Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cancer Cell Int ; 18: 124, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30186040

RESUMO

BACKGROUND: Growing evidence suggests that MiRNAs play essential roles in the initiation and progression of colorectal cancer (CRC). The aberrant expression of miR-384 has been reported in some cancers. However, the role and mechanism of miR-384 in CRC proliferation remains unknown. METHODS: The expression of miR-384 was detected in CRC and their paired normal tissues by real-time PCR. In vivo and in vitro assays were conducted to confirm the role of miR-384 in the proliferation of CRC. Bioinformatics analysis, luciferase reporter assays, western blot and in vitro assays were used to confirm that AKT3 was the target gene of miR-384. Finally, Spearman's correlation analyses was carried out to analyze the relationship between miR-384 expression and AKT3 expression in CRC. RESULTS: MiR-384 was down­regulated in CRC tissues. The in vivo and vitro functional assays verified that the ectopic upregulation of miR-384 inhibited the proliferation of CRC and the inhibition of miR-384 promoted the proliferation of CRC. Bioinformatics analysis, luciferase reporter assays, western blot and in vitro functional assays confirmed AKT3 as the target gene of miR-384. The expression of miR-384 was negatively correlated with the expressions of AKT3. CONCLUSION: Our study verified that miR-384 could significantly suppress the proliferation of CRC by directing targeting AKT3.

2.
Life Sci ; 263: 118597, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33075373

RESUMO

AIMS: To explore the biological function and mechanism of Syntaxin2 (STX2) in Colorectal cancer (CRC) proliferation. MAIN METHODS: A series of gain- and loss-of-function analysis were conducted the to explore the biological function of STX2 in CRC proliferation in vivo and in vitro. Western blot, Co-immunoprecipitation (Co-IP) and the functional analyses were taken to analyze the regulative role of STX2 on Exosome Complex 4 (EXOSC4) in CRC proliferation; Immunohistochemistry (IHC) and Real-time quantitative polymerase chain reaction (qPCR) were used to further verify the relationship between the expression of STX2 and EXOSC4 in human CRC samples. KEY FINDINGS: Our study revealed that the over-expression of STX2 promoted CRC proliferation, while knockdown of STX2 repressed CRC proliferation; STX2 promoted CRC proliferation via increasing EXOSC4 protein; There was a positive correlation between STX2 and EXOSC4 expression. SIGNIFICANCE: The current data verify that STX2 drives the proliferation of CRC via increasing the expression of EXOSC4.


Assuntos
Proliferação de Células/genética , Neoplasias Colorretais/patologia , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Proteínas de Ligação a RNA/genética , Sintaxina 1/genética , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Feminino , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Regulação para Cima
3.
J Cancer ; 11(19): 5822-5830, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32913475

RESUMO

Background: Paclitaxel plays a pivotal role in the chemotherapy of breast cancer, but resistance to this drug is an important obstacle in the treatment. It is reported that microRNA-152-3p (miR-152-3p) is involved in tamoxifen resistance in breast cancer, but whether it is involved in paclitaxel resistance in breast cancer remains unknown. Materials and methods: We examined the expression of miR-152-3p in breast cancer tissues and cells by qRT-PCR. After transfecting paclitaxel-resistant MCF-7/TAX cells with miR-152-3p mimics, we analyzed the function of miR-152-3p in these cells by MTT assay and flow cytometry. We screened the target gene, endothelial PAS domain-containing protein 1 (EPAS1), using bioinformatics analysis and verified it with the dual luciferase reporter gene experiment. The relationship between EPAS1 and miR-152-3p and their roles in paclitaxel resistance of breast cancer were further investigated using RNA interference and transfection techniques. Results: The expression of miR-152-3p in normal breast tissues and cells was markedly higher than that in breast cancer. Overexpression of miR-152-3p decreased the survival rate and increased the apoptosis rate and sensitivity of MCF-7/TAX cells to paclitaxel. We confirmed that EPAS1 is the target of miR-152-3p and is negatively regulated by this miRNA. Moreover, transfection with EPAS1 siRNA enhanced the susceptibility and apoptosis rate of MCF-7/TAX cells to paclitaxel. Co-transfection of miR-152-3p mimics and EPAS1 increased paclitaxel sensitivity and apoptosis induced by the drug. Conclusion: miR-152-3p inhibits the survival of MCF-7/TAX cells and promotes their apoptosis by targeting the expression of EPAS1, thereby, enhancing the sensitivity of these breast cancer cells to paclitaxel.

4.
Onco Targets Ther ; 12: 8105-8115, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632063

RESUMO

BACKGROUND: Colorectal cancer (CRC) is one of the most common malignancies worldwide. Studies have demonstrated that epigenetic modifications play essential roles in the development of CRC. ADHFE1 is a differentially expressed gene that has been reported to be hypermethylated in CRC. However, the role and mechanism of ADHFE1 in the proliferation of CRC remain unclear. MATERIALS AND METHODS: ADHFE1 expression was analyzed in CRC tissues by IHC and qRT-PCR, and the relationship between ADHFE1 expression and the clinicopathological parameters was analyzed. Cell proliferation were assessed by the in vitro and in vivo experimental models. GSEA assay was performed to explore the mechanism of ADHFE1 in the proliferation of CRC. Flow cytometry and Western blot were used to detect the activation of the cell cycle signaling. Bisulfite genomic sequence (BSP) assay was used to test the methylation degree of ADHFE1 gene promoter in CRC tissues. RESULTS: Here, we verified that ADHFE1 was down-regulated and hypermethylated in CRC tissues. The down-regulation of ADHFE1 was correlated with poor differentiation and advanced TNM stage of CRC patients. And ADHFE1 expression restored when the CRC cell line SW620 was treated with the demethylating agent 5-Aza-CdR. Overexpression of ADHFE1 inhibited the proliferation of CRC, while ADHFE1 knockdown promoted the proliferation of CRC cells in vitro and in vivo. Moreover, ADHFE1 overexpression could induce a significant G1-S cell cycle arrest in CRC cells and vice versa. CONCLUSION: Hypermethylation of ADHFE1 might promote cell proliferation by modulating cell cycle progression in CRC, potentially providing a new therapeutic target for CRC patients.

5.
Am J Cancer Res ; 9(5): 1061-1073, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31218112

RESUMO

Slingshot phosphatase 3 (SSH3) is a member of the SSH phosphatase family that regulates actin filament dynamics. However, its role in cancer metastasis is relatively unclear compared to that of SSH1. Here, we showed that SSH3 was upregulated in colorectal cancer (CRC). Of note, SSH3 was upregulated in the tumor thrombus and lymph node metastasis compared with that in paired primary CRC tissues. High SSH3 expression was associated with the aggressive phenotype of CRC and may be an independent prognostic factor for the poor survival of patients with CRC. SSH3 significantly enhanced the invasion and metastasis of CRC cells in vitro and in vivo. Moreover, SSH3 regulated the remodeling of actin, which is involved in the cytoskeleton signaling pathway, through its interaction with LIMK1/Rac1 and subsequently promoted CRC cell invasion and metastasis. Our data elucidate an important role for SSH3 in the progression of CRC, and SSH3 may be considered a potential therapeutic target for CRC.

6.
Oncol Lett ; 16(1): 317-325, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29928417

RESUMO

Breast cancer remains the leading cause of mortality worldwide. Human papilloma virus 16 (HPV16) may serve a function in the pathogenesis and development of breast cancer. However, the detection rate of HPV16 in breast carcinoma may vary by region. In the present study, the expression of HPV16 E7 in paraffin-embedded tissues from patients with breast cancer from North China was detected. Additionally, the molecular mechanisms underlying the function of HPV16 E7 in the proliferation of breast cancer cells were examined. The results demonstrated that the DNA of HPV16 E7 was detected in 30.5% of the samples, and that HPV16 E7 promoted the proliferation of breast cancer cells in vitro and in vivo. Additionally, HPV16 E7-mediated proliferation of breast cancer cells was suppressed in response to treatment with cyclooxygenase-2 (COX-2)-specific small interfering RNA and celecoxib. The results of the present study revealed that HPV16 E7 may promote the proliferation of breast cancer cells by upregulating COX-2, suggesting that COX-2 may be a potential therapeutic target for HPV16 E7-mediated progression of breast cancer.

7.
Oncotarget ; 7(16): 22639-49, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27009809

RESUMO

Long non-coding RNAs (lncRNAs) are involved in kinds of human diseases, including colorectal cancer (CRC). TINCR, a 3.7 kb long non coding RNA, was associated with cell differentiation in keratinocyte and gastric cancer cells. However, little is known about the role of TINCR in regulation CRC progression. Here, we showed that lncRNA TINCR was associated with CRC proliferation and metastasis. TINCR was statistically downregulated in CRC tissues and metastatic CRC cell lines compared with their counterparts. TINCR was reversely correlated with CRC progression and promoted tumor cells growth, metastasis in vivo and in vitro. While overexpression of TINCR had opposite effect. In addition, we also found that TINCR specifically bound to EpCAM through RNA IP and RNA pull down assays. Loss of TINCR promoted hydrolysis of EpCAM and then released EpICD, subsequently, activated the Wnt/ß-catenin pathway. Further studies shown that c-Myc repressed the expression of TINCR through repressing sp1 transcriptive activity, which established a positive feedback loop controlling c-Myc and TINCR expression. These findings elucidate that loss of TINCR expression promotes proliferation and metastasis in CRC and it could be considered as a potential cancer suppressor gene.


Assuntos
Neoplasias Colorretais/patologia , Molécula de Adesão da Célula Epitelial/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Proliferação de Células/fisiologia , Neoplasias Colorretais/metabolismo , Células HCT116 , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , Invasividade Neoplásica/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA