Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nature ; 623(7989): 949-955, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38030777

RESUMO

Pyridinium electrolytes are promising candidates for flow-battery-based energy storage1-4. However, the mechanisms underlying both their charge-discharge processes and overall cycling stability remain poorly understood. Here we probe the redox behaviour of pyridinium electrolytes under representative flow battery conditions, offering insights into air tolerance of batteries containing these electrolytes while providing a universal physico-chemical descriptor of their reversibility. Leveraging a synthetic library of extended bispyridinium compounds, we track their performance over a wide range of potentials and identify the singlet-triplet free energy gap as a descriptor that successfully predicts the onset of previously unidentified capacity fade mechanisms. Using coupled operando nuclear magnetic resonance and electron paramagnetic resonance spectroscopies5,6, we explain the redox behaviour of these electrolytes and determine the presence of two distinct regimes (narrow and wide energy gaps) of electrochemical performance. In both regimes, we tie capacity fade to the formation of free radical species, and further show that π-dimerization plays a decisive role in suppressing reactivity between these radicals and trace impurities such as dissolved oxygen. Our findings stand in direct contrast to prevailing views surrounding the role of π-dimers in redox flow batteries1,4,7-11 and enable us to efficiently mitigate capacity fade from oxygen even on prolonged (days) exposure to air. These insights pave the way to new electrolyte systems, in which reactivity of reduced species is controlled by their propensity for intra- and intermolecular pairing of free radicals, enabling operation in air.

2.
Nature ; 579(7798): 224-228, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32123353

RESUMO

Large-scale energy storage is becoming increasingly critical to balancing renewable energy production and consumption1. Organic redox flow batteries, made from inexpensive and sustainable redox-active materials, are promising storage technologies that are cheaper and less environmentally hazardous than vanadium-based batteries, but they have shorter lifetimes and lower energy density2,3. Thus, fundamental insight at the molecular level is required to improve performance4,5. Here we report two in situ nuclear magnetic resonance (NMR) methods of studying redox flow batteries, which are applied to two redox-active electrolytes: 2,6-dihydroxyanthraquinone (DHAQ) and 4,4'-((9,10-anthraquinone-2,6-diyl)dioxy) dibutyrate (DBEAQ). In the first method, we monitor the changes in the 1H NMR shift of the liquid electrolyte as it flows out of the electrochemical cell. In the second method, we observe the changes that occur simultaneously in the positive and negative electrodes in the full electrochemical cell. Using the bulk magnetization changes (observed via the 1H NMR shift of the water resonance) and the line broadening of the 1H shifts of the quinone resonances as a function of the state of charge, we measure the potential differences of the two single-electron couples, identify and quantify the rate of electron transfer between the reduced and oxidized species, and determine the extent of electron delocalization of the unpaired spins over the radical anions. These NMR techniques enable electrolyte decomposition and battery self-discharge to be explored in real time, and show that DHAQ is decomposed electrochemically via a reaction that can be minimized by limiting the voltage used on charging. We foresee applications of these NMR methods in understanding a wide range of redox processes in flow and other electrochemical systems.


Assuntos
Fontes de Energia Elétrica , Espectroscopia de Ressonância Magnética , Eletrólitos/química , Elétrons , Oxirredução
3.
J Am Chem Soc ; 146(14): 9897-9910, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38560816

RESUMO

Ion adsorption at solid-water interfaces is crucial for many electrochemical processes involving aqueous electrolytes including energy storage, electrochemical separations, and electrocatalysis. However, the impact of the hydronium (H3O+) and hydroxide (OH-) ions on the ion adsorption and surface charge distributions remains poorly understood. Many fundamental studies of supercapacitors focus on non-aqueous electrolytes to avoid addressing the role of functional groups and electrolyte pH in altering ion uptake. Achieving microscopic level characterization of interfacial mixed ion adsorption is particularly challenging due to the complex ion dynamics, disordered structures, and hierarchical porosity of the carbon electrodes. This work addresses these challenges starting with pH measurements to quantify the adsorbed H3O+ concentrations, which reveal the basic nature of the activated carbon YP-50F commonly used in supercapacitors. Solid-state NMR spectroscopy is used to study the uptake of lithium bis(trifluoromethanesulfonyl)-imide (LiTFSI) aqueous electrolyte in the YP-50F carbon across the full pH range. The NMR data analysis highlights the importance of including the fast ion-exchange processes for accurate quantification of the adsorbed ions. Under acidic conditions, more TFSI- ions are adsorbed in the carbon pores than Li+ ions, with charge compensation also occurring via H3O+ adsorption. Under neutral and basic conditions, when the carbon's surface charge is close to zero, the Li+ and TFSI- ions exhibit similar but lower affinities toward the carbon pores. Our experimental approach and evidence of H3O+ uptake in pores provide a methodology to relate the local structure to the function and performance in a wide range of materials for energy applications and beyond.

4.
Nat Mater ; 22(6): 746-753, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37081171

RESUMO

Although organic mixed ionic-electronic conductors are widely proposed for use in bioelectronics, energy generation/storage and neuromorphic computing, our fundamental understanding of the charge-compensating interactions between the ionic and electronic carriers and the dynamics of ions remains poor, particularly for hydrated devices and on electrochemical cycling. Here we show that operando 23Na and 1H nuclear magnetic resonance (NMR) spectroscopy can quantify cation and water movement during the doping/dedoping of films comprising the widely used mixed conductor poly(3,4-ethylene dioxythiophene) poly(styrene sulfonate) (PEDOT:PSS). A distinct 23Na quadrupolar splitting is observed due to the partial ordering of the PSS chains within the PEDOT:PSS-rich domains, with respect to the substrate. Operando 23Na NMR studies reveal a close-to-linear correlation between the quadrupolar splitting and the charge stored, which is quantitatively explained by a model in which the holes on the PEDOT backbone are bound to the PSS SO3- groups; an increase in hole concentration during doping inversely correlates with the number of Na+ ions bound to the PSS chains within the PEDOT-rich ordered domains, leading to a decrease in ions within the ordered regions and a decrease in quadrupolar splitting. The Na+-to-electron coupling efficiency, measured via 23Na NMR intensity changes, is close to 100% when using a 1 M NaCl electrolyte. Operando 1H NMR spectroscopy confirms that the Na+ ions injected into/extracted from the wet films are hydrated. These findings shed light on the working principles of organic mixed conductors and demonstrate the utility of operando NMR spectroscopy in revealing structure-property relationships in electroactive polymers.

5.
Chem Rev ; 120(14): 6558-6625, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32090540

RESUMO

Nonaqueous lithium-air batteries have garnered considerable research interest over the past decade due to their extremely high theoretical energy densities and potentially low cost. Significant advances have been achieved both in the mechanistic understanding of the cell reactions and in the development of effective strategies to help realize a practical energy storage device. By drawing attention to reports published mainly within the past 8 years, this review provides an updated mechanistic picture of the lithium peroxide based cell reactions and highlights key remaining challenges, including those due to the parasitic processes occurring at the reaction product-electrolyte, product-cathode, electrolyte-cathode, and electrolyte-anode interfaces. We introduce the fundamental principles and critically evaluate the effectiveness of the different strategies that have been proposed to mitigate the various issues of this chemistry, which include the use of solid catalysts, redox mediators, solvating additives for oxygen reaction intermediates, gas separation membranes, etc. Recently established cell chemistries based on the superoxide, hydroxide, and oxide phases are also summarized and discussed.

6.
J Am Chem Soc ; 143(4): 1885-1895, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33475344

RESUMO

We report the development of in situ (online) EPR and coupled EPR/NMR methods to study redox flow batteries, which are applied here to investigate the redox-active electrolyte, 2,6-dihydroxyanthraquinone (DHAQ). The radical anion, DHAQ3-•, formed as a reaction intermediate during the reduction of DHAQ2-, was detected and its concentration quantified during electrochemical cycling. The fraction of the radical anions was found to be concentration-dependent, the fraction decreasing as the total concentration of DHAQ increases, which we interpret in terms of a competing dimer formation mechanism. Coupling the two techniques-EPR and NMR-enables the rate constant for the electron transfer between DHAQ3-• and DHAQ4- anions to be determined. We quantify the concentration changes of DHAQ during the "high-voltage" hold by NMR spectroscopy and correlate it quantitatively to the capacity fade of the battery. The decomposition products, 2,6-dihydroxyanthrone and 2,6-dihydroxyanthranol, were identified during this hold; they were shown to undergo subsequent irreversible electrochemical oxidation reaction at 0.7 V, so that they no longer participate in the subsequent electrochemistry of the battery when operated in the standard voltage window of the cell. The decomposition reaction rate was found to be concentration-dependent, with a faster rate being observed at higher concentrations. Taking advantage of the inherent flow properties of the system, this work demonstrates the possibility of multi-modal in situ (online) characterizations of redox flow batteries, the characterization techniques being applicable to a range of electrochemical flow systems.


Assuntos
Fontes de Energia Elétrica , Eletrólitos/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Espectroscopia de Ressonância Magnética/métodos , Transporte de Elétrons , Cinética , Oxirredução
8.
Nat Mater ; 19(2): 195-202, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31792424

RESUMO

Membranes with fast and selective ion transport are widely used for water purification and devices for energy conversion and storage including fuel cells, redox flow batteries and electrochemical reactors. However, it remains challenging to design cost-effective, easily processed ion-conductive membranes with well-defined pore architectures. Here, we report a new approach to designing membranes with narrow molecular-sized channels and hydrophilic functionality that enable fast transport of salt ions and high size-exclusion selectivity towards small organic molecules. These membranes, based on polymers of intrinsic microporosity containing Tröger's base or amidoxime groups, demonstrate that exquisite control over subnanometre pore structure, the introduction of hydrophilic functional groups and thickness control all play important roles in achieving fast ion transport combined with high molecular selectivity. These membranes enable aqueous organic flow batteries with high energy efficiency and high capacity retention, suggesting their utility for a variety of energy-related devices and water purification processes.

9.
J Magn Reson ; 361: 107666, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38537481

RESUMO

In situ NMR is a valuable tool for studying electrochemical devices, including redox flow batteries and electrocatalytic reactors, capable of detecting reaction intermediates, metastable states, time evolution of processes or monitoring stability as a function of electrochemical conditions. Here we report a parallel line detector for spatially selective in situ electrochemical NMR spectroscopy. The detector consists of 17 copper wires and is doubly tuned to 1H/19F and X nuclei ranging from 63Cu (106.1 MHz) to 7Li (155.5 MHz). The flat geometry of the parallel line detector allows its insertion into a high electrode surface-to-volume electrochemical flow reactor, enabling a detector-in-a-reactor design. This integrated device is named "eReactor NMR probe". Combined with B1-selective pulse sequences, selective detection of the nuclei at the electrode-electrolyte interface, that is within a distance of 800 µm from the electrode surface, has been achieved. The selective detection of 7Li and 19F nuclei is demonstrated using two electrolytes, LiCl and LiBF4 solutions, respectively. A good B1 homogeneity with an 810° to 90° pulse intensity ratio of 68-72 % was achieved. Using electrochemical plating of lithium metal as a model reaction, we further demonstrated the operando functionality of the probe. The new eReactor NMR probe offers a general method for studying flow electrochemistry, and we envision applications in a wide range of environmentally relevant energy systems, for example, Li metal batteries, electrochemical ammonia synthesis, carbon dioxide capture and reduction, redox flow batteries, fuel cells, water desalination, lignin oxidation etc.

10.
J Magn Reson ; 351: 107448, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37099853

RESUMO

Redox flow batteries (RFBs) provide a promising battery technology for grid-scale energy storage. High-field operando NMR analyses of RFBs have yielded useful insight into their working mechanisms and helped improve battery performance. Nevertheless, the high cost and large footprint of a high-field NMR system limit its implementation by a wider electrochemistry community. Here, we demonstrate an operando NMR study of an anthraquinone/ferrocyanide-based RFB on a low-cost and compact 43 MHz benchtop system. The chemical shifts induced by bulk magnetic susceptibility effects differ remarkably from those obtained in high-field NMR experiments, due to the different orientations of the sample relative to the external magnetic field. We apply Evans method to estimate the concentrations of paramagnetic anthraquinone radical and ferricyanide anions. The degradation of 2,6-dihydroxy-anthraquinone (DHAQ) to 2,6-dihydroxy-anthrone and 2,6-dihydroxy-anthranol has been quantified. We further identified the impurities commonly present in the DHAQ solution to be acetone, methanol and formamide. The crossover of DHAQ and impurity molecules through the sseparation Nafion® membrane was captured and quantified, and a negative correlation between the molecular size and crossover rate was established. We show that a benchtop NMR system has sufficient spectral and temporal resolution and sensitivity for the operando study of RFBs, and anticipate a broad application of operando benchtop NMR methods for studying flow electrochemistry targeted for different applications.

11.
Nat Commun ; 14(1): 5207, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626038

RESUMO

While aqueous organic redox flow batteries (RFBs) represent potential solutions to large-scale grid storage, their electrolytes suffer from short lifetimes due to rapid degradation. We show how an understanding of these degradation processes can be used to dramatically improve performance, as illustrated here via a detailed study of the redox-active biomolecule, flavin mononucleotide (FMN), a molecule readily derived from vitamin B2. Via in-situ nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) we identify FMN hydrolysis products and show that these give rise to the additional plateau seen during charging of an FMN-cyanoferrate battery. The redox reactions of the hydrolysis product are not reversible, but we demonstrate that capacity is still retained even after substantial hydrolysis, albeit with reduced voltaic efficiency, FMN acting as a redox mediator. Critically, we demonstrate that degradation is mitigated and battery efficiency is substantially improved by lowering the pH to 11. Furthermore, the addition of cheap electrolyte salts to tune the pH results in a dramatic increase in solubility (above 1 M), this systematic improvement of the flavin-based system bringing RFBs one step closer to commercial viability.

12.
Chem Commun (Camb) ; 58(9): 1342-1345, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-34986212

RESUMO

We report two methods that use either NMR spectroscopy or direct magnetic susceptibility measurements for in situ (strictly online) determination of the state of charge of redox flow batteries. These methods are demonstrated on the inorganic, redox-active potassium ferro/ferri cyanide catholyte cycled against 2,6-dihydroxyanthraquinone as the anolyte in a full cell, and should be applicable to a wide range of redox couples, provided that the magnetization of the electrolyte solution depends on its oxidation state.

13.
Nat Chem ; 14(10): 1103-1109, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35710986

RESUMO

Aqueous organic redox flow batteries offer a safe and potentially inexpensive solution to the problem of storing massive amounts of electricity produced from intermittent renewables. However, molecular decomposition represents a major barrier to commercialization-and although structural modifications can improve stability, it comes at the expense of synthetic cost and molecular weight. Now, utilizing 2,6-dihydroxy-anthraquinone (DHAQ) without further structural modification, we demonstrate that the regeneration of the original molecule after decomposition represents a viable route to achieve low-cost, long-lifetime aqueous organic redox flow batteries. We used in situ (online) NMR and electron paramagnetic resonance, and complementary electrochemical analyses to show that the decomposition compound 2,6-dihydroxy-anthrone (DHA) and its tautomer, 2,6-dihydroxy-anthranol (DHAL) can be recomposed to DHAQ electrochemically through two steps: oxidation of DHA(L)2- to the dimer (DHA)24- by one-electron transfer followed by oxidation of (DHA)24- to DHAQ2- by three-electron transfer per DHAQ molecule. This electrochemical regeneration process also rejuvenates the positive electrolyte-rebalancing the states of charge of both electrolytes without introducing extra ions.


Assuntos
Antralina , Mitoxantrona , Eletrólitos/química , Íons , Oxirredução
14.
J Phys Chem C Nanomater Interfaces ; 123(12): 7299-7307, 2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-31186824

RESUMO

Mesoporous silica encapsulated Pt (Pt@mSiO2) and PtSn (PtSn@mSiO2) nanoparticles (NPs) are representatives of a novel class of heterogeneous catalysts with uniform particle size, enhanced catalytic properties, and superior thermal stability. In the ship-in-a-bottle synthesis, PtSn@mSiO2 intermetallic NPs are derived from Pt@mSiO2 seeds where the mSiO2 shell is formed by polymerization of tetraethyl orthosilicate around a tetradecyltrimethylammonium bromide template, a surfactant used to template MCM-41. Incorporation of Sn into the Pt@mSiO2 seeds is accommodated by chemical etching of the mSiO2 shell. The effect of this etching on the atomic-scale structure of the mSiO2 has not been previously examined, nor has the extent of the structural similarity to MCM-41. Here, the quaternary Q2, Q3 and Q4 sites corresponding to formulas Si(O1/2)2(OH)2, Si(O1/2)3(OH)1 and Si(O1/2)4, in MCM-41 and the mesoporous silica of Pt@mSiO2 and PtSn@mSiO2 NPs were identified and quantified by conventional and dynamic nuclear polarization enhanced Si-29 Magic Angle Spinning Nuclear Magnetic Resonance (DNP MAS NMR). The connectivity of the -Si-O-Si-network was revealed by DNP enhanced two-dimensional 29Si-29Si correlation spectroscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA