Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Biol Chem ; 300(2): 105610, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159847

RESUMO

Many metabolic diseases are caused by disorders of lipid homeostasis. CIDEC, a lipid droplet (LD)-associated protein, plays a critical role in controlling LD fusion and lipid storage. However, regulators of CIDEC remain largely unknown. Here, we established a homogeneous time-resolved fluorescence (HTRF)-based high-throughput screening method and identified LPXN as a positive regulatory candidate for CIDEC. LPXN and Hic-5, the members of the Paxillin family, are focal adhesion adaptor proteins that contribute to the recruitment of specific kinases and phosphatases, cofactors, and structural proteins, participating in the transduction of extracellular signals into intracellular responses. Our data showed that Hic-5 and LPXN significantly increased the protein level of CIDEC and enhanced CIDEC stability not through triacylglycerol synthesis and FAK signaling pathways. Hic-5 and LPXN reduced the ubiquitination of CIDEC and inhibited its proteasome degradation pathway. Furthermore, Hic-5 and LPXN enlarged LDs and promoted lipid storage in adipocytes. Therefore, we identified Hic-5 and LPXN as novel regulators of CIDEC. Our current findings also suggest intervention with Hic-5 and LPXN might ameliorate ectopic fat storage by enhancing the lipid storage capacity of white adipose tissues.


Assuntos
Adipócitos , Proteínas Reguladoras de Apoptose , Moléculas de Adesão Celular , Proteínas com Domínio LIM , Adipócitos/metabolismo , Gotículas Lipídicas/metabolismo , Ubiquitinação , Células HEK293 , Células HeLa , Humanos , Proteínas com Domínio LIM/metabolismo , Moléculas de Adesão Celular/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo
2.
J Cell Sci ; 136(15)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37461827

RESUMO

Protein palmitoylation is a post-translational lipid modification of proteins. Accumulating evidence reveals that palmitoylation functions as a sorting signal to direct proteins to destinations; however, the sorting mechanism remains largely unknown. Here, we show that ARF6 plays a general role in targeting palmitoylated proteins from the Golgi to the plasma membrane (PM). Through shRNA screening, we identified ARF6 as the key small GTPase in targeting CD36, a palmitoylated protein, from the Golgi to the PM. We found that the N-terminal myristoylation of ARF6 is required for its binding with palmitoylated CD36, and the GTP-bound form of ARF6 facilitates the delivery of CD36 to the PM. Analysis of stable isotope labeling by amino acids in cell culture revealed that ARF6 might facilitate the sorting of 359 of the 531 palmitoylated PM proteins, indicating a general role of ARF6. Our study has thus identified a sorting mechanism for targeting palmitoylated proteins from the Golgi to the PM.


Assuntos
Complexo de Golgi , Proteínas de Membrana , Membrana Celular/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Transporte Proteico
3.
EMBO J ; 38(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30858281

RESUMO

SREBPs are master regulators of lipid homeostasis and undergo sterol-regulated export from ER to Golgi apparatus for processing and activation via COPII-coated vesicles. While COPII recognizes SREBP through its escort protein SCAP, factor(s) specifically promoting SREBP/SCAP loading to the COPII machinery remains unknown. Here, we show that the ER/lipid droplet-associated protein Cideb selectively promotes the loading of SREBP/SCAP into COPII vesicles. Sterol deprivation releases SCAP from Insig and enhances ER export of SREBP/SCAP by inducing SCAP-Cideb interaction, thereby modulating sterol sensitivity. Moreover, Cideb binds to the guanine nucleotide exchange factor Sec12 to enrich SCAP/SREBP at ER exit sites, where assembling of COPII complex initiates. Loss of Cideb inhibits the cargo loading of SREBP/SCAP, reduces SREBP activation, and alleviates diet-induced hepatic steatosis. Our data point to a linchpin role of Cideb in regulated ER export of SREBP and lipid homeostasis.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/fisiologia , Retículo Endoplasmático/fisiologia , Complexo de Golgi/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Esteróis/farmacologia , Animais , Proteínas Reguladoras de Apoptose/genética , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/efeitos dos fármacos , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/fisiologia , Retículo Endoplasmático/efeitos dos fármacos , Complexo de Golgi/efeitos dos fármacos , Células HEK293 , Células Hep G2 , Homeostase , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Transporte Proteico , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
4.
Proc Natl Acad Sci U S A ; 117(44): 27412-27422, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33087562

RESUMO

Nuclear receptor Nur77 participates in multiple metabolic regulations and plays paradoxical roles in tumorigeneses. Herein, we demonstrated that the knockout of Nur77 stimulated mammary tumor development in two mouse models, which would be reversed by a specific reexpression of Nur77 in mammary tissues. Mechanistically, Nur77 interacted and recruited corepressors, the SWI/SNF complex, to the promoters of CD36 and FABP4 to suppress their transcriptions, which hampered the fatty acid uptake, leading to the inhibition of cell proliferation. Peroxisome proliferator-activated receptor-γ (PPARγ) played an antagonistic role in this process through binding to Nur77 to facilitate ubiquitin ligase Trim13-mediated ubiquitination and degradation of Nur77. Cocrystallographic and functional analysis revealed that Csn-B, a Nur77-targeting compound, promoted the formation of Nur77 homodimer to prevent PPARγ binding by steric hindrance, thereby strengthening the Nur77's inhibitory role in breast cancer. Therefore, our study reveals a regulatory function of Nur77 in breast cancer via impeding fatty acid uptake.


Assuntos
Neoplasias da Mama/patologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , PPAR gama/metabolismo , Fenilacetatos/farmacologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/mortalidade , Proliferação de Células , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Ácidos Graxos/metabolismo , Feminino , Humanos , Estimativa de Kaplan-Meier , Metabolismo dos Lipídeos/efeitos dos fármacos , Glândulas Mamárias Animais/patologia , Camundongos , Pessoa de Meia-Idade , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/agonistas , PPAR gama/agonistas , Cultura Primária de Células , Prognóstico , Proteólise/efeitos dos fármacos , Análise Serial de Tecidos , Células Tumorais Cultivadas , Proteínas Supressoras de Tumor/metabolismo , Ubiquitinação/efeitos dos fármacos
5.
Glia ; 70(2): 379-392, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34724258

RESUMO

Myelin sheath is an important structure to maintain functions of the nerves in central nervous system. Protein palmitoylation has been established as a sorting determinant for the transport of myelin-forming proteins to the myelin membrane, however, its function in the regulation of oligodendrocyte development remains unknown. Here, we show that an Asp-His-His-Cys (DHHC) motif-containing palmitoyl acyltransferases, DHHC5, is involved in the control of oligodendrocyte development. Loss of Zdhhc5 in oligodendrocytes inhibits myelination and remyelination by reducing total myelinating oligodendrocyte population. STAT3 is the primary substrate for DHHC5 palmitoylation in oligodendrocytes. Zdhhc5 ablation reduces STAT3 palmitoylation and suppresses STAT3 phosphorylation and activation. As a result, the transcription of the myelin-related and anti-apoptosis genes is inhibited, leading to suppressed oligodendrocyte development and myelination. Our findings demonstrate a key role DHHC5 in controlling myelinogenesis.


Assuntos
Bainha de Mielina , Oligodendroglia , Células Cultivadas , Lipoilação , Bainha de Mielina/metabolismo , Neurogênese , Oligodendroglia/metabolismo
6.
Diabetes Obes Metab ; 20(7): 1710-1721, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29532631

RESUMO

AIMS: To investigate the physiological mechanisms leading to rapid improvement in diabetes after Roux-en-Y gastric bypass (RYGB) and specifically the contribution of the concurrent peri-operative dietary restrictions, which may also alter glucose metabolism. MATERIALS AND METHODS: In order to assess the differential contributions of diet and surgery to the mechanisms leading to the rapid improvement in diabetes after RYGB we enrolled 10 patients with type 2 diabetes scheduled to undergo RYGB. All patients underwent a 10-day inpatient supervised dietary intervention equivalent to the peri-operative diet (diet-only period), followed by, after a re-equilibration (washout) period, an identical period of pair-matched diet in conjunction with RYGB (diet and RYGB period). We conducted extensive metabolic assessments during a 6-hour mixed-meal challenge test, with stable isotope glucose tracer infusion performed before and after each intervention. RESULTS: Similar improvements in glucose levels, ß-cell function, insulin sensitivity and post-meal hepatic insulin resistance were observed with both interventions. Both interventions led to significant reductions in fasting and postprandial acyl ghrelin. The diet-only intervention induced greater improvements in basal hepatic glucose output and post-meal gastric inhibitory polypeptide (GIP) secretion. The diet and RYGB intervention induced significantly greater increases in post-meal glucagon-like peptide-1 (GLP-1), peptide YY (PYY) and glucagon levels. CONCLUSIONS: Strict peri-operative dietary restriction is a main contributor to the rapid improvement in glucose metabolism after RYGB. The RYGB-induced changes in the incretin hormones GLP-1 and PYY probably play a major role in long-term compliance with such major dietary restrictions through central and peripheral mechanisms.


Assuntos
Restrição Calórica , Diabetes Mellitus Tipo 2/metabolismo , Derivação Gástrica , Resistência à Insulina , Obesidade/dietoterapia , Obesidade/cirurgia , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/complicações , Jejum/metabolismo , Feminino , Polipeptídeo Inibidor Gástrico/metabolismo , Grelina/metabolismo , Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Humanos , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Fígado/metabolismo , Masculino , Pessoa de Meia-Idade , Obesidade/complicações , Obesidade/metabolismo , Peptídeo YY/metabolismo , Período Pós-Prandial , Indução de Remissão
7.
Proc Natl Acad Sci U S A ; 112(4): 1226-31, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25583513

RESUMO

Plasma growth hormone (GH) and hepatic autophagy each have been reported to protect against hypoglycemia in the fasted state, but previous data have not linked the two. Here we demonstrate a connection using a mouse model of fasting in a fat-depleted state. Mice were subjected to 1 wk of 60% calorie restriction, causing them to lose nearly all body fat. They were then fasted for 23 h. During fasting, WT mice developed massive increases in plasma GH and a concomitant increase in hepatic autophagy, allowing them to maintain viable levels of blood glucose. In contrast, lethal hypoglycemia occurred in mice deficient in the GH secretagogue ghrelin as a result of knockout of the gene encoding ghrelin O-acyltransferase (GOAT), which catalyzes a required acylation of the peptide. Fasting fat-depleted Goat(-/-) mice showed a blunted increase in GH and a marked decrease in hepatic autophagy. Restoration of GH by infusion during the week of calorie restriction maintained autophagy in the Goat(-/-) mice and prevented lethal hypoglycemia. Acute injections of GH after 7 d of calorie restriction also restored hepatic autophagy, but failed to increase blood glucose, perhaps owing to ATP deficiency in the liver. These data indicate that GH stimulation of autophagy is necessary over the long term, but not sufficient over the short term to maintain blood glucose levels in fasted, fat-depleted mice.


Assuntos
Autofagia , Glicemia/metabolismo , Restrição Calórica , Jejum/sangue , Grelina , Hipoglicemia , Fígado/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Animais , Glicemia/genética , Grelina/deficiência , Grelina/farmacologia , Hipoglicemia/sangue , Hipoglicemia/tratamento farmacológico , Hipoglicemia/genética , Hipoglicemia/metabolismo , Proteínas de Membrana , Camundongos , Camundongos Knockout
8.
Nat Commun ; 15(1): 133, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168040

RESUMO

Adipocytes are the primary sites for fatty acid storage, but the synthesis rate of fatty acids is very low. The physiological significance of this phenomenon remains unclear. Here, we show that surplus fatty acid synthesis in adipocytes induces necroptosis and lipodystrophy. Transcriptional activation of FASN elevates fatty acid synthesis, but decreases NADPH level and increases ROS production, which ultimately leads to adipocyte necroptosis. We identify MED20, a subunit of the Mediator complex, as a negative regulator of FASN transcription. Adipocyte-specific male Med20 knockout mice progressively develop lipodystrophy, which is reversed by scavenging ROS. Further, in a murine model of HIV-associated lipodystrophy and a human patient with acquired lipodystrophy, ROS neutralization significantly improves metabolic disorders, indicating a causal role of ROS in disease onset. Our study well explains the low fatty acid synthesis rate in adipocytes, and sheds light on the management of acquired lipodystrophy.


Assuntos
Adipócitos , Lipodistrofia , Masculino , Camundongos , Humanos , Animais , Espécies Reativas de Oxigênio/metabolismo , Adipócitos/metabolismo , Lipodistrofia/genética , Lipodistrofia/metabolismo , Ácidos Graxos/metabolismo , Estresse Oxidativo , Camundongos Knockout
9.
Dev Cell ; 59(3): 384-399.e5, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38198890

RESUMO

Different types of cells uptake fatty acids in response to different stimuli or physiological conditions; however, little is known about context-specific regulation of fatty acid uptake. Here, we show that muscle injury induces fatty acid uptake in muscle stem cells (MuSCs) to promote their proliferation and muscle regeneration. In humans and mice, fatty acids are mobilized after muscle injury. Through CD36, fatty acids function as both fuels and growth signals to promote MuSC proliferation. Mechanistically, injury triggers the translocation of CD36 in MuSCs, which relies on dynamic palmitoylation of STX11. Palmitoylation facilitates the formation of STX11/SNAP23/VAMP4 SANRE complex, which stimulates the fusion of CD36- and STX11-containing vesicles. Restricting fatty acid supply, blocking fatty acid uptake, or inhibiting STX11 palmitoylation attenuates muscle regeneration in mice. Our studies have identified a critical role of fatty acids in muscle regeneration and shed light on context-specific regulation of fatty acid sensing and uptake.


Assuntos
Ácidos Graxos , Lipoilação , Músculo Esquelético , Proteínas Qa-SNARE , Regeneração , Animais , Humanos , Camundongos , Transporte Biológico , Antígenos CD36/metabolismo , Membrana Celular/metabolismo , Ácidos Graxos/metabolismo , Músculo Esquelético/lesões , Músculo Esquelético/fisiologia , Proteínas Qa-SNARE/metabolismo
10.
J Biol Chem ; 287(22): 17942-50, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22474325

RESUMO

When mice are subjected to 7-day calorie restriction (40% of normal food intake), body fat disappears, but blood glucose is maintained as long as the animals produce ghrelin, an octanoylated peptide that stimulates growth hormone secretion. Mice can be rendered ghrelin-deficient by knock-out of the gene encoding either ghrelin O-acyltransferase, which attaches the required octanoate, or ghrelin itself. Calorie-restricted, fat-depleted ghrelin O-acyltransferase or ghrelin knock-out mice fail to show the normal increase in growth hormone and become profoundly hypoglycemic when fasted for 18-23 h. Glucose production in Goat(-/-) mice was reduced by 60% when compared with similarly treated WT mice. Plasma lactate and pyruvate were also low. Injection of lactate, pyruvate, alanine, or a fatty acid restored blood glucose in Goat(-/-) mice. Thus, when body fat is reduced by calorie restriction, ghrelin stimulates growth hormone secretion, which allows maintenance of glucose production, even when food intake is eliminated. In humans with anorexia nervosa or kwashiorkor, ghrelin and growth hormone are known to be elevated, just as they are in fat-depleted mice. We suggest that these two hormones prolong survival in starved humans as they do in mice.


Assuntos
Ácidos Graxos/farmacologia , Grelina/metabolismo , Gluconeogênese , Hipoglicemia/metabolismo , Ácido Láctico/farmacologia , Inanição , Animais , Grelina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA
11.
Biochem J ; 441(2): 623-32, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21967612

RESUMO

The formation of intracellular nitrogen-based oxidants has important physiological and pathological consequences. CK (creatine kinase), which plays a key role in intracellular energy metabolism, is a main target of low concentrations of oxidative and nitrative stresses. In the present study, the interaction between cytosolic CKs [MM-CK (muscle-type CK) and BB-CK (brain-type CK)] and MTs [metallothioneins; hMT2A (human MT-IIA) and hMT3 (human MT-III)] were characterized by both in vitro and intact-cell assays. MTs could successfully protect the cytosolic CKs against inactivation induced by low concentrations of PN (peroxynitrite) and NO both in vitro and in hMT2A-overexpressing H9c2 cells and hMT3-knockdown U-87 MG cells. Under high PN concentrations, CK formed granule-like structures, and MTs were well co-localized in these aggregated granules. Further analysis indicated that the number of cells containing the CK aggregates negatively correlated with the expression levels of MTs. In vitro experiments indicated that MTs could effectively protect CKs against aggregation during refolding, suggesting that MT might function as a chaperone to assist CK re-activation. The findings of the present study provide direct evidence of the connection between the two well-characterized intracellular systems: the precisely balanced energy homoeostasis by CKs and the oxidative-stress response system using MTs.


Assuntos
Creatina Quinase Forma BB/metabolismo , Creatina Quinase Forma MM/metabolismo , Metalotioneína/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Óxido Nítrico/farmacologia , Ácido Peroxinitroso/farmacologia , Animais , Células CHO , Creatina Quinase Forma BB/antagonistas & inibidores , Creatina Quinase Forma MM/antagonistas & inibidores , Cricetinae , Citosol/enzimologia , Humanos , Metalotioneína 3 , Camundongos , Chaperonas Moleculares/farmacologia
12.
Proc Natl Acad Sci U S A ; 107(36): 15868-73, 2010 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-20713709

RESUMO

Ghrelin, an octanoylated peptide hormone produced in the stomach, rises dramatically in mouse plasma during chronic severe calorie deprivation, an event that is essential to maintain life. The mechanism for this increase is not understood. Here, we study the control of ghrelin secretion in tissue culture cells derived from mice bearing ghrelinomas induced by a tissue-specific SV40 T-antigen transgene. We found that the ghrelin-secreting cells express high levels of mRNA encoding beta(1)-adrenergic receptors. Addition of norepinephrine or epinephrine to the culture medium stimulated ghrelin secretion, and this effect was blocked by atenolol, a selective beta(1)-adrenergic antagonist. When WT mice were treated with reserpine to deplete adrenergic neurotransmitters from sympathetic neurons, the fasting-induced increase in plasma ghrelin was blocked. Inhibition was also seen following atenolol administration. We conclude that ghrelin secretion during fasting is induced by adrenergic agents released by sympathetic neurons and acting directly on beta(1) receptors on the ghrelin-secreting cells of the stomach.


Assuntos
Grelina/metabolismo , Neoplasias Experimentais/metabolismo , Receptores Adrenérgicos beta 1/fisiologia , Animais , Perfilação da Expressão Gênica , Camundongos , Neoplasias Experimentais/patologia , RNA Mensageiro/genética , Ratos , Receptores Adrenérgicos beta 1/genética
13.
Proc Natl Acad Sci U S A ; 107(16): 7467-72, 2010 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-20231469

RESUMO

Ghrelin O-acyltransferase (GOAT) attaches octanoate to proghrelin, which is processed to ghrelin, an octanoylated peptide hormone that stimulates release of growth hormone (GH) from pituitary cells. Elimination of the gene encoding ghrelin or its receptor produces only mild phenotypes in mice. Thus, the essential function of ghrelin is obscure. Here, we eliminate the Goat gene in mice, thereby eliminating all octanoylated ghrelin from blood. On normal or high fat diets, Goat(-/-) mice grew and maintained the same weights as wild-type (WT) littermates. When subjected to 60% calorie restriction, WT and Goat(-/-) mice both lost 30% of body weight and 75% of body fat within 4 days. In both lines, fasting blood glucose initially declined equally. After 4 days, glucose stabilized in WT mice at 58-76 mg/dL. In Goat(-/-) mice, glucose continued to decline, reaching 12-36 mg/dL on day 7. At this point, WT mice showed normal physical activity, whereas Goat(-/-) mice were moribund. GH rose progressively in calorie-restricted WT mice and less in Goat(-/-) mice. Infusion of either ghrelin or GH normalized blood glucose in Goat(-/-) mice and prevented death. Thus, an essential function of ghrelin in mice is elevation of GH levels during severe calorie restriction, thereby preserving blood glucose and preventing death.


Assuntos
Aciltransferases/fisiologia , Hormônio do Crescimento/metabolismo , Tecido Adiposo/metabolismo , Ração Animal , Animais , Glicemia/metabolismo , Peso Corporal , Restrição Calórica , Hipoglicemia/genética , Proteínas de Membrana , Camundongos , Camundongos Knockout , Fenótipo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo
14.
Life Metab ; 2(1)2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37168434

RESUMO

In a recent article published in Nature, Patel et al. identified adipose triglyceride lipase (ATGL, also known as patatin-like phospholipase domain containing 2) as the first biosynthetic enzyme of fatty acid esters of hydroxy fatty acids (FAHFAs), further expanding the knowledge on bioactive lipid research and being a potential paradigm shift for ATGL studies.

15.
Front Cell Dev Biol ; 11: 1225628, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37691821

RESUMO

Obesity has become a global pandemic. WDTC1 is a WD40-containing protein that functions as an anti-obesity factor. WDTC1 inhibits adipogenesis by working as an adaptor of the CUL4-DDB1 E3 ligase complex. It remains unclear about how WDTC1 is regulated. Here, we show that the TRiC/CCT functions as a chaperone to facilitate the protein folding of WDTC1 and proper function in adipogenesis. Through tandem purification, we identified the molecular chaperone TRiC/CCT as WDTC1-interacting proteins. WDTC1 bound the TRiC/CCT through its ADP domain, and the TRiC/CCT recognized WDTC1 through the CCT5 subunit. Disruption of the TRiC/CCT by knocking down CCT1 or CCT5 led to misfolding and lysosomal degradation of WDTC1. Furthermore, the knockdown of CCT1 or CCT5 eliminated the inhibitory effect of WDTC1 on adipogenesis. Our studies uncovered a critical role of the TRiC/CCT in the folding of WDTC1 and expanded our knowledge on the regulation of adipogenesis.

16.
Nat Commun ; 14(1): 2342, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095176

RESUMO

Triple-negative breast cancer (TNBC) is a subtype of breast cancer with poor outcome and lacks of approved targeted therapy. Overexpression of epidermal growth factor receptor (EGFR) is found in more than 50% TNBC and is suggested as a driving force in progression of TNBC; however, targeting EGFR using antibodies to prevent its dimerization and activation shows no significant benefits for TNBC patients. Here we report that EGFR monomer may activate signal transducer activator of transcription-3 (STAT3) in the absence of transmembrane protein TMEM25, whose expression is frequently decreased in human TNBC. Deficiency of TMEM25 allows EGFR monomer to phosphorylate STAT3 independent of ligand binding, and thus enhances basal STAT3 activation to promote TNBC progression in female mice. Moreover, supplying TMEM25 by adeno-associated virus strongly suppresses STAT3 activation and TNBC progression. Hence, our study reveals a role of monomeric-EGFR/STAT3 signaling pathway in TNBC progression and points out a potential targeted therapy for TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/metabolismo , Receptores ErbB/metabolismo , Transdução de Sinais/fisiologia , Linhagem Celular Tumoral , Fator de Transcrição STAT3/metabolismo , Proliferação de Células/fisiologia
17.
Biochem J ; 436(2): 437-45, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21426302

RESUMO

Muscle contraction requires high energy fluxes, which are supplied by MM-CK (muscle-type creatine kinase) which couples to the myofibril. However, little is known about the detailed molecular mechanisms of how MM-CK participates in and is regulated during muscle contraction. In the present study, MM-CK is found to physically interact with the slow skeletal muscle-type MyBPC1 (myosin-binding protein C1). The interaction between MyBPC1 and MM-CK depended on the creatine concentration in a dose-dependent manner, but not on ATP, ADP or phosphocreatine. The MyBPC1-CK interaction favoured acidic conditions, and the two molecules dissociated at above pH 7.5. Domain-mapping experiments indicated that MM-CK binds to the C-terminal domains of MyBPC1, which is also the binding site of myosin. The functional coupling of myosin, MyBPC1 and MM-CK is further corroborated using an ATPase activity assay in which ATP expenditure accelerates upon the association of the three proteins, and the apparent K(m) value of myosin is therefore reduced. The results of the present study suggest that MyBPC1 acts as an adaptor to connect the ATP consumer (myosin) and the regenerator (MM-CK) for efficient energy metabolism and homoeostasis.


Assuntos
Proteínas de Transporte/fisiologia , Creatina Quinase Forma MM/metabolismo , Fibras Musculares de Contração Lenta/fisiologia , Miosinas/metabolismo , Animais , Metabolismo Energético/fisiologia , Células HEK293 , Homeostase/fisiologia , Humanos , Camundongos , Fibras Musculares de Contração Lenta/enzimologia , Músculo Esquelético/citologia , Músculo Esquelético/enzimologia , Músculo Esquelético/metabolismo , Ligação Proteica/fisiologia , Recrutamento Neurofisiológico/fisiologia
18.
Sci China Life Sci ; 65(11): 2287-2300, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36166181

RESUMO

Brown adipose tissue (BAT) plays an essential role in non-shivering thermogenesis. The phosphatidylinositol transfer protein, cytoplasmic 1 (PITPNC1) is identified as a lipid transporter that reciprocally transfers phospholipids between intracellular membrane structures. However, the physiological significance of PITPNC1 and its regulatory mechanism remain unclear. Here, we demonstrate that PITPNC1 is a key player in thermogenesis of BAT. While Pitpnc1-/- mice do not differ with wildtype mice in body weight and insulin sensitivity on either chow or high-fat diet, they develop hypothermia when subjected to acute cold exposure at 4°C. The Pitpnc1-/- brown adipocytes exhibit defective ß-oxidation and abnormal thermogenesis-related metabolism pathways in mitochondria. The deficiency of lipid mobilization in Pitpnc1-/- brown adipocytes might be the result of excessive accumulation of phosphatidylcholine and a reduction of phosphatidic acid. Our findings have uncovered significant roles of PITPNC1 in mitochondrial phospholipid homeostasis and BAT thermogenesis.


Assuntos
Tecido Adiposo Marrom , Termogênese , Camundongos , Animais , Tecido Adiposo Marrom/metabolismo , Camundongos Knockout , Termogênese/genética , Mitocôndrias/metabolismo , Homeostase
19.
Nat Commun ; 13(1): 6004, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224181

RESUMO

Aberrant activation of EGFR due to overexpression or mutation is associated with poor prognosis in many types of tumors. Here we show that blocking the sorting system that directs EGFR to plasma membrane is a potent strategy to treat EGFR-dependent tumors. We find that EGFR palmitoylation by DHHC13 is critical for its plasma membrane localization and identify ARF6 as a key factor in this process. N-myristoylated ARF6 recognizes palmitoylated EGFR via lipid-lipid interaction, recruits the exocyst complex to promote EGFR budding from Golgi, and facilitates EGFR transporting to plasma membrane in a GTP-bound form. To evaluate the therapeutic potential of this sorting system, we design a cell-permeable peptide, N-myristoylated GKVL-TAT, and find it effectively disrupts plasma membrane localization of EGFR and significantly inhibits progression of EGFR-dependent tumors. Our findings shed lights on the underlying mechanism of how palmitoylation directs protein sorting and provide an potential strategy to manage EGFR-dependent tumors.


Assuntos
Fatores de Ribosilação do ADP , Neoplasias , Fatores de Ribosilação do ADP/metabolismo , Membrana Celular/metabolismo , Receptores ErbB/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Lipídeos , Neoplasias/metabolismo , Transporte Proteico
20.
Proc Natl Acad Sci U S A ; 105(31): 10750-5, 2008 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-18669668

RESUMO

The discovery of ghrelin O-acyltransferase (GOAT) opens the way to the design of drugs that block the attachment of an octanoyl group to the appetite-stimulating peptide hormone ghrelin, potentially preventing obesity. Here, we develop a biochemical assay that uses membranes from insect cells infected with baculovirus encoding mouse GOAT. The GOAT-containing membranes transferred the [(3)H]octanoyl group from [(3)H]octanoyl CoA to recombinant proghrelin in vitro. Transfer depended on the serine at residue 3 of proghrelin, which is the known site of acylation. GOAT also transferred [(3)H]octanoyl to a pentapeptide containing only the N-terminal five amino acids of proghrelin. GOAT activity could be inhibited by an octanoylated ghrelin pentapeptide, and its potency was enhanced 45-fold when the octanoylated serine-3 was replaced by octanoylated diaminopropionic acid. The data suggest that GOAT is subjected to end-product inhibition and this inhibition is better achieved with substrates having the octanoyl group attached through an amide linkage rather than the corresponding ester. These insights may facilitate the future design of useful inhibitors of GOAT.


Assuntos
Aciltransferases/antagonistas & inibidores , Caprilatos/metabolismo , Obesidade/prevenção & controle , Peptídeos/metabolismo , Aciltransferases/metabolismo , Animais , Baculoviridae , Bioensaio/métodos , Grelina/metabolismo , Humanos , Immunoblotting , Proteínas de Membrana , Membranas/metabolismo , Camundongos , Trítio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA