuracy of 97.60% and a sensitivity of 92.90% on the validation set.

15.
Sensors (Basel) ; 22(6)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35336292

RESUMO

Industry 4.0 smart manufacturing systems are equipped with sensors, smart machines, and intelligent robots. The automated in-plant transportation of manufacturing parts through throwing and catching robots is an attempt to accelerate the transportation process and increase productivity by the optimized utilization of in-plant facilities. Such an approach requires intelligent tracking and prediction of the final 3D catching position of thrown objects, while observing their initial flight trajectory in real-time, by catching robot in order to grasp them accurately. Due to non-deterministic nature of such mechanically thrown objects' flight, accurate prediction of their complete trajectory is only possible if we accurately observe initial trajectory as well as intelligently predict remaining trajectory. The thrown objects in industry can be of any shape but detecting and accurately predicting interception positions of any shape object is an extremely challenging problem that needs to be solved step by step. In this research work, we only considered spherical shape objects as their3D central position can be easily determined. Our work comprised of development of a 3D simulated environment which enabled us to throw object of any mass, diameter, or surface air friction properties in a controlled internal logistics environment. It also enabled us to throw object with any initial velocity and observe its trajectory by placing a simulated pinhole camera at any place within 3D vicinity of internal logistics. We also employed multi-view geometry among simulated cameras in order to observe trajectories more accurately. Hence, it provided us an ample opportunity of precise experimentation in order to create enormous dataset of thrown object trajectories to train an encoder-decoder bidirectional LSTM deep neural network. The trained neural network has given the best results for accurately predicting trajectory of thrown objects in real time.


Assuntos
Robótica , Redes Neurais de Computação
16.
Sensors (Basel) ; 22(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35161552

RESUMO

After lung cancer, breast cancer is the second leading cause of death in women. If breast cancer is detected early, mortality rates in women can be reduced. Because manual breast cancer diagnosis takes a long time, an automated system is required for early cancer detection. This paper proposes a new framework for breast cancer classification from ultrasound images that employs deep learning and the fusion of the best selected features. The proposed framework is divided into five major steps: (i) data augmentation is performed to increase the size of the original dataset for better learning of Convolutional Neural Network (CNN) models; (ii) a pre-trained DarkNet-53 model is considered and the output layer is modified based on the augmented dataset classes; (iii) the modified model is trained using transfer learning and features are extracted from the global average pooling layer; (iv) the best features are selected using two improved optimization algorithms known as reformed differential evaluation (RDE) and reformed gray wolf (RGW); and (v) the best selected features are fused using a new probability-based serial approach and classified using machine learning algorithms. The experiment was conducted on an augmented Breast Ultrasound Images (BUSI) dataset, and the best accuracy was 99.1%. When compared with recent techniques, the proposed framework outperforms them.


Assuntos
Neoplasias da Mama , Aprendizado Profundo , Mama , Neoplasias da Mama/diagnóstico por imagem , Feminino , Humanos , Probabilidade , Ultrassonografia Mamária
17.
Comput Mater Contin ; 70(2): 3081-3097, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615529

RESUMO

Aim: Alcoholism is a disease that a patient becomes dependent or addicted to alcohol. This paper aims to design a novel artificial intelligence model that can recognize alcoholism more accurately. Methods: We propose the VGG-Inspired stochastic pooling neural network (VISPNN) model based on three components: (i) a VGG-inspired mainstay network, (ii) the stochastic pooling technique, which aims to outperform traditional max pooling and average pooling, and (iii) an improved 20-way data augmentation (Gaussian noise, salt-and-pepper noise, speckle noise, Poisson noise, horizontal shear, vertical shear, rotation, Gamma correction, random translation, and scaling on both raw image and its horizontally mirrored image). In addition, two networks (Net-I and Net-II) are proposed in ablation studies. Net-I is based on VISPNN by replacing stochastic pooling with ordinary max pooling. Net-II removes the 20-way data augmentation. Results: The results by ten runs of 10-fold cross-validation show that our VISPNN model gains a sensitivity of 97.98±1.32, a specificity of 97.80±1.35, a precision of 97.78±1.35, an accuracy of 97.89±1.11, an F1 score of 97.87±1.12, an MCC of 95.79±2.22, an FMI of 97.88±1.12, and an AUC of 0.9849, respectively. Conclusion: The performance of our VISPNN model is better than two internal networks (Net-I and Net-II) and ten state-of-the-art alcoholism recognition methods.

18.
Int J Intell Syst ; 37(2): 1572-1598, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38607823

RESUMO

COVID-19 pneumonia started in December 2019 and caused large casualties and huge economic losses. In this study, we intended to develop a computer-aided diagnosis system based on artificial intelligence to automatically identify the COVID-19 in chest computed tomography images. We utilized transfer learning to obtain the image-level representation (ILR) based on the backbone deep convolutional neural network. Then, a novel neighboring aware representation (NAR) was proposed to exploit the neighboring relationships between the ILR vectors. To obtain the neighboring information in the feature space of the ILRs, an ILR graph was generated based on the k-nearest neighbors algorithm, in which the ILRs were linked with their k-nearest neighboring ILRs. Afterward, the NARs were computed by the fusion of the ILRs and the graph. On the basis of this representation, a novel end-to-end COVID-19 classification architecture called neighboring aware graph neural network (NAGNN) was proposed. The private and public data sets were used for evaluation in the experiments. Results revealed that our NAGNN outperformed all the 10 state-of-the-art methods in terms of generalization ability. Therefore, the proposed NAGNN is effective in detecting COVID-19, which can be used in clinical diagnosis.

19.
J Comput Sci Technol ; 37(2): 330-343, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35496726

RESUMO

COVID-19 is a contagious infection that has severe effects on the global economy and our daily life. Accurate diagnosis of COVID-19 is of importance for consultants, patients, and radiologists. In this study, we use the deep learning network AlexNet as the backbone, and enhance it with the following two aspects: 1) adding batch normalization to help accelerate the training, reducing the internal covariance shift; 2) replacing the fully connected layer in AlexNet with three classifiers: SNN, ELM, and RVFL. Therefore, we have three novel models from the deep COVID network (DC-Net) framework, which are named DC-Net-S, DC-Net-E, and DC-Net-R, respectively. After comparison, we find the proposed DC-Net-R achieves an average accuracy of 90.91% on a private dataset (available upon email request) comprising of 296 images while the specificity reaches 96.13%, and has the best performance among all three proposed classifiers. In addition, we show that our DC-Net-R also performs much better than other existing algorithms in the literature. Supplementary Information: The online version contains supplementary material available at 10.1007/s11390-020-0679-8.

20.
Eur J Nucl Med Mol Imaging ; 48(12): 3805-3816, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34018011

RESUMO

PURPOSE: A balance between preserving urinary continence as well as sexual potency and achieving negative surgical margins is of clinical relevance while implementary difficulty. Accurate detection of extracapsular extension (ECE) of prostate cancer (PCa) is thus crucial for determining appropriate treatment options. We aimed to develop and validate an artificial intelligence (AI)-based tool for detecting ECE of PCa using multiparametric magnetic resonance imaging (mpMRI). METHODS: Eight hundred and forty nine consecutive PCa patients who underwent mpMRI and prostatectomy without previous radio- or hormonal therapy from two medical centers were retrospectively included. The AI tool was built on a ResNeXt network embedded with a spatial attention map of experts' prior knowledge (PAGNet) from 596 training patients. Model validation was performed in 150 internal and 103 external patients. Performance comparison was made between AI, two experts using a criteria-based ECE grading system, and expert-AI interaction. RESULTS: An index PAGNet model using a single-slice image yielded the highest areas under the receiver operating characteristic curve (AUC) of 0.857 (95% confidence interval [CI], 0.827-0.884), 0.807 (95% CI, 0.735-0.867), and 0.728 (95% CI, 0.631-0.811) in training, internal, and external validation data, respectively. The performance of two experts (AUC, 0.632 to 0.741 vs 0.715 to 0.857) was lower (paired comparison, all p values < 0.05) than that of AI assessment. When experts' interpretations were adjusted by AI assessments, the performance of two experts was improved. CONCLUSION: Our AI tool, showing improved accuracy, offers a promising alternative to human experts for ECE staging using mpMRI.


Assuntos
Imageamento por Ressonância Magnética Multiparamétrica , Neoplasias da Próstata , Inteligência Artificial , Extensão Extranodal , Humanos , Imageamento por Ressonância Magnética , Masculino , Estadiamento de Neoplasias , Prostatectomia , Neoplasias da Próstata/patologia , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA