Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(27): e2115939119, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35763578

RESUMO

Positive magnetoresistance (PMR) and negative magnetoresistance (NMR) describe two opposite responses of resistance induced by a magnetic field. Materials with giant PMR are usually distinct from those with giant NMR due to different physical natures. Here, we report the unusual photomagnetoresistance in the van der Waals heterojunctions of WSe2/quasi-two-dimensional electron gas, showing the coexistence of giant PMR and giant NMR. The PMR and NMR reach 1,007.5% at -9 T and -93.5% at 2.2 T in a single device, respectively. The magnetoresistance spans over two orders of magnitude on inversion of field direction, implying a giant unidirectional magnetoresistance (UMR). By adjusting the thickness of the WSe2 layer, we achieve the maxima of PMR and NMR, which are 4,900,000% and -99.8%, respectively. The unique magnetooptical transport shows the unity of giant UMR, PMR, and NMR, referred to as giant bipolar unidirectional photomagnetoresistance. These features originate from strong out-of-plane spin splitting, magnetic field-enhanced recombination of photocarriers, and the Zeeman effect through our experimental and theoretical investigations. This work offers directions for high-performance light-tunable spintronic devices.NMR).

2.
Angew Chem Int Ed Engl ; 63(27): e202402028, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38656658

RESUMO

A planar conjugated ligand functionalized with bithiophene and its Ru(II), Os(II), and Ir(III) complexes have been constructed as single-molecule platform for synergistic photodynamic, photothermal, and chemotherapy. The complexes have significant two-photon absorption at 808 nm and remarkable singlet oxygen and superoxide anion production in aqueous solution and cells when exposed to 808 nm infrared irradiation. The most potent Ru(II) complex Ru7 enters tumor cells via the rare macropinocytosis, locates in both nuclei and mitochondria, and regulates DNA-related chemotherapeutic mechanisms intranuclearly including DNA topoisomerase and RNA polymerase inhibition and their synergistic effects with photoactivated apoptosis, ferroptosis and DNA cleavage. Ru7 exhibits high efficacy in vivo for malignant melanoma and cisplatin-resistant non-small cell lung cancer tumors, with a 100 % survival rate of mice, low toxicity to normal cells and low residual rate. Such an infrared two-photon activatable metal complex may contribute to a new generation of single-molecule-based integrated diagnosis and treatment platform to address drug resistance in clinical practice and phototherapy for large, deeply located solid tumors.


Assuntos
Antineoplásicos , Complexos de Coordenação , Raios Infravermelhos , Fótons , Tiofenos , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Animais , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Tiofenos/química , Tiofenos/farmacologia , Camundongos , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/síntese química , Rutênio/química , Rutênio/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Terapia Fototérmica , Irídio/química , Estrutura Molecular , Apoptose/efeitos dos fármacos
3.
Phys Rev Lett ; 130(19): 196801, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37243636

RESUMO

The switchable electric polarization is usually achieved in ferroelectric materials with noncentrosymmetric structures, which opens exciting opportunities for information storage and neuromorphic computing. In another polar system of p-n junction, there exists the electric polarization at the interface due to the Fermi level misalignment. However, the resultant built-in electric field is unavailable to manipulate, thus attracting less attention for memory devices. Here, we report the interfacial polarization hysteresis (IPH) in the vertical sidewall van der Waals heterojunctions of black phosphorus and quasi-two-dimensional electron gas on SrTiO_{3}. A nonvolatile switching of electric polarization can be achieved by reconstructing the space charge region (SCR) with long-lifetime nonequilibrium carriers. The resulting electric-field controllable IPH is experimentally verified by electric hysteresis, polarization oscillation, and pyroelectric effect. Further studies confirm the transition temperature of 340 K, beyond which the IPH vanishes. The second transition is revealed with the temperature dropping below 230 K, corresponding to the sharp improvement of IPH and the freezing of SCR reconstruction. This work offers new possibilities for exploring the memory phenomena in nonferroelectric p-n heterojunctions.

4.
Zhongguo Zhong Yao Za Zhi ; 48(17): 4545-4551, 2023 Sep.
Artigo em Zh | MEDLINE | ID: mdl-37802795

RESUMO

It has become a common consensus that resource conservation and intensive recycling for improving resource utilization efficiency is an important way to achieve carbon peak and carbon neutrality(dual carbon). Traditonal Chinese medicine(TCM)resources as national strategic resources are the material basis and fundamental guarantee for the development of TCM industry and health services. However, the rapid growth of China's TCM industry and the continuous expansion and extension of the industrial chain have exposed the low efficiency of TCM resources. Resource waste and environmental pollution caused by the treatment and discharge of TCM waste have emerged as major problems faced by the development of the industry, which has aroused wide concern. Considering the dual carbon goals, this paper expounds the role and potential of TCM resource recycling and circular economy industry development. Taking the typical model of TCM resource recycling as the case of circular economy industry in reducing carbon source and increasing carbon sink, this paper puts forward the suggestions for the TCM circular economy industry serving the double carbon goals. The suggestions mainly include strengthening the policy and strategic leading role of the double carbon goals, building an objective evaluation system of low-carbon emission reduction in the whole industrial chain of TCM resources, building an industrial demonstration park for the recycling of TCM resources, and promoting the establishment of a circular economy system of the whole industrial chain of TCM resources. These measures are expected to guide the green transformation of TCM resource industry from linear economic model to circular economy model, provide support for improving the utilization efficiency and sustainable development of TCM resources, and facilitate the low-carbon and efficient development of TCM resource industry and the achievement of the double carbon goals.


Assuntos
Reutilização de Equipamento , Medicina Tradicional Chinesa , Objetivos , Poluição Ambiental , Desenvolvimento Econômico , Carbono , China
5.
Future Oncol ; 18(40): 4493-4507, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36880360

RESUMO

Aim: To investigate the effect of surgical starting time and season on the prognosis of octogenarians with colorectal cancer. Patients & methods: A total of 291 patients aged 80 years or above who received elective colectomy for colorectal cancer between January 2007 and December 2018 in the National Cancer Center in China were included. Results: No significant time- or season-dependent difference in overall survival for all clinical stages was found in the study. Comparing perioperative outcomes, the morning group had a longer operative time than the afternoon group (p = 0.03), but no significant difference was found based on the season of colectomy. Conclusion: These findings provide insights into clinical outcomes for colorectal cancer patients aged more than 80 years.


Recurrent studies have demonstrated that in heart surgery, different surgical starting times can affect the patients' outcomes, mainly due to the 24-h cyclic variations in heart function. This variability also exists in bowel function. The surgical outcomes of elderly patients aged over 80 years are more susceptible to external factors due to their frailty, so we wanted to compare the differences in prognosis of elderly patients who underwent surgery at different times and seasons.


Assuntos
Neoplasias Colorretais , Idoso de 80 Anos ou mais , Humanos , Estudos Retrospectivos , Neoplasias Colorretais/cirurgia , Octogenários , Duração da Cirurgia , Estações do Ano , Prognóstico , Complicações Pós-Operatórias , Resultado do Tratamento
6.
Sensors (Basel) ; 22(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35161761

RESUMO

Gas sensing performance characterization systems are essential for the research and development of gas sensing materials and devices. Although existing systems are almost completely automatically operated, the accuracies of gas concentration control and of pressure control and the ability to simultaneously detect different sensor signals still require improvement. In this study, a high-precision gas sensing material characterization system is developed based on vacuum technology, with the objective of enabling the precise and simultaneous measurement of electrical responses. Because of the implementation of vacuum technology, the gas concentration control accuracy is improved more than 1600 times, whereas the pressure of the test ambient condition can be precisely adjusted between vacuum and 1.2 bar. The vacuum-assisted gas-exchanging mechanism also enables the sensor response time to be determined more accurately. The system is capable of performing sensitivity, selectivity, and stability tests and can control the ambient relative humidity in a precise manner. More importantly, the levels of performance of three different optical signal measurement set-ups were investigated and compared in terms of detection range, linearity, noise, and response time, based on which of their scopes of application were proposed. Finally, single-period and cyclical tests were performed to examine the ability of the system to detect optical and electrical responses simultaneously, both at a single wavelength and in a spectral region.

7.
Small ; 17(19): e2100102, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33788423

RESUMO

Organic resistive memory (ORM) offers great promise for next-generation high-density multilevel-cell (MLC) data storage. However, the fine tuning of crystalline order among its active layer still remains challenging, which largely restricts ORM behavior. Here, an exceptional solid-state transition from disordered orientations to highly-uniform orientation within the ORM layer is facilely triggered via molecular strategic tailoring. Two diketopyrrolopyrrole-based small molecular analogues (NI1 TDPP and NI2 TDPP) are demonstrated to display different symmetry. The asymmetric NI1 TDPP shows an irregular solid-state texture, while the centro-symmetric NI2 TDPP conforms to an ordered out-of-plane single-crystalline pattern that aligns with the foremost charge transportation along the substrate normal, and exhibits excellent MLC memory characteristics. Moreover, this highly oriented pattern guarantees the large-area film uniformity, leading to the twofold increase in the yield of as-fabricated ORM devices. This study reveals that the solid-state crystalline nanostructural order of organic materials can be controlled by reasonable molecular design to actuate high-performance organic electronic circuits.

8.
Phys Rev Lett ; 127(21): 217401, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34860083

RESUMO

Van der Waals (vdW) heterojunctions, based on two-dimensional (2D) materials, have great potential for the development of ecofriendly and high-efficiency nanodevices, which shows valuable applications as photovoltaic cells, photodetectors, etc. However, the coexistence of photoelectric conversion and storage in a single device has not been achieved until now. Here, we demonstrate a simple strategy to construct a vdW p-n junction between a WSe_{2} layer and quasi-2D electron gas. After an optical illumination, the device stores the light-generated carriers for up to seven days, and then releases a very large photocurrent of 2.9 mA with bias voltage applied in darkness; this is referred to as chargeable photoconductivity (CPC), which completely differs from any previously observed photoelectric phenomenon. In normal photoconductivity, the recombination of electron-hole pairs occurs at the end of their lifetime; in contrast, infinite-lifetime photocarriers can be generated and stored in CPC devices without recombination. The photoelectric conversion and storage are completely self-excited during the charging process. The ratio between currents in full- and empty-photocarrier states below the critical temperature reaches as high as 10^{9}, with an external quantum efficiency of 93.8% during optical charging. A theoretical model developed to explain the mechanism of this effect is in good agreement with the experimental data. This work paves a path toward the high-efficiency devices for photoelectric conversion and storage.

9.
Sheng Li Xue Bao ; 73(1): 126-136, 2021 Feb 25.
Artigo em Zh | MEDLINE | ID: mdl-33665667

RESUMO

High-intensity interval training (HIIT) has proven to be a time-saving and efficient exercise strategy. Compared with traditional aerobic exercise, it can provide similar or even better health benefits. In recent years, a number of studies have suggested that HIIT could be used as a potential exercise rehabilitation therapy to improve cognitive impairment caused by obesity, diabetes, stroke, dementia and other diseases. HIIT may be superior to regular aerobic exercise. This article reviews the recent research progress on HIIT with a focus on its beneficial effect on brain cognitive function and the underlying mechanisms. HIIT may become an effective exercise for the prevention and/or improvement of brain cognitive disorder.


Assuntos
Treinamento Intervalado de Alta Intensidade , Acidente Vascular Cerebral , Cognição , Exercício Físico , Humanos , Obesidade
10.
J Am Chem Soc ; 142(13): 6360-6364, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32135060

RESUMO

Two monochloropyridine isomers, 2-chloropyridine (2-CP) and 3-chloropyridine (3-CP), are in need of a more effective separation method besides rectification. Herein we offer a facile and energy-saving adsorptive separation strategy using nonporous adaptive crystals of perethylated pillar[5]arene (EtP5), perethylated pillar[6]arene (EtP6), perbromoethylated pillar[5]arene (BrP5), and perbromoethylated pillar[6]arene (BrP6), which possess different cavity sizes and substituents and have never been employed in the separation of single-substituted heterocyclic aromatic compounds. BrP6 crystals show a marked preference for 2-CP in the equimolar mixture of 2-CP and 3-CP, affording it with 96.4% purity. Single crystal diffraction experiments demonstrate that BrP6 has stronger host-guest interactions with 2-CP than 3-CP. The cycling experiments demonstrate that BrP6 crystals can be used at least five times without losing their adsorption selectivity or capacity.

11.
J Am Chem Soc ; 142(15): 6957-6961, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32212726

RESUMO

Removal of trace chlorobutane (CB) isomers is highly desired to produce high grade 1-chlorobutane (1-CB) and 2-chlorobutane (2-CB). Here, we report that nonporous adaptive crystals (NACs) of perethylated pillar[5]arene (EtP5) and pillar[6]arene (EtP6) effectively remove trace CB isomers. EtP5 NACs can remove trace 1-CB (2%) from 2-CB to improve its purity from 98.0% to 99.9%, while EtP6 NACs can remove trace 2-CB from 1-CB to improve its purity from 98.0% to 99.9%. The adsorption of trace CB isomers results in the formation of new CB-loaded crystal structures, whose thermostability is higher than their corresponding isomer-loaded structures. This determines the selectivity of NACs toward the trace CB isomers. Reversible transformations between nonporous guest-free and guest-loaded structures make EtP5 and EtP6 highly recyclable.

12.
Inorg Chem ; 59(22): 16679-16689, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33124821

RESUMO

Hydrothermal and solid-state reaction methods are commonly used to prepare the delafossite CuCrO2 photocatalyst. It has been reported that the photocatalytic performances of CuCrO2 samples prepared by these methods are quite different. In order to explore the possible influence of different preparation processes on the photocatalytic performance and the corresponding improvement strategies, this work compares the microstructure and physicochemical properties of the samples prepared by these two methods on the basis of optimizing the process conditions. A CuCrO2 sample prepared by a hydrothermal method is characterized by high purity, low crystallinity, small grain size, and relatively higher photocatalytic activity. A CuCrO2 sample prepared by a solid-state reaction method is characterized by low purity, high crystallinity, large grain size, and relatively lower photocatalytic activity. In combination with DFT calculations, it is confirmed that the CuCrO2 sample prepared by a solid-state reaction method contains a certain amount of interstitial oxygens. Due to the presence of interstitial oxygens, CuCrO2 has strong light absorption in the visible region, presents semimetallic ferromagnetism, and changes the carrier transport, reaction process, and rate on the electrode surface. These findings will contribute to the further development of efficient CuCrO2-based photocatalysts.

13.
Appl Opt ; 59(27): 8310-8313, 2020 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-32976417

RESUMO

High speed photoelectronic optical phased arrays are demonstrated by vertically arranged GaAs-AlGaAs slab waveguides. The optical phased arrays are composed of 15-channel independently tuned waveguide with end-fire emission. We achieve a very fast beam steering step response of 0.34 µs, beam divergence of 4.7°, and beam steering ranges of around 30°with side lobe level better than 8 dB. The presented optical phased arrays provide a superior approach for high speed beam steering on a nano-photoelectronic integrated chip.

14.
Am J Physiol Cell Physiol ; 317(5): C932-C941, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31411920

RESUMO

Exosome secretion is an important paracrine way of endothelial progenitor cells (EPCs) to modulate resident endothelial cells. The osteocalcin (OCN)-expressing EPCs have been found to be increased in cardiovascular disease patients and are considered to be involved in the process of coronary atherosclerosis. Since OCN has been proven to prevent endothelial dysfunction, this study aimed to evaluate the effect of exosomes derived from OCN-overexpressed EPCs on endothelial cells. Exosomes derived from EPCs (Exos) and OCN-overexpressed EPCs (OCN-Exos) were isolated and incubated with rat aorta endothelial cells (RAOECs) with or without the inhibition of OCN receptor G protein-coupled receptor family C group 6 member A (GPRC6A). The effects of exosomes on the proliferation activity of endothelial cells were evaluated by CCK-8 assay, and the migration of endothelial cells was detected by wound healing assay. A tube formation assay was used to test the influence of exosomes on the angiogenesis performance of endothelial cells. Here, we presented that OCN was packed into Exos and was able to be transferred to the RAOECs via exosome incorporation, which was increased in OCN-Exos groups. Compared with Exos, OCN-Exos had better efficiency in promoting RAOEC proliferation and migration and tube formation. The promoting effects were impeded after the inhibition of GPRC6A expression in RAOECs. These data suggest that exosomes from OCN-overexpressed EPCs have a beneficial regulating effect on endothelial cells, which involved enhanced OCN-GPRC6A signaling.


Assuntos
Proliferação de Células/fisiologia , Células Progenitoras Endoteliais/metabolismo , Exossomos/metabolismo , Neovascularização Fisiológica/fisiologia , Osteocalcina/biossíntese , Animais , Movimento Celular/fisiologia , Expressão Gênica , Osteocalcina/genética , Ratos
15.
J Am Chem Soc ; 141(30): 11847-11851, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31299149

RESUMO

The separation of haloalkene cis-trans isomers is difficult to achieve, yet highly desired in the chemical industry. Here, we report an energy-efficient adsorptive separation of 1,4-dichloro-2-butene (DCB) cis-trans isomers using nonporous adaptive crystals of perethylated pillararenes. Adaptive perethylated pillar[6]arene (EtP6) crystals separate the trans-DCB isomer from its cis isomer with high selectivity while perethylated pillar[5]arene (EtP5) crystals adsorb cis-trans DCB isomers without selectivity. The selectivity of EtP6 derives from the difference in the thermodynamic stabilities of guest-loaded EtP6 crystal structures upon capture of cis-trans DCB isomers, while the structural similarity of guest-loaded EtP5 leads to the loss of selectivity. EtP6 is highly recyclable due to the reversible transformations between guest-free and guest-loaded structures.

16.
Phys Chem Chem Phys ; 21(45): 25302-25310, 2019 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-31701100

RESUMO

The geometries and electronic properties of (SiB)2n (n = 6-27, 30) clusters are systematically investigated based on the gradient corrected Perdew-Burke-Ernzerhof exchange-correlation functional. In particular, the (SiB)36 cage is identified as the most stable nanocluster and (SiB)2n (n = 6-27, 30) nanocages prefer to have sphere-like geometries. By increasing the (SiB)2n (n = 6-27, 30) nanocage size, the calculated energy gaps of (SiB)2n (n = 6-27, 30) nanocages generally decrease and absorption wavelengths of the spectra of (SiB)2n (n = 6-27, 30) nanoclusters are elongated. The varied size of the nanoclusters leads to a quantum confinement effect indirectly. Interestingly, the nanosized (SiB)30-60 cages exhibit a stronger capacity for solar energy absorption or conversion due to both narrow HOMO-LUMO energy gaps and a large DOS near LUMO and HOMO levels. Finally, electronic charges transferred from silicon atoms to their surrounding boron atoms in (SiB)2n (n = 6-27, 30) contribute to the metallic characteristic and B-Si ionic bonds, and eventually enhance the stabilities of the nanocages.

17.
Phys Chem Chem Phys ; 21(47): 26262, 2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31746871

RESUMO

Correction for 'A theoretical study of the geometries, and electronic and surface properties of sphere-like (SiB)2n (n = 6-27, 30) functional nanomaterials' by Run-Ning Zhao et al., Phys. Chem. Chem. Phys., 2019, DOI: 10.1039/c9cp04900b.

18.
Angew Chem Int Ed Engl ; 58(12): 3981-3985, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30701668

RESUMO

The separation of dihalobenzene isomers, such as dichlorobenzene isomers and difluorobenzene isomers, has a high practical value in both synthetic chemistry and industrial production. Herein we provide a simple to operate and energy-efficient adsorptive separation method using nonporous adaptive crystals of perbromoethylated pillar[5]arene (BrP5) and pillar[6]arene (BrP6). BrP6 crystals show a preference towards the ortho isomer of dichlorobenzene in isomer mixtures, but cannot discriminate difluorobenzene isomers. Single-crystal structures reveal that this selectivity is derived from the stability of the new host-guest crystal structure of BrP6 after uptake of the preferred guest and the binding strength of the host-guest interactions. Furthermore, because of the reversible transition between guest-free and guest-loaded structures, BrP6 crystals are recyclable.

19.
J Am Chem Soc ; 140(44): 15070-15079, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30362734

RESUMO

Postsynthetic modification in crystalline solids without disruption of crystallinity is very important for exerting control that is unattainable over chemical transformation in solution. This has been achieved in porous crystalline frameworks via solid-solution reactions to endow them with multiple functions. However, this is rather rare in nonporous molecular crystals, especially via solid-vapor reactions. Herein, we report unique solid-vapor postsynthetic modification of nonporous adaptive crystals (NACs) of a pillar[4]arene[1]quinone (EtP4Q1) containing four inert 1,4-diethoxybenzene units and one active benzoquinone unit. Amine vapors that can be physically adsorbed by EtP4Q1 NACs react with the EtP4Q1 backbone via Michael addition with in situ formation of new crystal structures. First, amines are physically adsorbed into cavities of EtP4Q1 molecules and slowly react due to their juxtapsition with the benzoquinone units. Amines that are too bulky to enter EtP4Q1 NACs do not react. Moreover, the process displays both reactant-size and -shape selectivities because of the rigid cavity of EtP4Q1 and the different binding strengths of various amines with EtP4Q1.

20.
J Am Chem Soc ; 140(9): 3190-3193, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29432675

RESUMO

Here we show a new adsorptive separation approach using nonporous adaptive crystals of a pillar[5]arene. Desolvated perethylated pillar[5]arene crystals (EtP5α) with a nonporous character selectively adsorb 1-pentene (1-Pe) over its positional isomer 2-pentene (2-Pe), leading to a structural change from EtP5α to 1-Pe loaded structure (1-Pe@EtP5). The purity of 1-Pe reaches 98.7% in just one cycle and EtP5α can be reused without losing separation performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA