Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(20): e2306776121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38709933

RESUMO

A high-fat diet (HFD) is a high-risk factor for the malignant progression of cancers through the disruption of the intestinal microbiota. However, the role of the HFD-related gut microbiota in cancer development remains unclear. This study found that obesity and obesity-related gut microbiota were associated with poor prognosis and advanced clinicopathological status in female patients with breast cancer. To investigate the impact of HFD-associated gut microbiota on cancer progression, we established various models, including HFD feeding, fecal microbiota transplantation, antibiotic feeding, and bacterial gavage, in tumor-bearing mice. HFD-related microbiota promotes cancer progression by generating polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs). Mechanistically, the HFD microbiota released abundant leucine, which activated the mTORC1 signaling pathway in myeloid progenitors for PMN-MDSC differentiation. Clinically, the elevated leucine level in the peripheral blood induced by the HFD microbiota was correlated with abundant tumoral PMN-MDSC infiltration and poor clinical outcomes in female patients with breast cancer. These findings revealed that the "gut-bone marrow-tumor" axis is involved in HFD-mediated cancer progression and opens a broad avenue for anticancer therapeutic strategies by targeting the aberrant metabolism of the gut microbiota.


Assuntos
Neoplasias da Mama , Diferenciação Celular , Dieta Hiperlipídica , Progressão da Doença , Microbioma Gastrointestinal , Leucina , Células Supressoras Mieloides , Animais , Dieta Hiperlipídica/efeitos adversos , Leucina/metabolismo , Feminino , Humanos , Camundongos , Células Supressoras Mieloides/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/microbiologia , Neoplasias da Mama/metabolismo , Obesidade/microbiologia , Obesidade/metabolismo , Obesidade/patologia , Linhagem Celular Tumoral
2.
Stem Cells ; 42(5): 445-459, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38587452

RESUMO

BACKGROUND: Our previous analyses of cardiomyocyte single-nucleus RNA sequencing (snRNAseq) data from the hearts of fetal pigs and pigs that underwent apical resection surgery on postnatal day (P) 1 (ARP1), myocardial infarction (MI) surgery on P28 (MIP28), both ARP1 and MIP28 (ARP1MIP28), or controls (no surgical procedure or CTL) identified 10 cardiomyocyte subpopulations (clusters), one of which appeared to be primed to proliferate in response to MI. However, the clusters composed of primarily proliferating cardiomyocytes still contained noncycling cells, and we were unable to distinguish between cardiomyocytes in different phases of the cell cycle. Here, we improved the precision of our assessments by conducting similar analyses with snRNAseq data for only the 1646 genes included under the Gene Ontology term "cell cycle." METHODS: Two cardiac snRNAseq datasets, one from mice (GEO dataset number GSE130699) and one from pigs (GEO dataset number GSE185289), were evaluated via our cell-cycle-specific analytical pipeline. Cycling cells were identified via the co-expression of 5 proliferation markers (AURKB, MKI67, INCENP, CDCA8, and BIRC5). RESULTS: The cell-cycle-specific autoencoder (CSA) algorithm identified 7 cardiomyocyte clusters in mouse hearts (mCM1 and mCM3-mCM8), including one prominent cluster of cycling cardiomyocytes in animals that underwent MI or Sham surgery on P1. Five cardiomyocyte clusters (pCM1, pCM3-pCM6) were identified in pig hearts, 2 of which (pCM1 and pCM4) displayed evidence of cell cycle activity; pCM4 was found primarily in hearts from fetal pigs, while pCM1 comprised a small proportion of cardiomyocytes in both fetal hearts and hearts from ARP1MIP28 pigs during the 2 weeks after MI induction, but was nearly undetectable in all other experimental groups and at all other time points. Furthermore, pseudotime trajectory analysis of snRNAseq data from fetal pig cardiomyocytes identified a pathway that began at pCM3, passed through pCM2, and ended at pCM1, whereas pCM3 was enriched for the expression of a cell cycle activator that regulates the G1/S phase transition (cyclin D2), pCM2 was enriched for an S-phase regulator (CCNE2), and pCM1 was enriched for the expression of a gene that regulates the G2M phase transition and mitosis (cyclin B2). We also identified 4 transcription factors (E2F8, FOXM1, GLI3, and RAD51) that were more abundantly expressed in cardiomyocytes from regenerative mouse hearts than from nonregenerative mouse hearts, from the hearts of fetal pigs than from CTL pig hearts, and from ARP1MIP28 pig hearts than from MIP28 pig hearts during the 2 weeks after MI induction. CONCLUSIONS: The CSA algorithm improved the precision of our assessments of cell cycle activity in cardiomyocyte subpopulations and enabled us to identify a trajectory across 3 clusters that appeared to track the onset and progression of cell cycle activity in cardiomyocytes from fetal pigs.


Assuntos
Ciclo Celular , Miócitos Cardíacos , Animais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Ciclo Celular/genética , Suínos , Camundongos , Análise por Conglomerados , Proliferação de Células
3.
Circulation ; 147(15): 1162-1179, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36883479

RESUMO

BACKGROUND: Myocardial insulin resistance is a hallmark of diabetic cardiac injury. However, the underlying molecular mechanisms remain unclear. Recent studies demonstrate that the diabetic heart is resistant to other cardioprotective interventions, including adiponectin and preconditioning. The "universal" resistance to multiple therapeutic interventions suggests impairment of the requisite molecule(s) involved in broad prosurvival signaling cascades. Cav (Caveolin) is a scaffolding protein coordinating transmembrane signaling transduction. However, the role of Cav3 in diabetic impairment of cardiac protective signaling and diabetic ischemic heart failure is unknown. METHODS: Wild-type and gene-manipulated mice were fed a normal diet or high-fat diet for 2 to 12 weeks and subjected to myocardial ischemia and reperfusion. Insulin cardioprotection was determined. RESULTS: Compared with the normal diet group, the cardioprotective effect of insulin was significantly blunted as early as 4 weeks of high-fat diet feeding (prediabetes), a time point where expression levels of insulin-signaling molecules remained unchanged. However, Cav3/insulin receptor-ß complex formation was significantly reduced. Among multiple posttranslational modifications altering protein/protein interaction, Cav3 (not insulin receptor-ß) tyrosine nitration is prominent in the prediabetic heart. Treatment of cardiomyocytes with 5-amino-3-(4-morpholinyl)-1,2,3-oxadiazolium chloride reduced the signalsome complex and blocked insulin transmembrane signaling. Mass spectrometry identified Tyr73 as the Cav3 nitration site. Phenylalanine substitution of Tyr73 (Cav3Y73F) abolished 5-amino-3-(4-morpholinyl)-1,2,3-oxadiazolium chloride-induced Cav3 nitration, restored Cav3/insulin receptor-ß complex, and rescued insulin transmembrane signaling. It is most important that adeno-associated virus 9-mediated cardiomyocyte-specific Cav3Y73F reexpression blocked high-fat diet-induced Cav3 nitration, preserved Cav3 signalsome integrity, restored transmembrane signaling, and rescued insulin-protective action against ischemic heart failure. Last, diabetic nitrative modification of Cav3 at Tyr73 also reduced Cav3/AdipoR1 complex formation and blocked adiponectin cardioprotective signaling. CONCLUSIONS: Nitration of Cav3 at Tyr73 and resultant signal complex dissociation results in cardiac insulin/adiponectin resistance in the prediabetic heart, contributing to ischemic heart failure progression. Early interventions preserving Cav3-centered signalsome integrity is an effective novel strategy against diabetic exacerbation of ischemic heart failure.


Assuntos
Insuficiência Cardíaca , Resistência à Insulina , Traumatismo por Reperfusão Miocárdica , Estado Pré-Diabético , Camundongos , Animais , Caveolina 3/genética , Caveolina 3/metabolismo , Adiponectina/metabolismo , Adiponectina/farmacologia , Cloretos/metabolismo , Cloretos/farmacologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/metabolismo
4.
BMC Plant Biol ; 24(1): 181, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468197

RESUMO

BACKGROUND: The era of high throughput sequencing offers new paths to identifying species boundaries that are complementary to traditional morphology-based delimitations. De novo species delimitation using traditional or DNA super-barcodes serve as efficient approaches to recognizing putative species (molecular operational taxonomic units, MOTUs). Tea plants (Camellia sect. Thea) form a group of morphologically similar species with significant economic value, providing the raw material for tea, which is the most popular nonalcoholic caffeine-containing beverage in the world. Taxonomic challenges have arisen from vague species boundaries in this group. RESULTS: Based on the most comprehensive sampling of C. sect. Thea by far (165 individuals of 39 morphospecies), we applied three de novo species delimitation methods (ASAP, PTP, and mPTP) using plastome data to provide an independent evaluation of morphology-based species boundaries in tea plants. Comparing MOTU partitions with morphospecies, we particularly tested the congruence of MOTUs resulting from different methods. We recognized 28 consensus MOTUs within C. sect. Thea, while tentatively suggesting that 11 morphospecies be discarded. Ten of the 28 consensus MOTUs were uncovered as morphospecies complexes in need of further study integrating other evidence. Our results also showed a strong imbalance among the analyzed MOTUs in terms of the number of molecular diagnostic characters. CONCLUSION: This study serves as a solid step forward for recognizing the underlying species boundaries of tea plants, providing a needed evidence-based framework for the utilization and conservation of this economically important plant group.


Assuntos
Camellia sinensis , Camellia , Humanos , Código de Barras de DNA Taxonômico/métodos , Camellia sinensis/genética , Chá/genética , DNA , Filogenia
5.
Circ Res ; 131(2): e34-e50, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35611695

RESUMO

BACKGROUND: Despite significantly reduced acute myocardial infarction (MI) mortality in recent years, ischemic heart failure continues to escalate. Therapeutic interventions effectively reversing pathological remodeling are an urgent unmet medical need. We recently demonstrated that AdipoR1 (APN [adiponectin] receptor 1) phosphorylation by GRK2 (G-protein-coupled receptor kinase 2) contributes to maladaptive remodeling in the ischemic heart. The current study clarified the underlying mechanisms leading to AdipoR1 phosphorylative desensitization and investigated whether blocking AdipoR1 phosphorylation may restore its protective signaling, reversing post-MI remodeling. METHODS: Specific sites and underlying molecular mechanisms responsible for AdipoR1 phosphorylative desensitization were investigated in vitro (neonatal and adult cardiomyocytes). The effects of AdipoR1 phosphorylation inhibition upon APN post-MI remodeling and heart failure progression were investigated in vivo. RESULTS: Among 4 previously identified sites sensitive to GRK2 phosphorylation, alanine substitution of Ser205 (AdipoR1S205A), but not other 3 sites, rescued GRK2-suppressed AdipoR1 functions, restoring APN-induced cell salvage kinase activation and reducing oxidative cell death. The molecular investigation followed by functional determination demonstrated that AdipoR1 phosphorylation promoted clathrin-dependent (not caveolae) endocytosis and lysosomal-mediated (not proteasome) degradation, reducing AdipoR1 protein level and suppressing AdipoR1-mediated cytoprotective action. GRK2-induced AdipoR1 endocytosis and degradation were blocked by AdipoR1S205A overexpression. Moreover, AdipoR1S205E (pseudophosphorylation) phenocopied GRK2 effects, promoted AdipoR1 endocytosis and degradation, and inhibited AdipoR1 biological function. Most importantly, AdipoR1 function was preserved during heart failure development in AdipoR1-KO (AdipoR1 knockout) mice reexpressing hAdipoR1S205A. APN administration in the failing heart reversed post-MI remodeling and improved cardiac function. However, reexpressing hAdipoR1WT in AdipoR1-KO mice failed to restore APN cardioprotection. CONCLUSIONS: Ser205 is responsible for AdipoR1 phosphorylative desensitization in the failing heart. Blockade of AdipoR1 phosphorylation followed by pharmacological APN administration is a novel therapy effective in reversing post-MI remodeling and mitigating heart failure progression.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Adiponectina/metabolismo , Animais , Insuficiência Cardíaca/metabolismo , Humanos , Isquemia/metabolismo , Camundongos , Camundongos Knockout , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Fosforilação , Receptores de Adiponectina/genética , Receptores de Adiponectina/metabolismo
6.
Circ Res ; 130(1): 48-66, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34763521

RESUMO

BACKGROUND: Patients with acute myocardial infarction suffer systemic metabolic dysfunction via incompletely understood mechanisms. Adipocytes play critical role in metabolic homeostasis. The impact of acute myocardial infarction upon adipocyte function is unclear. Small extracellular vesicles (sEVs) critically contribute to organ-organ communication. Whether and how small extracellular vesicle mediate post-MI cardiomyocyte/adipocyte communication remain unknown. METHODS: Plasma sEVs were isolated from sham control (Pla-sEVSham) or 3 hours after myocardial ischemia/reperfusion (Pla-sEVMI/R) and incubated with adipocytes for 24 hours. Compared with Pla-sEVSham, Pla-sEVMI/R significantly altered expression of genes known to be important in adipocyte function, including a well-known metabolic regulatory/cardioprotective adipokine, APN (adiponectin). Pla-sEVMI/R activated 2 (PERK-CHOP and ATF6 [transcription factor 6]-EDEM [ER degradation enhancing alpha-mannosidase like protein 1] pathways) of the 3 endoplasmic reticulum (ER) stress pathways in adipocytes. These pathological alterations were also observed in adipocytes treated with sEVs isolated from adult cardiomyocytes subjected to in vivo myocardial ischemia/reperfusion (MI/R) (Myo-sEVMI/R). Bioinformatic/RT-qPCR analysis demonstrates that the members of miR-23-27-24 cluster are significantly increased in Pla-sEVMI/R, Myo-sEVMI/R, and adipose tissue of MI/R animals. Administration of cardiomyocyte-specific miR-23-27-24 sponges abolished adipocyte miR-23-27-24 elevation in MI/R animals, supporting the cardiomyocyte origin of adipocyte miR-23-27-24 cluster. In similar fashion to Myo-sEVMI/R, a miR-27a mimic activated PERK-CHOP and ATF6-EDEM-mediated ER stress. Conversely, a miR-27a inhibitor significantly attenuated Myo-sEVMI/R-induced ER stress and restored APN production. RESULTS: An unbiased approach identified EDEM3 (ER degradation enhancing alpha-mannosidase like protein 3) as a novel downstream target of miR-27a. Adipocyte EDEM3 deficiency phenocopied multiple pathological alterations caused by Myo-sEVMI/R, whereas EDEM3 overexpression attenuated Myo-sEVMI/R-resulted ER stress. Finally, administration of GW4869 or cardiomyocyte-specific miR-23-27-24 cluster sponges attenuated adipocyte ER stress, improved adipocyte endocrine function, and restored plasma APN levels in MI/R animals. CONCLUSIONS: We demonstrate for the first time that MI/R causes significant adipocyte ER stress and endocrine dysfunction by releasing miR-23-27-24 cluster-enriched small extracellular vesicle. Targeting small extracellular vesicle-mediated cardiomyocyte-adipocyte pathological communication may be of therapeutic potential to prevent metabolic dysfunction after MI/R.


Assuntos
Adipócitos/metabolismo , Comunicação Celular , Estresse do Retículo Endoplasmático , Vesículas Extracelulares/metabolismo , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Fator 6 Ativador da Transcrição/metabolismo , Adiponectina/metabolismo , Animais , Masculino , Proteínas de Membrana/metabolismo , Camundongos , MicroRNAs/metabolismo , Fator de Transcrição CHOP/metabolismo , eIF-2 Quinase/metabolismo
7.
Arterioscler Thromb Vasc Biol ; 43(12): e491-e508, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37795615

RESUMO

BACKGROUND: APN (adiponectin) and APPL1 (adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1) are potent vasculoprotective molecules, and their deficiency (eg, hypoadiponectinemia) contributes to diabetic vascular complications. However, the molecular mechanisms that govern their vasculoprotective genes as well as their alteration by diabetes remain unknown. METHODS: Diabetic medium-cultured rat aortic endothelial cells, mouse aortic endothelial cells from high-fat-diet animals, and diabetic human aortic endothelial cells were used for molecular/cellular investigations. The in vivo concept-prove demonstration was conducted using diabetic vascular injury and diabetic hindlimb ischemia models. RESULTS: In vivo animal experiments showed that APN replenishment caused APPL1 nuclear translocation, resulting in an interaction with HDAC (histone deacetylase) 2, which inhibited HDAC2 activity and increased H3Kac27 levels. Based on transcriptionome pathway-specific real-time polymerase chain reaction profiling and bioinformatics analysis, Angpt1 (angiopoietin 1), Ocln (occludin), and Cav1 (caveolin 1) were found to be the top 3 vasculoprotective genes suppressed by diabetes and rescued by APN in an APPL1-dependent manner. APN reverses diabetes-induced inhibition of Cav1 interaction with APPL1. APN-induced Cav1 expression was not affected by Angpt1 or Ocln deficiency, whereas APN-induced APPL1 nuclear translocation or upregulation of Angpt1/Ocln expression was abolished in the absence of Cav1 both in vivo and in vitro, suggesting Cav1 is upstream molecule of Angpt1/Ocln in response to APN administration. Chromatin immunoprecipitation-qPCR (quantitative polymerase chain reaction) demonstrated that APN caused significant enrichment of H3K27ac in Angpt1 and Ocln promoter region, an effect blocked by APPL1/Cav1 knockdown or HDAC2 overexpression. The protective effects of APN on the vascular system were attenuated by overexpression of HDAC2 and abolished by knocking out APPL1 or Cav1. The double knockdown of ANGPT1/OCLN blunted APN vascular protection both in vitro and in vivo. Furthermore, in diabetic human endothelial cells, HDAC2 activity is increased, H3 acetylation is decreased, and ANGPT1/OCLN expression is reduced, suggesting that the findings have important translational implications. CONCLUSIONS: Hypoadiponectinemia and dysregulation of APPL1-mediated epigenetic regulation are novel mechanisms leading to diabetes-induced suppression of vasculoprotective gene expression. Diabetes-induced pathological vascular remodeling may be prevented by interventions promoting APPL1 nuclear translocation and inhibiting HDAC2.


Assuntos
Diabetes Mellitus , Angiopatias Diabéticas , Lesões do Sistema Vascular , Animais , Humanos , Camundongos , Ratos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adiponectina/metabolismo , Diabetes Mellitus/genética , Angiopatias Diabéticas/genética , Angiopatias Diabéticas/prevenção & controle , Angiopatias Diabéticas/metabolismo , Células Endoteliais/metabolismo , Epigênese Genética , Lesões do Sistema Vascular/genética
8.
Int J Mol Sci ; 25(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38396942

RESUMO

Environmental stress at high altitudes drives the development of distinct adaptive mechanisms in plants. However, studies exploring the genetic adaptive mechanisms of high-altitude plant species are scarce. In the present study, we explored the high-altitude adaptive mechanisms of plants in the Himalayas through whole-genome resequencing. We studied two widespread members of the Himalayan endemic alpine genus Roscoea (Zingiberaceae): R. alpina (a selfing species) and R. purpurea (an outcrossing species). These species are distributed widely in the Himalayas with distinct non-overlapping altitude distributions; R. alpina is distributed at higher elevations, and R. purpurea occurs at lower elevations. Compared to R. purpurea, R. alpina exhibited higher levels of linkage disequilibrium, Tajima's D, and inbreeding coefficient, as well as lower recombination rates and genetic diversity. Approximately 96.3% of the genes in the reference genome underwent significant genetic divergence (FST ≥ 0.25). We reported 58 completely divergent genes (FST = 1), of which only 17 genes were annotated with specific functions. The functions of these genes were primarily related to adapting to the specific characteristics of high-altitude environments. Our findings provide novel insights into how evolutionary innovations promote the adaptation of mountain alpine species to high altitudes and harsh habitats.


Assuntos
Altitude , Zingiberaceae , Himalaia , Genômica , Evolução Biológica , Adaptação Fisiológica/genética
9.
J Mol Cell Cardiol ; 182: 1-14, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37437402

RESUMO

Diabetes enhances myocardial ischemic/reperfusion (MI/R) injury via an incompletely understood mechanism. Adiponectin (APN) is a cardioprotective adipokine suppressed by diabetes. However, how hypoadiponectinemia exacerbates cardiac injury remains incompletely understood. Dysregulation of miRNAs plays a significant role in disease development. However, whether hypoadiponectinemia alters cardiac miRNA profile, contributing to diabetic heart injury, remains unclear. Methods and Results: Wild-type (WT) and APN knockout (APN-KO) mice were subjected to MI/R. A cardiac microRNA profile was determined. Among 23 miRNAs increased in APN-KO mice following MI/R, miR-449b was most significantly upregulated (3.98-fold over WT mice). Administrating miR-449b mimic increased apoptosis, enlarged infarct size, and impaired cardiac function in WT mice. In contrast, anti-miR-449b decreased apoptosis, reduced infarct size, and improved cardiac function in APN-KO mice. Bioinformatic analysis predicted 73 miR-449b targeting genes, and GO analysis revealed oxidative stress as the top pathway regulated by these genes. Venn analysis followed by luciferase assay identified Nrf-1 and Ucp3 as the two most important miR-449b targets. In vivo administration of anti-miR-449b in APN-KO mice attenuated MI/R-stimulated superoxide overproduction. In vitro experiments demonstrated that high glucose/high lipid and simulated ischemia/reperfusion upregulated miR-449b and inhibited Nrf-1 and Ucp3 expression. These pathological effects were attenuated by anti-miR-449b or Nrf-1 overexpression. In a final attempt to validate our finding in a clinically relevant model, high-fat diet (HFD)-induced diabetic mice were subjected to MI/R and treated with anti-miR-449b or APN. Diabetes significantly increased miR-449b expression and downregulated Nrf-1 and Ucp3 expression. Administration of anti-miR-449b or APN preserved cardiac Nrf-1 expression, reduced cardiac oxidative stress, decreased apoptosis and infarct size, and improved cardiac function. Conclusion: We demonstrated for the first time that hypoadiponectinemia upregulates miR-449b and suppresses Nrf-1/Ucp3 expression, promoting oxidative stress and exacerbating MI/R injury in this population. Dysregulated APN/miR-449b/oxidative stress pathway is a potential therapeutic target against diabetic MI/R injury.


Assuntos
Diabetes Mellitus Experimental , MicroRNAs , Traumatismo por Reperfusão Miocárdica , Animais , Camundongos , Adiponectina/genética , Adiponectina/metabolismo , Adiponectina/farmacologia , Antagomirs , Apoptose/genética , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Infarto/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Regulação para Cima/genética
10.
Mol Phylogenet Evol ; 188: 107912, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37648181

RESUMO

Gene tree discordance is a significant legacy of biological evolution. Multiple factors can result in incongruence among genes, such as introgression, incomplete lineage sorting (ILS), gene duplication or loss. Resolving the background of gene tree discordance is a critical way to uncover the process of species diversification. Camellia, the largest genus in Theaceae, has controversial taxonomy and systematics due in part to a complex evolutionary history. We used 60 transcriptomes of 55 species, which represented 15 sections of Camellia to investigate its phylogeny and the possible causes of gene tree discordance. We conducted gene tree discordance analysis based on 1,617 orthologous low-copy nuclear genes, primarily using coalescent species trees and polytomy tests to distinguish hard and soft conflict. A selective pressure analysis was also performed to assess the impact of selection on phylogenetic topology reconstruction. Our results detected different levels of gene tree discordance in the backbone of Camellia, and recovered rapid diversification as one of the possible causes of gene tree discordance. Furthermore, we confirmed that none of the currently proposed sections of Camellia was monophyletic. Comparisons among datasets partitioned under different selective pressure regimes showed that integrating all orthologous genes provided the best phylogenetic resolution of the species tree of Camellia. The findings of this study reveal rapid diversification as a major source of gene tree discordance in Camellia and will facilitate future investigation of reticulate relationships at the species level in this important plant genus.


Assuntos
Camellia , Theaceae , Camellia/genética , Filogenia , Evolução Biológica , Duplicação Gênica
11.
Ann Bot ; 129(4): 457-471, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35037017

RESUMO

BACKGROUND AND AIMS: Theaceae, with three tribes, nine genera and more than 200 species, are of great economic and ecological importance. Recent phylogenetic analyses based on plastomic data resolved the relationships among the three tribes and the intergeneric relationships within two of those tribes. However, generic-level relationships within the largest tribe, Theeae, were not fully resolved. The role of putative whole-genome duplication (WGD) events in the family and possible hybridization events among genera within Theeae also remain to be tested further. METHODS: Transcriptomes or low-depth whole-genome sequencing of 57 species of Theaceae, as well as additional plastome sequence data, were generated. Using a dataset of low-copy nuclear genes, we reconstructed phylogenetic relationships using concatenated, species tree and phylogenetic network approaches. We further conducted molecular dating analyses and inferred possible WGD events by examining the distribution of the number of synonymous substitutions per synonymous site (Ks) for paralogues in each species. For plastid protein-coding sequences , phylogenies were reconstructed for comparison with the results obtained from analysis of the nuclear dataset. RESULTS: Based on the 610 low-copy nuclear genes (858 606 bp in length) investigated, Stewartieae was resolved as sister to the other two tribes. Within Theeae, the Apterosperma-Laplacea clade grouped with Pyrenaria, leaving Camellia and Polyspora as sister. The estimated ages within Theaceae were largely consistent with previous studies based mainly on plastome data. Two reticulation events within Camellia and one between the common ancestor of Gordonia and Schima were found. All members of the tea family shared two WGD events, an older At-γ and a recent Ad-ß; both events were also shared with the outgroups (Diapensiaceae, Pentaphylacaceae, Styracaceae and Symplocaceae). CONCLUSIONS: Our analyses using low-copy nuclear genes improved understanding of phylogenetic relationships at the tribal and generic levels previously proposed based on plastome data, but the phylogenetic position of the Apterosperma-Laplacea clade needs more attention. There is no evidence for extensive intergeneric hybridization within Theeae or for a Theaceae-specific WGD event. Land bridges (e.g. the Bering land bridge) during the Late Oligocene may have permitted the intercontinental plant movements that facilitated the putative ancient introgression between the common ancestor of Gordonia and Schima.


Assuntos
Ericales , Theaceae , Duplicação Gênica , Hibridização Genética , Filogenia , Plastídeos/genética , Theaceae/genética
12.
Sensors (Basel) ; 22(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35161732

RESUMO

Corrosion and crack defects often exist at the same time in pipelines. The interaction impact between these defects could potentially affect the growth of the fatigue crack. In this paper, a crack propagation method is proposed for pipelines with interacting corrosion and crack defects. The finite element models are built to obtain the Stress Intensity Factors (SIFs) for fatigue crack. SIF interaction impact ratio is introduced to describe the interaction effect of corrosion on fatigue crack. Two approaches based on extreme gradient boosting (XGBoost) are proposed in this paper to predict the SIF interaction impact ratio at the deepest point of the crack defect for pipelines with interacting corrosion and crack defects. Crack size, corrosion size and the axial distance between these two defects are the factors that have an impact on the growth of the fatigue crack, and so they are considered as the input of XGBoost models. Based on the synthetic samples from finite element modeling, it has been proved that the proposed approaches can effectively predict the SIF interaction impact ratio with relatively high accuracy. The crack propagation models are built based on the proposed XGBoost models, Paris' law and corrosion growth model. Sensitivity analyses regarding corrosion initial depth and axial distance between defects are performed. The proposed method can support pipeline integrity management by linking the crack propagation model with corrosion size, crack size and the axial distance. The problem of how the interaction between corrosion and crack defects impacts crack defect growth is investigated.

13.
Sensors (Basel) ; 22(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36236514

RESUMO

Bolts are important components on transmission lines, and the timely detection and exclusion of their abnormal conditions are imperative to ensure the stable operation of transmission lines. To accurately identify bolt defects, we propose a bolt defect identification method incorporating an attention mechanism and wide residual networks. Firstly, the spatial dimension of the feature map is compressed by the spatial compression network to obtain the global features of the channel dimension and enhance the attention of the network to the vital information in a weighted way. After that, the enhanced feature map is decomposed into two one-dimensional feature vectors by embedding a cooperative attention mechanism to establish long-term dependencies in one spatial direction and preserve precise location information in the other direction. During this process, the prior knowledge of the bolts is utilized to help the network extract critical feature information more accurately, thus improving the accuracy of recognition. The test results show that the bolt recognition accuracy of this method is improved to 94.57% compared with that before embedding the attention mechanism, which verifies the validity of the proposed method.

14.
Sensors (Basel) ; 22(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36560146

RESUMO

The accurate detection of insulators is an important prerequisite for insulator fault diagnosis. To solve the problem of background interference and overlap caused by the axis-aligned bounding boxes in the tilting insulator detection tasks, we construct an improved detection architecture according to the scale and tilt features of the insulators from several perspectives, such as bounding box representation, loss function, and anchor box construction. A new orientation detection method for tilting insulators based on angle regression and priori constraints is put forward in this paper. Ablation tests and comparative validation tests were conducted on a self-built aerial insulator image dataset. The results show that the detection accuracy of our model was increased by 7.98% compared with that of the baseline, and the overall detection accuracy reached 82.33%. Moreover, the detection effect of our method was better than that of the YOLOv5 detection model and other orientation detection models. Our model provides a new idea for the accurate orientation detection of insulators.

15.
Biochem Biophys Res Commun ; 573: 62-68, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34388456

RESUMO

Ring-finger protein 126 (RNF126), an E3 ubiquitin ligase, plays crucial roles in various biological processes, including cell proliferation, DNA damage repair, and intracellular vesicle trafficking. Whether RNF126 is modulated by posttranslational modifications is poorly understood. Here, we show that PARP1 interacts with and poly(ADP)ribosylates RNF126, which then recruits the PAR-binding E3 ubiquitin ligase CHFR to promote ubiquitination and degradation of RNF126. Moreover, RNF126 is required for the activation of ATR-Chk1 signaling induced by either irradiation (IR) or a PARP inhibitor (PARPi), and depletion of RNF126 increases the sensitivity of triple-negative breast cancer (TNBC) cells to PARPi treatment. Our findings suggest that PARPi-mediated upregulation of RNF126 protein stability contributes to TNBC cell resistance to PARPi. Therefore, targeting the E3 ubiquitin ligase RNF126 may be a novel treatment for overcoming the resistance of TNBC cells to PARPi in clinical trials.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Neoplasias/metabolismo , Ftalazinas/farmacologia , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Ubiquitina-Proteína Ligases/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Humanos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Células Tumorais Cultivadas , Regulação para Cima
16.
Ann Surg Oncol ; 28(9): 5059-5070, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33534046

RESUMO

BACKGROUND: Whether primary tumor surgery is better than no surgery in patients with de novo stage IV breast cancer remains controversial. METHODS: This study combined prospective clinical trials and a multicenter cohort to evaluate the impact of locoregional surgery in de novo stage IV breast cancer. The GRADE approach was used to assess the quality of evidence in meta-analysis, and propensity score matching analysis was used in the cohort study. This study was registered with PROSPERO CRD42016043766 and ClinicalTrials.gov NCT04456855. RESULTS: A total of 1110 patients from six trials and 353 patients from the cohort study were included. The meta-analysis showed that compared with no surgery, locoregional surgery did not prolong overall survival (hazard ratio [HR] = 0.90, P = 0.40; moderate-quality) but had a significantly longer locoregional progression-free survival (HR = 0.23, P < 0.001; moderate-quality). The subgroup analysis of solitary bone-only metastasis (HR = 0.47, P = 0.04; high-quality) resulted in prolonged overall survival. In the cohort study, locoregional surgery showed a survival benefit (HR = 0.63, P = 0.041) before matching, but not (HR = 0.84, P = 0.579) after matching. Patients with bone-only metastasis showed a survival advantage in surgery compared with no surgery before matching (HR = 0.36, P = 0.034) as well as after matching (HR = 0.18, P = 0.017). CONCLUSIONS: This study indicated that locoregional surgery had a significantly longer locoregional progression-free survival than no surgery in de novo stage IV breast cancer, and patients with bone-only metastasis tended to show an overall survival benefit from surgery.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/patologia , Neoplasias da Mama/cirurgia , Estudos de Coortes , Feminino , Humanos , Estudos Multicêntricos como Assunto , Estadiamento de Neoplasias , Modelos de Riscos Proporcionais , Estudos Prospectivos
17.
Mol Phylogenet Evol ; 164: 107292, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34391915

RESUMO

The Himalayas with dramatic elevation gradient is one of the global biodiversity hotspots. Although origin of biodiversity of the Himalayas is of great concern, the speciation process within the Himalayas is poorly known. Roscoea within the Himalayas serve as a good model system to test the speciation process along an elevation gradient. 32,375 unlinked SNPs were used to reconstruct phylogenetic relationships and introgression analyses in D-statistics and Fastsimicoal2. Species distribution modeling (SDM) was used to simulate habitat shift of Roscoea species during climate changes. Phylogeny suggested that the speciation order, except R. capitata, was from highland to lowland. D-statistics analyses suggested significant bidirectional ancient introgression between elevation-neighboring clades but no introgression between R. capitata and othern clades and no introgression among extant species. Fastsimicoal2 suggested interspecific introgressions were asymmetric. SDM predicted that habitats of Roscoea shifted to low elevation during cooling age. These results suggested that the sudden uplift of the Himalayas likely promoted speciation by vicariance, and climate cooling drove species divergence towards lower elevation. This study provides explanations for the origin of biodiversity within the Himalayas, and an insight to understand speciation along elevation in the mountainous regions.


Assuntos
Biodiversidade , Hidrozoários , Animais , Mudança Climática , Ecossistema , Especiação Genética , Filogenia
18.
Orthopade ; 49(3): 260-266, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31270558

RESUMO

OBJECTIVE: The aim is to present a modified arthroscopic remplissage for shoulder Hill-Sachs lesions with high-strength sutures instead of suture anchors, to achieve better tendon-bone healing and avoid failure of remplissage due to anchor detachment. MATERIAL AND METHODS: A total of seven patients with recurrent anterior shoulder dislocation combined with a Hill-Sachs lesion were included in this study. Firstly, anteroinferior glenoid labrum complex damage was treated then 2-3 bone tunnels were punched with a sighting device from the bony defect of the humeral head to the inside of lesser tubercles of the humerus. The bony defect was filled by stitching the infraspinatus tendon through the bony tunnels with high-strength sutures. After the operation, the filling and healing of the infraspinatus tendon in the Hill-Sachs lesion were assessed using magnetic resonance imaging (MRI). RESULTS: Patients were followed up for 12 months. The results of MRI showed that all of the filled tendons healed well. Postoperative external rotation of the shoulder joint increased on average from 67° to 87°. Compared with the preoperative level, the Oxford Shoulder Instability Score (OSIS) was 18.50 ± 1.04 points higher and the Rowe score was increased by 66.755 ± 0.914 points. CONCLUSION: Arthroscopic remplissage of a shoulder Hill-Sachs lesion with high-strength sutures carries the benefits of secure fixing and good tendon-bone healing without the risk of anchor detachment.


Assuntos
Lesões de Bankart , Artroscopia , Humanos , Instabilidade Articular , Luxação do Ombro , Articulação do Ombro , Suturas
19.
New Phytol ; 224(3): 1133-1141, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31032938

RESUMO

Water-mediated fertilization is ubiquitous in early land plants. This ancestral mode of fertilization has, however, generally been considered to have been lost during the evolutionary history of terrestrial flowering plants. We investigated reproductive mechanisms in the subtropical ginger Cautleya gracilis (Zingiberaceae), which has two pollen conditions - granular and filiform masses - depending on external conditions. We tested whether rain transformed granular pollen into filiform masses and whether this then promoted pollen-tube growth and fertilization of ovules. Using experimental manipulations in the field we investigated the contribution of water-mediated fertilization to seed production. Rain caused granular pollen to form filiform masses of germinating pollen tubes, which transported sperm to ovules, resulting in fertilization and seed set. Flowers exposed to rain produced significantly more seeds than those protected from the rain, which retained granular pollen. Insect pollination made only a limited contribution to seed set because rainy conditions limited pollinator service. Our results reveal a previously undescribed fertilization mechanism in flowering plants involving water-mediated fertilization stimulated by rain. Water-mediated fertilization is likely to be adaptive in the subtropical monsoon environments in which C. gracilis occurs by ensuring reproductive assurance when persistent rain prevents insect-mediated pollination.


Assuntos
Fertilização/fisiologia , Água , Zingiberaceae/fisiologia , Animais , Abelhas/fisiologia , Flores/fisiologia , Germinação/fisiologia , Modelos Lineares , Polinização , Chuva , Sementes/fisiologia , Autofertilização
20.
BMC Cancer ; 19(1): 844, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31455281

RESUMO

BACKGROUND: The prognosis of ductal carcinoma in situ (DCIS) is reportedly well. Extremely rare patients with DCIS develop distant breast cancer metastasis without locoregional or contralateral recurrence. This is the first report of multiple bones and sigmoid colon metastases from DCIS after mastectomy. CASE PRESENTATION: A 43-year-old woman was diagnosed with DCIS, and she received mastectomy, followed by endocrine therapy and target therapy. During the following-up, convulsions and pain on the legs were complaint. Therefore, Computed Tomography (CT) on bones and positron emission tomography (PET) for whole body were examined in order. Multiple bones and sigmoid colon were under the suspect of metastases, which were then verified by biopsy in the left ilium and colonoscopy respectively. CONCLUSIONS: This case reveals the heterogeneous behavior and the potential poor outcome of DCIS, regular examination and surveillance are necessary even though the distant metastasis rate in DCIS is low.


Assuntos
Neoplasias Ósseas/diagnóstico , Neoplasias Ósseas/secundário , Neoplasias da Mama/patologia , Carcinoma Intraductal não Infiltrante/patologia , Neoplasias do Colo Sigmoide/diagnóstico , Neoplasias do Colo Sigmoide/secundário , Adulto , Biópsia , Neoplasias Ósseas/terapia , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/cirurgia , Carcinoma Intraductal não Infiltrante/diagnóstico , Carcinoma Intraductal não Infiltrante/cirurgia , Terapia Combinada , Feminino , Humanos , Mastectomia/efeitos adversos , Mastectomia/métodos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Período Pós-Operatório , Neoplasias do Colo Sigmoide/terapia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA