Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Ecol ; 33(7): e17302, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38421102

RESUMO

Revealing the mechanisms underlying soil microbial community assembly is a fundamental objective in molecular ecology. However, despite increasing body of research on overall microbial community assembly mechanisms, our understanding of subcommunity assembly mechanisms for different prokaryotic and fungal taxa remains limited. Here, soils were collected from more than 100 sites across southwestern China. Based on amplicon high-throughput sequencing and iCAMP analysis, we determined the subcommunity assembly mechanisms for various microbial taxa. The results showed that dispersal limitation and homogenous selection were the primary drivers of soil microbial community assembly in this region. However, the subcommunity assembly mechanisms of different soil microbial taxa were highly variable. For instance, the contribution of homogenous selection to Crenarchaeota subcommunity assembly was 70%, but it was only around 10% for the subcommunity assembly of Actinomycetes, Gemmatimonadetes and Planctomycetes. The assembly of subcommunities including microbial taxa with higher occurrence frequencies, average relative abundance and network degrees, as well as wider niches tended to be more influenced by homogenizing dispersal and drift, but less affected by heterogeneous selection and dispersal limitation. The subcommunity assembly mechanisms also varied substantially among different functional guilds. Notably, the subcommunity assembly of diazotrophs, nitrifiers, saprotrophs and some pathogens were predominantly controlled by homogenous selection, while that of denitrifiers and fungal pathogens were mainly affected by stochastic processes such as drift. These findings provide novel insights into understanding soil microbial diversity maintenance mechanisms, and the analysis pipeline holds significant value for future research.


Assuntos
Microbiologia do Solo , Solo , Bactérias/genética , China
2.
J Environ Manage ; 342: 118037, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37178462

RESUMO

Revealing the effects of reforestation on soil antibiotic resistome is essential for assessing ecosystem health, yet related studies remain scarce. Here, to determine the responses of the soil antibiotic resistome to reforestation, 30 pairs of cropland and forest soil samples were collected from southwestern China, a region with high environmental heterogeneity. All the forests had been derived from croplands more than one decade ago. The diversity and abundance of soil antibiotic resistance genes (ARGs), metal resistance genes (MRGs), mobile genetic elements (MGEs), and pathogens were determined by metagenomic sequencing and real-time PCR. The results showed that reforestation significantly increased soil microbial abundance and the contents of Cu, total carbon, total nitrogen, total organic carbon, and ammonium nitrogen. Nevertheless, it decreased the contents of soil Zn, Ba, nitrate nitrogen, and available phosphorus. The main soil ARGs identified in this region were vancomycin, multidrug, and bacitracin resistance genes. Reforestation significantly increased the soil ARG abundance by 62.58%, while it decreased the ARG richness by 16.50%. Reforestation exerted no significant effects on the abundance of heavy metal resistance genes and pathogens, but it doubled the abundance of MGEs. Additionally, reforestation substantially decreased the co-occurrence frequencies of ARGs with MRGs and pathogens. In contrast, the correlation between ARGs and MGEs was greatly enhanced by reforestation. Similarly, the correlations between soil ARG abundance and environmental factors were also strengthened by reforestation. These findings suggest that reforestation can substantially affect the soil antibiotic resistome and exerts overall positive effects on soil health by decreasing ARG richness, providing critical information for assessing the effects of "grain for green" project on soil health.


Assuntos
Genes Bacterianos , Solo , Antibacterianos/farmacologia , Ecossistema , Microbiologia do Solo , Sequências Repetitivas Dispersas
3.
J Imaging ; 10(1)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38249009

RESUMO

Higher standards have been proposed for detection systems since camouflaged objects are not distinct enough, making it possible to ignore the difference between their background and foreground. In this paper, we present a new framework for Camouflaged Object Detection (COD) named FSANet, which consists mainly of three operations: spatial detail mining (SDM), cross-scale feature combination (CFC), and hierarchical feature aggregation decoder (HFAD). The framework simulates the three-stage detection process of the human visual mechanism when observing a camouflaged scene. Specifically, we have extracted five feature layers using the backbone and divided them into two parts with the second layer as the boundary. The SDM module simulates the human cursory inspection of the camouflaged objects to gather spatial details (such as edge, texture, etc.) and fuses the features to create a cursory impression. The CFC module is used to observe high-level features from various viewing angles and extracts the same features by thoroughly filtering features of various levels. We also design side-join multiplication in the CFC module to avoid detail distortion and use feature element-wise multiplication to filter out noise. Finally, we construct an HFAD module to deeply mine effective features from these two stages, direct the fusion of low-level features using high-level semantic knowledge, and improve the camouflage map using hierarchical cascade technology. Compared to the nineteen deep-learning-based methods in terms of seven widely used metrics, our proposed framework has clear advantages on four public COD datasets, demonstrating the effectiveness and superiority of our model.

4.
Front Pharmacol ; 15: 1337623, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476331

RESUMO

Cardiovascular diseases have become the leading cause of death in urban and rural areas. Myocardial fibrosis is a common pathological manifestation at the adaptive and repair stage of cardiovascular diseases, easily predisposing to cardiac death. Non-coding RNAs (ncRNAs), RNA molecules with no coding potential, can regulate gene expression in the occurrence and development of myocardial fibrosis. Recent studies have suggested that Chinese herbal medicine can relieve myocardial fibrosis through targeting various ncRNAs, mainly including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Thus, ncRNAs are novel drug targets for Chinese herbal medicine. Herein, we summarized the current understanding of ncRNAs in the pathogenesis of myocardial fibrosis, and highlighted the contribution of ncRNAs to the therapeutic effect of Chinese herbal medicine on myocardial fibrosis. Further, we discussed the future directions regarding the potential applications of ncRNA-based drug screening platform to screen drugs for myocardial fibrosis.

5.
Eur J Pharm Sci ; 193: 106690, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38181871

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic hepatic disorder on a global scale. Atherosclerosis (AS), a leading cause of cardiovascular diseases, stands as the primary contributor to mortality among patients diagnosed with NAFLD. However, the precise etiology by which NAFLD causes AS remains unclear. Exosomes are nanoscale extracellular vesicles secreted by cells, and are considered to participate in complex biological processes by promoting cell-to-cell and organ-to-organ communications. As vesicles containing protein, mRNA, non-coding RNA and other bioactive molecules, exosomes can participate in the development of NAFLD and AS respectively. Recently, studies have shown that NAFLD can also promote the development of AS via secreting exosomes. Herein, we summarized the recent advantages of exosomes in the pathogenesis of NAFLD and AS, and highlighted the role of exosomes in mediating the information exchange between NAFLD and AS. Further, we discussed how exosomes play a prominent role in enabling information exchange among diverse organs, delving into a novel avenue for investigating the link between diseases and their associated complications. The future directions and emerging challenges are also listed regarding the exosome-based therapeutic strategies for AS under NAFLD conditions.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Exossomos , Vesículas Extracelulares , Hepatopatia Gordurosa não Alcoólica , Humanos , Exossomos/metabolismo , Exossomos/patologia , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patologia , Doenças Cardiovasculares/metabolismo , Aterosclerose/complicações , Aterosclerose/metabolismo
6.
Bioresour Technol ; 380: 129014, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37028527

RESUMO

Composting with five levels of green waste and sewage sludge was compared to examine how feeding ratios affected composting performance with special focus on humification, and the underlying mechanisms. The results showed that the raw material ratio persistently affected compost nutrients and stability. Humification and mineralization were promoted by higher proportion of sewage sludge. Bacterial community composition and within-community relationships were also significantly affected by the raw material feeding ratio. Network analysis indicated that clusters 1 and 4 which dominated by Bacteroidetes, Proteobacteria, and Acidobacteria shown significantly positive correlation with humic acid concentration. Notably, the structural equational model and variance partitioning analysis demonstrated that bacterial community structure (explained 47.82% of the variation) mediated the effect of raw material feeding ratio on humification, and exceeded the effect of environmental factors (explained 19.30% of the variation) on humic acid formation. Accordingly, optimizing the composting raw material improves the composting performance.


Assuntos
Compostagem , Substâncias Húmicas/análise , Esgotos/microbiologia , Solo , Nutrientes , Bactérias
7.
Front Pharmacol ; 14: 1283494, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026969

RESUMO

Atherosclerosis is the leading cause of numerous cardiovascular diseases with a high mortality rate. Non-coding RNAs (ncRNAs), RNA molecules that do not encode proteins in human genome transcripts, are known to play crucial roles in various physiological and pathological processes. Recently, researches on the regulation of atherosclerosis by ncRNAs, mainly including microRNAs, long non-coding RNAs, and circular RNAs, have gradually become a hot topic. Traditional Chinese medicine has been proved to be effective in treating cardiovascular diseases in China for a long time, and its active monomers have been found to target a variety of atherosclerosis-related ncRNAs. These active monomers of traditional Chinese medicine hold great potential as drugs for the treatment of atherosclerosis. Here, we summarized current advancement of the molecular pathways by which ncRNAs regulate atherosclerosis and mainly highlighted the mechanisms of traditional Chinese medicine monomers in regulating atherosclerosis through targeting ncRNAs.

8.
Bioresour Technol ; 338: 125592, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34298334

RESUMO

A composting experiment with sewage sludge and green waste was conducted to explore the effects of aeration directions (i.e., upward and downward) on static composting systems. The compost properties, including humification indexes and organic matter loss rate, and microbial diversity during the composting, were determined. Results showed that the downward aeration promoted the homogenization of temperature and moisture of the static composting system, thereby stimulating microbial metabolism and accelerating mineralization and humification. Microbial community profiles significantly changed among the composting phases. The humification dynamics were significantly correlated with the relative abundance of multiple microbial functional groups. However, no significant effects of aeration direction on the microbial community profiles were observed. The findings indicate that downward aeration is promising to improve the quality of static compost production, by stimulating microbial metabolism rather than altering microbial community profiles.


Assuntos
Compostagem , Esgotos , Solo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA