Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844343

RESUMO

During the second-to-third trimester, the neuronal pathways of the fetal brain experience rapid development, resulting in the complex architecture of the inter-wired network at birth. While diffusion MRI-based tractography has been employed to study the prenatal development of structural connectivity network (SCN) in preterm neonatal and post-mortem fetal brains, the in-utero development of SCN in the normal fetal brain remains largely unknown. In this study, we utilized in-utero dMRI data from human fetuses of both sexes between 26 to 38 gestational weeks to investigate the developmental trajectories of the fetal brain SCN, focusing on intra-hemispheric connections. Our analysis revealed significant increases in global efficiency, mean local efficiency, and clustering coefficient, along with significant decrease in shortest path length, while small-worldness persisted during the studied period, revealing balanced network integration and segregation. Widespread short-ranged connectivity strengthened significantly. The nodal strength developed in a posterior-to-anterior and medial-to-lateral order, reflecting a spatiotemporal gradient in cortical network connectivity development. Moreover, we observed distinct lateralization patterns in the fetal brain SCN. Globally, there was a leftward lateralization in network efficiency, clustering coefficient, and small-worldness. The regional lateralization patterns in most language, motor, and visual-related areas were consistent with prior knowledge, except for the Wernicke's area, indicating lateralized brain wiring is an innate property of the human brain starting from the fetal period. Our findings provided a comprehensive view of the development of the fetal brain SCN and its lateralization, as a normative template that may be used to characterize atypical development.Significance Statement We studied the normal development of intra-hemispheric cortico-cortical structural connectivity networks (SCNs) of the fetal brain from 26 to 38 gestational weeks using in-utero diffusion MRI data. Graph-theory-based analysis revealed significant enhancement in network efficiency and clustering, as well as persisted small-worldness with age, revealing balanced integration and segregation in the fetal brain SCN during the studied period, supported by regional developmental patterns. Leftward lateralization in network efficiency, clustering coefficient and small-worldness was observed. Regional lateralization patterns in most language, motor, and visual-related areas were consistent with prior knowledge. We also summarized the challenges of investigating the fetal brain SCN development, and provided suggestions for future studies.

2.
J Neurosci ; 42(50): 9435-9449, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36323525

RESUMO

The fetal brains experience rapid and complex development in utero during the second and third trimesters. In utero MRI of the fetal brain in this period enables us to quantify normal fetal brain development in the spatiotemporal domain. In this study, we established a high-quality spatiotemporal atlas between 23 and 38 weeks gestational age (GA) from 90 healthy Chinese human fetuses of both sexes using a pairwise and groupwise registration pipeline. We quantified the fetal cortical morphology indices and characterized their spatiotemporal developmental pattern. The cortical thickness exhibited a biphasic pattern that first increased and then decreased; the curvature fitted well into the Gompertz growth model; sulcal depth increased linearly, while surface area expanded exponentially. The cortical thickness and curvature trajectories consistently pointed to a characteristic time point around GA of 31 weeks. The characteristic GA and growth rate obtained from individual cortical regions suggested a central-to-peripheral developmental gradient, with the earliest development in the parietal lobe, and we also observed a superior-to-inferior gradient within the temporal lobe. These findings may be linked to biophysical events, such as dendritic arborization and thalamocortical fibers ingrowth. The proposed atlas was also compared with an existing fetal atlas from a white/mixed population. Finally, we examined the structural asymmetry of the fetal brains and found extensive asymmetry that dynamically changed with development. The current study depicted a comprehensive profile of fetal cortical development, and the established atlas could be used as a normative reference for neurodevelopmental and diagnostic purposes, especially in the Chinese population.SIGNIFICANCE STATEMENT We generated a high-quality 4D spatiotemporal atlas of the normal fetal brain development from 23 to 38 gestational weeks in a Chinese population and characterized the spatiotemporal developmental pattern of cortical morphology. According to the cortical development trajectories, the fetal cerebral cortex development follows a central-to-peripheral developmental gradient that may be related to the underlying cellular events. The majority of cortical regions already exhibit significant asymmetry during the fetal period.


Assuntos
Feto , Imageamento por Ressonância Magnética , Masculino , Feminino , Humanos , Gravidez , Feto/diagnóstico por imagem , Neurogênese , Encéfalo , Desenvolvimento Fetal , Córtex Cerebral
3.
Neuroimage ; 272: 120071, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37003446

RESUMO

The neonatal period is a critical window for the development of the human brain and may hold implications for the long-term development of cognition and disorders. Multi-modal connectome studies have revealed many important findings underlying the adult brain but related studies were rare in the early human brain. One potential challenge is the lack of an appropriate and unbiased parcellation that combines structural and functional information in this population. Using 348 multi-modal MRI datasets from the developing human connectome project, we found that the information fused from the structural, diffusion, and functional MRI was relatively stable across MRI features and showed high reproducibility at the group level. Therefore, we generated automated multi-resolution parcellations (300 - 500 parcels) based on the similarity across multi-modal features using a gradient-based parcellation algorithm. In addition, to acquire a parcellation with high interpretability, we provided a manually delineated parcellation (210 parcels), which was approximately symmetric, and the adjacent areas around each boundary were statistically different in terms of the integrated similarity metric and at least one kind of original features. Overall, the present study provided multi-resolution and neonate-specific parcellations of the cerebral cortex based on multi-modal MRI properties, which may facilitate future studies of the human connectome in the early development period.


Assuntos
Conectoma , Imageamento por Ressonância Magnética , Adulto , Recém-Nascido , Humanos , Reprodutibilidade dos Testes , Encéfalo , Córtex Cerebral/diagnóstico por imagem
4.
Adv Sci (Weinh) ; 11(11): e2307540, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38165022

RESUMO

The rise of new media has greatly changed the lifestyles, leading to increased time on these platforms and less time spent reading. This shift has particularly profound impacts on early adolescents, who are in a critical stage of brain development. Previous studies have found associations between screen use and mental health, but it remains unclear whether screen use is the direct cause of the outcomes. Here, the Adolescent Brain Cognitive Development (ABCD) dataset is utlized to examine the causal relationships between screen use and brain development. The results revealed adverse causal effects of screen use on language ability and specific behaviors in early adolescents, while reading has positive causal effects on their language ability and brain volume in the frontal and temporal regions. Interestingly, increased screen use is identified as a result, rather than a cause, of certain behaviors such as rule-breaking and aggressive behaviors. Furthermore, the analysis uncovered an indirect influence of screen use, mediated by changes in reading habits, on brain development. These findings provide new evidence for the causal influences of screen use on brain development and highlight the importance of monitoring media use and related habit change in children.


Assuntos
Encéfalo , Leitura , Adolescente , Humanos , Cognição
5.
Front Genet ; 12: 646818, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512711

RESUMO

BACKGROUND: Stomach adenocarcinoma (STAD) is the most common histological type of stomach cancer, which causes a considerable number of deaths worldwide. This study aimed to identify its potential biomarkers with the notion of revealing the underlying molecular mechanisms. METHODS: Gene expression profile microarray data were downloaded from the Gene Expression Omnibus (GEO) database. The "limma" R package was used to screen the differentially expressed genes (DEGs) between STAD and matched normal tissues. The Database for Annotation, Visualization, and Integrated Discovery (DAVID) was used for function enrichment analyses of DEGs. The STAD dataset from The Cancer Genome Atlas (TCGA) database was used to identify a prognostic gene signature, which was verified in another STAD dataset from the GEO database. CIBERSORT algorithm was used to characterize the 22 human immune cell compositions. The expression of LRFN4 and CTHRC1 in tissues was determined by quantitative real-time PCR from the patients recruited to the present study. RESULTS: Three public datasets including 90 STAD patients and 43 healthy controls were analyzed, from which 44 genes were differentially expressed in all three datasets. These genes were implicated in biological processes including cell adhesion, wound healing, and extracellular matrix organization. Five out of 44 genes showed significant survival differences. Among them, CTHRC1 and LRFN4 were selected for construction of prognostic signature by univariate Cox regression and stepwise multivariate Cox regression in the TCGA-STAD dataset. The fidelity of the signature was evaluated in another independent dataset and showed a good classification effect. The infiltration levels of multiple immune cells between high-risk and low-risk groups had significant differences, as well as two immune checkpoints. TIM-3 and PD-L2 were highly correlated with the risk score. Multiple signaling pathways differed between the two groups of patients. At the same time, the expression level of LRFN4 and CTHRC1 in tissues analyzed by quantitative real-time PCR were consistent with the in silico findings. CONCLUSION: The present study constructed the prognostic signature by expression of CTHRC1 and LRFN4 for the first time via comprehensive bioinformatics analysis, which provided the potential therapeutic targets of STAD for clinical treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA