Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 16(8): 810-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26147687

RESUMO

Foxm1 is known as a typical proliferation-associated transcription factor. Here we found that Foxm1 was essential for maintenance of the quiescence and self-renewal capacity of hematopoietic stem cells (HSCs) in vivo in mice. Reducing expression of FOXM1 also decreased the quiescence of human CD34(+) HSCs and progenitor cells, and its downregulation was associated with a subset of myelodysplastic syndrome (MDS). Mechanistically, Foxm1 directly bound to the promoter region of the gene encoding the receptor Nurr1 (Nr4a2; called 'Nurr1' here), inducing transcription, while forced expression of Nurr1 reversed the loss of quiescence observed in Foxm1-deficient cells in vivo. Thus, our studies reveal a previously unrecognized role for Foxm1 as a critical regulator of the quiescence and self-renewal of HSCs mediated at least in part by control of Nurr1 expression.


Assuntos
Proliferação de Células/genética , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Animais , Células Cultivadas , Citometria de Fluxo , Proteína Forkhead Box M1 , Fatores de Transcrição Forkhead/metabolismo , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/metabolismo , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas/genética , Ligação Proteica , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa
2.
Nat Immunol ; 15(3): 239-47, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24487321

RESUMO

Here we found that the transcription repressor DREAM bound to the promoter of the gene encoding A20 to repress expression of this deubiquitinase that suppresses inflammatory NF-κB signaling. DREAM-deficient mice displayed persistent and unchecked A20 expression in response to endotoxin. DREAM functioned by transcriptionally repressing A20 through binding to downstream regulatory elements (DREs). In contrast, binding of the transcription factor USF1 to the DRE-associated E-box domain in the gene encoding A20 activated its expression in response to inflammatory stimuli. Our studies define the critical opposing functions of DREAM and USF1 in inhibiting and inducing A20 expression, respectively, and thereby the strength of NF-κB signaling. Targeting of DREAM to induce USF1-mediated A20 expression is therefore a potential anti-inflammatory strategy for the treatment of diseases associated with unconstrained NF-κB activity, such as acute lung injury.


Assuntos
Proteínas de Ligação a DNA/biossíntese , Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Proteínas Interatuantes com Canais de Kv/metabolismo , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/biossíntese , Fatores Estimuladores Upstream/metabolismo , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo , Animais , Imunoprecipitação da Cromatina , Cisteína Endopeptidases , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica/imunologia , Immunoblotting , Inflamação/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/genética , NF-kappa B/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Ubiquitina-Proteína Ligases/genética
3.
Circ Res ; 134(10): 1330-1347, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38557119

RESUMO

BACKGROUND: Tetraspanin CD151 is highly expressed in endothelia and reinforces cell adhesion, but its role in vascular inflammation remains largely unknown. METHODS: In vitro molecular and cellular biological analyses on genetically modified endothelial cells, in vivo vascular biological analyses on genetically engineered mouse models, and in silico systems biology and bioinformatics analyses on CD151-related events. RESULTS: Endothelial ablation of Cd151 leads to pulmonary and cardiac inflammation, severe sepsis, and perilous COVID-19, and endothelial CD151 becomes downregulated in inflammation. Mechanistically, CD151 restrains endothelial release of proinflammatory molecules for less leukocyte infiltration. At the subcellular level, CD151 determines the integrity of multivesicular bodies/lysosomes and confines the production of exosomes that carry cytokines such as ANGPT2 (angiopoietin-2) and proteases such as cathepsin-D. At the molecular level, CD151 docks VCP (valosin-containing protein)/p97, which controls protein quality via mediating deubiquitination for proteolytic degradation, onto endolysosomes to facilitate VCP/p97 function. At the endolysosome membrane, CD151 links VCP/p97 to (1) IFITM3 (interferon-induced transmembrane protein 3), which regulates multivesicular body functions, to restrain IFITM3-mediated exosomal sorting, and (2) V-ATPase, which dictates endolysosome pH, to support functional assembly of V-ATPase. CONCLUSIONS: Distinct from its canonical function in strengthening cell adhesion at cell surface, CD151 maintains endolysosome function by sustaining VCP/p97-mediated protein unfolding and turnover. By supporting protein quality control and protein degradation, CD151 prevents proteins from (1) buildup in endolysosomes and (2) discharge through exosomes, to limit vascular inflammation. Also, our study conceptualizes that balance between degradation and discharge of proteins in endothelial cells determines vascular information. Thus, the IFITM3/V-ATPase-tetraspanin-VCP/p97 complexes on endolysosome, as a protein quality control and inflammation-inhibitory machinery, could be beneficial for therapeutic intervention against vascular inflammation.


Assuntos
COVID-19 , Endossomos , Lisossomos , Tetraspanina 24 , Animais , Lisossomos/metabolismo , Tetraspanina 24/metabolismo , Tetraspanina 24/genética , Humanos , Camundongos , COVID-19/metabolismo , COVID-19/imunologia , COVID-19/patologia , Endossomos/metabolismo , Camundongos Knockout , Vasculite/metabolismo , Camundongos Endogâmicos C57BL , SARS-CoV-2 , Inflamação/metabolismo , Inflamação/patologia , Sepse/metabolismo
4.
Int J Mol Sci ; 24(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36768713

RESUMO

Pulmonary arterial hypertension (PAH) is a progressive and inevitably fatal disease characterized by the progressive increase of pulmonary vascular resistance and obliterative pulmonary vascular remodeling, which lead to right-sided heart failure and premature death. Many of the genetically modified mouse models do not develop severe PH and occlusive vascular remodeling. Egln1Tie2Cre mice with Tie2Cre-mediated deletion of Egln1, which encodes hypoxia-inducible factor (HIF) prolyl hydroxylase 2 (PHD2), is the only mouse model with severe PAH, progressive occlusive pulmonary vascular remodeling, and right-sided heart failure leading to 50-80% mortality from the age of 3-6 months, indicating that the Egln1Tie2Cre mice model is a long-sought-after murine PAH model. However, it is unknown if Egln1Tie2Cre mice respond to FDA-approved PAH drugs in a way similar to PAH patients. Here, we tested the therapeutic effects of the three vasodilators: sildenafil (targeting nitric oxide signaling), ambrisentan (endothelin receptor antagonist), and treprostinil (prostacyclin analog) on Egln1Tie2Cre mice. All of them attenuated right ventricular systolic pressure (RVSP) in Egln1Tie2Cre mice consistent with their role as vasodilators. However, these drugs have no beneficial effects on pulmonary arterial function. Cardiac output was also markedly improved in Egln1Tie2Cre mice by any of the drug treatments. They only partially improved RV function and reduced RV hypertrophy and pulmonary vascular remodeling as well as improving short-term survival in a drug-dependent manner. These data demonstrate that Egln1Tie2Cre mice exhibit similar responses to these drugs as PAH patients seen in clinical trials. Thus, our study provides further evidence that the Egln1Tie2Cre mouse model of severe PAH is an ideal model of PAH and is potentially useful for enabling identification of drug targets and preclinical testing of novel PAH drug candidates.


Assuntos
Insuficiência Cardíaca , Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Camundongos , Animais , Citrato de Sildenafila/farmacologia , Citrato de Sildenafila/uso terapêutico , Hipertensão Arterial Pulmonar/tratamento farmacológico , Hipertensão Arterial Pulmonar/genética , Remodelação Vascular , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar Primária Familiar , Vasodilatadores/farmacologia , Prolina Dioxigenases do Fator Induzível por Hipóxia , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/genética , Artéria Pulmonar
5.
Eur Respir J ; 60(6)2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35798360

RESUMO

BACKGROUND: Nitrative stress is a characteristic feature of the pathology of human pulmonary arterial hypertension. However, the role of nitrative stress in the pathogenesis of obliterative vascular remodelling and severe pulmonary arterial hypertension remains largely unclear. METHOD: Our recently identified novel mouse model (Egln1Tie2Cre, Egln1 encoding prolyl hydroxylase 2 (PHD2)) has obliterative vascular remodelling and right heart failure, making it an excellent model to use in this study to examine the role of nitrative stress in obliterative vascular remodelling. RESULTS: Nitrative stress was markedly elevated whereas endothelial caveolin-1 (Cav1) expression was suppressed in the lungs of Egln1Tie2Cre mice. Treatment with a superoxide dismutase mimetic, manganese (III) tetrakis (1-methyl-4-pyridyl) porphyrin pentachloride or endothelial Nos3 knockdown using endothelial cell-targeted nanoparticle delivery of CRISPR-Cas9/guide RNA plasmid DNA inhibited obliterative pulmonary vascular remodelling and attenuated severe pulmonary hypertension in Egln1Tie2Cre mice. Genetic restoration of Cav1 expression in Egln1Tie2Cre mice normalised nitrative stress, reduced pulmonary hypertension and improved right heart function. CONCLUSION: These data suggest that suppression of Cav1 expression secondary to PHD2 deficiency augments nitrative stress through endothelial nitric oxide synthase activation, which contributes to obliterative vascular remodelling and severe pulmonary hypertension. Thus, a reactive oxygen/nitrogen species scavenger might have therapeutic potential for the inhibition of obliterative vascular remodelling and severe pulmonary arterial hypertension.


Assuntos
Caveolina 1 , Prolina Dioxigenases do Fator Induzível por Hipóxia , Estresse Nitrosativo , Hipertensão Arterial Pulmonar , Remodelação Vascular , Animais , Humanos , Camundongos , Caveolina 1/genética , Caveolina 1/metabolismo , Pulmão/metabolismo , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Remodelação Vascular/genética , Estresse Nitrosativo/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Modelos Animais de Doenças
6.
Am J Pathol ; 191(1): 52-65, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33069720

RESUMO

Endothelial barrier integrity is required for maintaining vascular homeostasis and fluid balance between the circulation and surrounding tissues and for preventing the development of vascular disease. Despite comprehensive understanding of the molecular mechanisms and signaling pathways that mediate endothelial injury, the regulatory mechanisms responsible for endothelial regeneration and vascular repair are incompletely understood and constitute an emerging area of research. Endogenous and exogenous reparative mechanisms serve to reverse vascular damage and restore endothelial barrier function through regeneration of a functional endothelium and re-engagement of endothelial junctions. In this review, mechanisms that contribute to endothelial regeneration and vascular repair are described. Targeting these mechanisms has the potential to improve outcome in diseases that are characterized by vascular injury, such as atherosclerosis, restenosis, peripheral vascular disease, sepsis, and acute respiratory distress syndrome. Future studies to further improve current understanding of the mechanisms that control endothelial regeneration and vascular repair are also highlighted.


Assuntos
Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Regeneração/fisiologia , Medicina Regenerativa , Animais , Endotélio Vascular/lesões , Humanos
7.
Am J Physiol Lung Cell Mol Physiol ; 321(4): L787-L801, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34405715

RESUMO

Mechanical ventilation is a life-sustaining therapy for patients with respiratory failure but can cause further lung damage known as ventilator-induced lung injury (VILI). However, the intrinsic molecular mechanisms underlying recovery of VILI remain unknown. Phagocytosis of apoptotic cells (also known as efferocytosis) is a key mechanism orchestrating successful resolution of inflammation. Here we show the positive regulation of macrophage Toll-like receptor (TLR) 4 in efferocytosis and resolution of VILI. Mice were depleted of alveolar macrophages and then subjected to injurious ventilation (tidal volume, 20 mL/kg) for 4 h. On day 1 after mechanical ventilation, Tlr4+/+ or Tlr4-/- bone marrow-derived macrophages (BMDMs) were intratracheally administered to alveolar macrophage-depleted mice. We observed that mice depleted of alveolar macrophages exhibited defective resolution of neutrophilic inflammation, exuded protein, lung edema, and lung tissue injury after ventilation, whereas these delayed responses were reversed by administration of Tlr4+/+ BMDMs. Importantly, these proresolving effects by Tlr4+/+ BMDMs were abolished in mice receiving Tlr4-/- BMDMs. The number of macrophages containing apoptotic cells or bodies in bronchoalveolar lavage fluid was much less in mice receiving Tlr4-/- BMDMs than that in those receiving Tlr4+/+ BMDMs. Macrophage TLR4 deletion facilitated a disintegrin and metalloprotease 17 maturation and enhanced Mer cleavage in response to mechanical ventilation. Heat shock protein 70 dramatically increased Mer tyrosine kinase surface expression, phagocytosis of apoptotic neutrophils, and rescued the inflammatory phenotype in alveolar macrophage-depleted mice receiving Tlr4+/+ BMDMs, but not Tlr4-/- BMDMs. Our results suggest that macrophage TLR4 promotes resolution of VILI via modulation of Mer-mediated efferocytosis.


Assuntos
Macrófagos Alveolares/metabolismo , Neutrófilos/imunologia , Fagocitose/fisiologia , Receptor 4 Toll-Like/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia , Proteína ADAM17/metabolismo , Animais , Apoptose/fisiologia , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Contagem de Células , Células Cultivadas , Feminino , Proteínas de Choque Térmico HSP70/metabolismo , Pulmão/patologia , Macrófagos Alveolares/transplante , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Respiração Artificial/efeitos adversos , Transdução de Sinais , c-Mer Tirosina Quinase/metabolismo
8.
Am J Physiol Lung Cell Mol Physiol ; 320(4): L568-L582, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33565367

RESUMO

Ventilator-induced lung injury is associated with an increase in mortality in patients with respiratory dysfunction, although mechanical ventilation is an essential intervention implemented in the intensive care unit. Intrinsic molecular mechanisms for minimizing lung inflammatory injury during mechanical ventilation remain poorly defined. We hypothesize that Yes-associated protein (YAP) expression in endothelial cells protects the lung against ventilator-induced injury. Wild-type and endothelial-specific YAP-deficient mice were subjected to a low (7 mL/kg) or high (21 mL/kg) tidal volume (VT) ventilation for 4 h. Infiltration of inflammatory cells into the lung, vascular permeability, lung histopathology, and the levels of inflammatory cytokines were measured. Here, we showed that mechanical ventilation with high VT upregulated YAP protein expression in pulmonary endothelial cells. Endothelial-specific YAP knockout mice following high VT ventilation exhibited increased neutrophil counts and protein content in bronchoalveolar lavage fluid, Evans blue leakage, and histological lung injury compared with wild-type littermate controls. Deletion of YAP in endothelial cells exaggerated vascular endothelial (VE)-cadherin phosphorylation, downregulation of vascular endothelial protein tyrosine phosphatase (VE-PTP), and dissociation of VE-cadherin and catenins following mechanical ventilation. Importantly, exogenous expression of wild-type VE-PTP in the pulmonary vasculature rescued YAP ablation-induced increases in neutrophil counts and protein content in bronchoalveolar lavage fluid, vascular leakage, and histological lung injury as well as VE-cadherin phosphorylation and dissociation from catenins following ventilation. These data demonstrate that YAP expression in endothelial cells suppresses lung inflammatory response and edema formation by modulating VE-PTP-mediated VE-cadherin phosphorylation and thus plays a protective role in ventilator-induced lung injury.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Permeabilidade Capilar , Endotélio Vascular/metabolismo , Pulmão/metabolismo , Neutrófilos/imunologia , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/imunologia , Feminino , Pulmão/citologia , Pulmão/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/metabolismo , Fosforilação , Lesão Pulmonar Induzida por Ventilação Mecânica/etiologia , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia , Proteínas de Sinalização YAP
9.
Am J Physiol Lung Cell Mol Physiol ; 321(4): L675-L685, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34346780

RESUMO

Humans and animals with pulmonary hypertension (PH) show right ventricular (RV) capillary growth, which positively correlates with overall RV hypertrophy. However, molecular drivers of RV vascular augmentation in PH are unknown. Prolyl hydroxylase (PHD2) is a regulator of hypoxia-inducible factors (HIFs), which transcriptionally activates several proangiogenic genes, including the glycolytic enzyme 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3). We hypothesized that a signaling axis of PHD2-HIF1α-PFKFB3 contributes to adaptive coupling between the RV vasculature and tissue volume to maintain appropriate vascular density in PH. We used design-based stereology to analyze endothelial cell (EC) proliferation and the absolute length of the vascular network in the RV free wall, relative to the tissue volume in mice challenged with hypoxic PH. We observed increased RV EC proliferation starting after 6 h of hypoxia challenge. Using parabiotic mice, we found no evidence for a contribution of circulating EC precursors to the RV vascular network. Mice with transgenic deletion or pharmacological inhibition of PHD2, HIF1α, or PFKFB3 all had evidence of impaired RV vascular adaptation following hypoxia PH challenge. PHD2-HIF1α-PFKFB3 contributes to structural coupling between the RV vascular length and tissue volume in hypoxic mice, consistent with homeostatic mechanisms that maintain appropriate vascular density. Activating this pathway could help augment the RV vasculature and preserve RV substrate delivery in PH, as an approach to promote RV function.


Assuntos
Vasos Coronários/crescimento & desenvolvimento , Ventrículos do Coração/patologia , Hipertensão Pulmonar/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Fosfofrutoquinase-2/metabolismo , Anaerobiose/fisiologia , Animais , Células Endoteliais/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Fisiológica/fisiologia , Transdução de Sinais/fisiologia
10.
Eur Respir J ; 58(3)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33509961

RESUMO

Pulmonary arterial hypertension (PAH) is a devastating disease that involves pulmonary vasoconstriction, small vessel obliteration, large vessel thickening and obstruction, and development of plexiform lesions. PAH vasculopathy leads to progressive increases in pulmonary vascular resistance, right heart failure and, ultimately, premature death. Besides other cell types that are known to be involved in PAH pathogenesis (e.g. smooth muscle cells, fibroblasts and leukocytes), recent studies have demonstrated that endothelial cells (ECs) have a crucial role in the initiation and progression of PAH. The EC-specific role in PAH is multi-faceted and affects numerous pathophysiological processes, including vasoconstriction, inflammation, coagulation, metabolism and oxidative/nitrative stress, as well as cell viability, growth and differentiation. In this review, we describe how EC dysfunction and cell signalling regulate the pathogenesis of PAH. We also highlight areas of research that warrant attention in future studies, and discuss potential molecular signalling pathways in ECs that could be targeted therapeutically in the prevention and treatment of PAH.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Células Endoteliais , Hipertensão Pulmonar Primária Familiar , Humanos , Miócitos de Músculo Liso , Artéria Pulmonar
11.
Int J Mol Sci ; 22(6)2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804745

RESUMO

Endothelial autocrine signaling is essential to maintain vascular homeostasis. There is limited information about the role of endothelial autocrine signaling in regulating severe pulmonary vascular remodeling during the onset of pulmonary arterial hypertension (PAH). In this study, we employed the first severe pulmonary hypertension (PH) mouse model, Egln1Tie2Cre (Tie2Cre-mediated disruption of Egln1) mice, to identify the novel autocrine signaling mediating the pulmonary vascular endothelial cell (PVEC) proliferation and the pathogenesis of PAH. PVECs isolated from Egln1Tie2Cre lung expressed upregulation of many growth factors or angiocrine factors such as CXCL12, and exhibited pro-proliferative phenotype coincident with the upregulation of proliferation-specific transcriptional factor FoxM1. Treatment of CXCL12 on PVECs increased FoxM1 expression, which was blocked by CXCL12 receptor CXCR4 antagonist AMD3100 in cultured human PVECs. The endothelial specific deletion of Cxcl12(Egln1/Cxcl12Tie2Cre) or AMD3100 treatment in Egln1Tie2Cre mice downregulated FoxM1 expression in vivo. We then generated and characterized a novel mouse model with endothelial specific FoxM1 deletion in Egln1Tie2Cre mice (Egln1/Foxm1Tie2Cre), and found that endothelial FoxM1 deletion reduced pulmonary vascular remodeling and right ventricular systolic pressure. Together, our study identified a novel mechanism of endothelial autocrine signaling in regulating PVEC proliferation and pulmonary vascular remodeling in PAH.


Assuntos
Comunicação Autócrina , Quimiocina CXCL12/metabolismo , Células Endoteliais/metabolismo , Proteína Forkhead Box M1/metabolismo , Hipertensão Arterial Pulmonar/etiologia , Hipertensão Arterial Pulmonar/metabolismo , Receptores CXCR4/metabolismo , Transdução de Sinais , Animais , Biomarcadores , Células Cultivadas , Modelos Animais de Doenças , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Imunofluorescência , Humanos , Hipóxia/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Hipertensão Arterial Pulmonar/diagnóstico , Índice de Gravidade de Doença , Remodelação Vascular
12.
Am J Pathol ; 189(8): 1664-1679, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31121134

RESUMO

Endothelial barrier dysfunction is a central factor in the pathogenesis of persistent lung inflammation and protein-rich edema formation, the hallmarks of acute respiratory distress syndrome. However, little is known about the molecular mechanisms that are responsible for vascular repair and resolution of inflammatory injury after sepsis challenge. Herein, we show that hypoxia-inducible factor-1α (HIF-1α), expressed in endothelial cells (ECs), is the critical transcriptional factor mediating vascular repair and resolution of inflammatory lung injury. After sepsis challenge, HIF-1α but not HIF-2α expression was rapidly induced in lung vascular ECs, and mice with EC-restricted disruption of Hif1α (Hif1af/f/Tie2Cre+) exhibited defective vascular repair, persistent inflammation, and increased mortality in contrast with the wild-type littermates after polymicrobial sepsis or endotoxemia challenge. Hif1af/f/Tie2Cre+ lungs exhibited marked decrease of EC proliferation during recovery after sepsis challenge, which was associated with inhibited expression of forkhead box protein M1 (Foxm1), a reparative transcription factor. Therapeutic restoration of endothelial Foxm1 expression, via liposomal delivery of Foxm1 plasmid DNA to Hif1af/f/Tie2Cre+ mice, resulted in reactivation of the vascular repair program and improved survival. Together, our studies, for the first time, delineate the essential role of endothelial HIF-1α in driving the vascular repair program. Thus, therapeutic activation of HIF-1α-dependent vascular repair may represent a novel and effective therapy to treat inflammatory vascular diseases, such as sepsis and acute respiratory distress syndrome.


Assuntos
Células Endoteliais/metabolismo , Proteína Forkhead Box M1/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lesão Pulmonar/metabolismo , Pulmão/fisiologia , Regeneração , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Endoteliais/patologia , Feminino , Proteína Forkhead Box M1/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Lesão Pulmonar/etiologia , Lesão Pulmonar/genética , Lesão Pulmonar/patologia , Masculino , Camundongos , Camundongos Transgênicos , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/genética , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/patologia , Sepse/complicações , Sepse/genética , Sepse/metabolismo , Sepse/patologia
13.
Nat Immunol ; 9(8): 880-6, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18587400

RESUMO

Nonmuscle myosin light-chain kinase (MYLK) mediates increased lung vascular endothelial permeability in lipopolysaccharide-induced lung inflammatory injury, the chief cause of the acute respiratory distress syndrome. In a lung injury model, we demonstrate here that MYLK was also essential for neutrophil transmigration, but that this function was mostly independent of myosin II regulatory light chain, the only known substrate of MYLK. Instead, MYLK in neutrophils was required for the recruitment and activation of the tyrosine kinase Pyk2, which mediated full activation of beta(2) integrins. Our results demonstrate that MYLK-mediated activation of beta(2) integrins through Pyk2 links beta(2) integrin signaling to the actin motile machinery of neutrophils.


Assuntos
Antígenos CD18/metabolismo , Quinase de Cadeia Leve de Miosina/genética , Neutrófilos/patologia , Pneumonia/metabolismo , Sepse/imunologia , Animais , Camundongos , Pneumonia/patologia , Pneumonia/fisiopatologia , Sepse/genética , Sepse/fisiopatologia
14.
Circ Res ; 123(1): 43-56, 2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29794022

RESUMO

RATIONALE: Microvascular inflammation and endothelial dysfunction secondary to unchecked activation of endothelium play a critical role in the pathophysiology of sepsis and organ failure. The intrinsic signaling mechanisms responsible for dampening excessive activation of endothelial cells are not completely understood. OBJECTIVE: To determine the central role of YAP (Yes-associated protein), the major transcriptional coactivator of the Hippo pathway, in modulating the strength and magnitude of endothelial activation and vascular inflammation. METHODS AND RESULTS: Endothelial-specific YAP knockout mice showed increased basal expression of E-selectin and ICAM (intercellular adhesion molecule)-1 in endothelial cells, a greater number of adherent neutrophils in postcapillary venules and increased neutrophil counts in bronchoalveolar lavage fluid. Lipopolysaccharide challenge of these mice augmented NF-κB (nuclear factor-κB) activation, expression of endothelial adhesion proteins, neutrophil and monocyte adhesion to cremaster muscle venules, transendothelial neutrophil migration, and lung inflammatory injury. Deletion of YAP in endothelial cells also markedly augmented the inflammatory response and cardiovascular dysfunction in a polymicrobial sepsis model induced by cecal ligation and puncture. YAP functioned by interacting with the E3 ubiquitin-protein ligase TLR (Toll-like receptor) signaling adaptor TRAF6 (tumor necrosis factor receptor-associated factor 6) to ubiquitinate TRAF6, and thus promoted TRAF6 degradation and modification resulting in inhibition of NF-κB activation. TRAF6 depletion in endothelial cells rescued the augmented inflammatory phenotype in mice with endothelial cell-specific deletion of YAP. CONCLUSIONS: YAP modulates the activation of endothelial cells and suppresses vascular inflammation through preventing TRAF6-mediated NF-κB activation and is hence essential for limiting the severity of sepsis-induced inflammation and organ failure.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Células Endoteliais/fisiologia , Endotélio Vascular/fisiopatologia , Fosfoproteínas/fisiologia , Fator 6 Associado a Receptor de TNF/metabolismo , Vasculite/etiologia , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Permeabilidade Capilar , Adesão Celular , Proteínas de Ciclo Celular , Selectina E/metabolismo , Células Endoteliais/citologia , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Molécula 1 de Adesão Intercelular/metabolismo , Contagem de Leucócitos , Camundongos , Camundongos Knockout , Microvasos , Monócitos/fisiologia , NF-kappa B/metabolismo , Neutrófilos/citologia , Fosfoproteínas/deficiência , Fosfoproteínas/genética , Sepse/complicações , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Vênulas/citologia , Proteínas de Sinalização YAP
15.
Am J Respir Crit Care Med ; 198(11): 1423-1434, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29924941

RESUMO

RATIONALE: Pulmonary arterial hypertension (PAH) is a devastating disease characterized by progressive vasoconstriction and obliterative vascular remodeling that leads to right heart failure (RHF) and death. Current therapies do not target vascular remodeling and RHF, and result in only modest improvement of morbidity and mortality. OBJECTIVES: To determine whether targeting HIF-2α (hypoxia-inducible factor-2α) with a HIF-2α-selective inhibitor could reverse PAH and RHF in various rodent PAH models. METHODS: HIF-2α and its downstream genes were evaluated in lung samples and pulmonary arterial endothelial cells and smooth muscle cells from patients with idiopathic PAH as well as various rodent PAH models. A HIF-2α-selective inhibitor was used in human lung microvascular endothelial cells and in Egln1Tie2Cre mice, and in Sugen 5416/hypoxia- or monocrotaline-exposed rats. MEASUREMENTS AND MAIN RESULTS: Upregulation of HIF-2α and its target genes was observed in lung tissues and isolated pulmonary arterial endothelial cells from patients with idiopathic PAH and three distinct rodent PAH models. Pharmacological inhibition of HIF-2α by the HIF-2α translation inhibitor C76 (compound 76) reduced right ventricular systolic pressure and right ventricular hypertrophy and inhibited RHF and fibrosis as well as obliterative pulmonary vascular remodeling in Egln1Tie2Cre mice and Sugen 5416/hypoxia PAH rats. Treatment of monocrotaline-exposed PAH rats with C76 also reversed right ventricular systolic pressure, right ventricular hypertrophy, and pulmonary vascular remodeling; prevented RHF; and promoted survival. CONCLUSIONS: These findings demonstrate that pharmacological inhibition of HIF-2α is a promising novel therapeutic strategy for the treatment of severe vascular remodeling and right heart failure in patients with PAH.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Glicolipídeos/administração & dosagem , Insuficiência Cardíaca/fisiopatologia , Hipertensão Pulmonar/fisiopatologia , Remodelação Vascular/fisiologia , Animais , Western Blotting , Células Cultivadas , Modelos Animais de Doenças , Feminino , Imunofluorescência , Insuficiência Cardíaca/complicações , Humanos , Hipertensão Pulmonar/complicações , Masculino , Camundongos , Reação em Cadeia da Polimerase , Ratos , Ratos Sprague-Dawley , Regulação para Cima/fisiologia
16.
Am J Respir Crit Care Med ; 198(6): 788-802, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29664678

RESUMO

RATIONALE: Angioproliferative vasculopathy is a hallmark of pulmonary arterial hypertension (PAH). However, little is known about how endothelial cell (EC) and smooth muscle cell (SMC) crosstalk regulates the angioproliferative vascular remodeling. OBJECTIVES: To investigate the role of EC and SMC interaction and underlying signaling pathways in pulmonary hypertension (PH) development. METHODS: SMC-specific Foxm1 (forkhead box M1) or Cxcr4 knockout mice, EC-specific Foxm1 or Egln1 knockout mice, and EC-specific Egln1/Cxcl12 double knockout mice were used to assess the role of FoxM1 on SMC proliferation and PH. Lung tissues and cells from patients with PAH were used to validate clinical relevance. FoxM1 inhibitor thiostrepton was used in Sugen 5416/hypoxia- and monocrotaline-challenged rats. MEASUREMENTS AND MAIN RESULTS: FoxM1 expression was markedly upregulated in lungs and pulmonary arterial SMCs of patients with idiopathic PAH and four discrete PH rodent models. Mice with SMC- (but not EC-) specific deletion of Foxm1 were protected from hypoxia- or Sugen 5416/hypoxia-induced PH. The upregulation of FoxM1 in SMCs induced by multiple EC-derived factors (PDGF-B, CXCL12, ET-1, and MIF) mediated SMC proliferation. Genetic deletion of endothelial Cxcl12 in Egln1Tie2Cre mice or loss of its cognate receptor Cxcr4 in SMCs in hypoxia-treated mice inhibited FoxM1 expression, SMC proliferation, and PH. Accordingly, pharmacologic inhibition of FoxM1 inhibited severe PH in both Sugen 5416/hypoxia and monocrotaline-challenged rats. CONCLUSIONS: Multiple factors derived from dysfunctional ECs induced FoxM1 expression in SMCs and activated FoxM1-dependent SMC proliferation, which contributes to pulmonary vascular remodeling and PH. Thus, targeting FoxM1 signaling represents a novel strategy for treatment of idiopathic PAH.


Assuntos
Endotélio Vascular/fisiopatologia , Proteína Forkhead Box M1/fisiologia , Hipertensão Pulmonar/patologia , Músculo Liso Vascular/fisiopatologia , Remodelação Vascular , Animais , Endotélio Vascular/metabolismo , Proteína Forkhead Box M1/metabolismo , Humanos , Hipertensão Pulmonar/metabolismo , Camundongos , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Transdução de Sinais
17.
Proc Natl Acad Sci U S A ; 113(50): E8151-E8158, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27911817

RESUMO

TNFα-stimulated gene-6 (TSG6), a 30-kDa protein generated by activated macrophages, modulates inflammation; however, its mechanism of action and role in the activation of macrophages are not fully understood. Here we observed markedly augmented LPS-induced inflammatory lung injury and mortality in TSG6-/- mice compared with WT (TSG6+/+) mice. Treatment of mice with intratracheal instillation of TSG6 prevented LPS-induced lung injury and neutrophil sequestration, and increased survival in mice. We found that TSG6 inhibited the association of TLR4 with MyD88, thereby suppressing NF-κB activation. TSG6 also prevented the expression of proinflammatory proteins (iNOS, IL-6, TNFα, IL-1ß, and CXCL1) while increasing the expression of anti-inflammatory proteins (CD206, Chi3l3, IL-4, and IL-10) in macrophages. This shift was associated with suppressed activation of proinflammatory transcription factors STAT1 and STAT3. In addition, we observed that LPS itself up-regulated the expression of TSG6 in TSG6+/+ mice, suggesting an autocrine role for TSG6 in transitioning macrophages. Thus, TSG6 functions by converting macrophages from a proinflammatory to an anti-inflammatory phenotype secondary to suppression of TLR4/NF-κB signaling and STAT1 and STAT3 activation.


Assuntos
Moléculas de Adesão Celular/imunologia , Lesão Pulmonar/prevenção & controle , Macrófagos/imunologia , Animais , Moléculas de Adesão Celular/deficiência , Moléculas de Adesão Celular/genética , Reprogramação Celular/imunologia , Inflamação/prevenção & controle , Mediadores da Inflamação/imunologia , Lipopolissacarídeos/toxicidade , Pulmão/irrigação sanguínea , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Ativação de Macrófagos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Fenótipo , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo
18.
Circulation ; 133(24): 2447-58, 2016 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-27143681

RESUMO

BACKGROUND: Vascular occlusion and complex plexiform lesions are hallmarks of the pathology of severe pulmonary arterial hypertension (PAH) in patients. However, the mechanisms of obliterative vascular remodeling remain elusive; hence, current therapies have not targeted the fundamental disease-modifying mechanisms and result in only modest improvement in morbidity and mortality. METHODS AND RESULTS: Mice with Tie2Cre-mediated disruption of Egln1 (encoding prolyl-4 hydroxylase 2 [PHD2]; Egln1(Tie2)) in endothelial cells and hematopoietic cells exhibited spontaneous severe PAH with extensive pulmonary vascular remodeling, including vascular occlusion and plexiform-like lesions, resembling the hallmarks of the pathology of clinical PAH. As seen in patients with idiopathic PAH, Egln1(Tie2) mice exhibited unprecedented right ventricular hypertrophy and failure and progressive mortality. Consistently, PHD2 expression was diminished in lung endothelial cells of obliterated pulmonary vessels in patients with idiopathic PAH. Genetic deletions of both Egln1 and Hif1a or Egln1 and Hif2a identified hypoxia-inducible factor-2α as the critical mediator of the severe PAH seen in Egln1(Tie2) mice. We also observed altered expression of many pulmonary hypertension-causing genes in Egln1(Tie2) lungs, which was normalized in Egln1(Tie2)/Hif2a(Tie2) lungs. PHD2-deficient endothelial cells promoted smooth muscle cell proliferation in part through hypoxia-inducible factor-2α-activated CXCL12 expression. Genetic deletion of Cxcl12 attenuated PAH in Egln1(Tie2) mice. CONCLUSIONS: These studies defined an unexpected role of PHD2 deficiency in the mechanisms of severe PAH and identified the first genetically modified mouse model with obliterative vascular remodeling and pathophysiology recapitulating clinical PAH. Thus, targeting PHD2/hypoxia-inducible factor-2α signaling is a promising strategy to reverse vascular remodeling for treatment of severe PAH.


Assuntos
Hipertensão Pulmonar/enzimologia , Hipertensão Pulmonar/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Músculo Liso Vascular/enzimologia , Prolil Hidroxilases/deficiência , Animais , Cardiomegalia/enzimologia , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Modelos Animais de Doenças , Células Endoteliais/enzimologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Hipertensão Pulmonar/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia
19.
Circulation ; 133(2): 177-86, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26538583

RESUMO

BACKGROUND: The blood-brain barrier (BBB) formed by brain endothelial cells interconnected by tight junctions is essential for the homeostasis of the central nervous system. Although studies have shown the importance of various signaling molecules in BBB formation during development, little is known about the molecular basis regulating the integrity of the adult BBB. METHODS AND RESULTS: Using a mouse model with tamoxifen-inducible endothelial cell-restricted disruption of ctnnb1 (iCKO), we show here that endothelial ß-catenin signaling is essential for maintaining BBB integrity and central nervous system homeostasis in adult mice. The iCKO mice developed severe seizures accompanied by neuronal injury, multiple brain petechial hemorrhages, and central nervous system inflammation, and all had postictal death. Disruption of endothelial ß-catenin induced BBB breakdown and downregulation of the specific tight junction proteins claudin-1 and -3 in adult brain endothelial cells. The clinical relevance of the data is indicated by the observation of decreased expression of claudin-1 and nuclear ß-catenin in brain endothelial cells of hemorrhagic lesions of hemorrhagic stroke patients. CONCLUSIONS: These results demonstrate the prerequisite role of endothelial ß-catenin in maintaining the integrity of adult BBB. The results suggest that BBB dysfunction secondary to defective ß-catenin transcription activity is a key pathogenic factor in hemorrhagic stroke, seizure activity, and central nervous system inflammation.


Assuntos
Gânglios da Base/metabolismo , Barreira Hematoencefálica/fisiologia , Hemorragia Cerebral/metabolismo , beta Catenina/deficiência , beta Catenina/fisiologia , Adulto , Idoso , Animais , Ataxia/etiologia , Encéfalo/patologia , Hemorragia Cerebral/etiologia , Claudina-1/biossíntese , Claudina-1/deficiência , Claudina-1/genética , Claudina-3/biossíntese , Claudina-3/genética , Cruzamentos Genéticos , Citocinas/biossíntese , Citocinas/genética , Regulação para Baixo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Genes Reporter , Homeostase , Humanos , Hiperestesia/etiologia , Inflamação , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Especificidade de Órgãos , Interferência de RNA , Convulsões/etiologia , Junções Íntimas , Transgenes , beta Catenina/biossíntese , beta Catenina/genética
20.
Circulation ; 133(11): 1093-103, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26839042

RESUMO

BACKGROUND: The integrity of endothelial monolayer is a sine qua non for vascular homeostasis and maintenance of tissue-fluid balance. However, little is known about the signaling pathways regulating regeneration of the endothelial barrier after inflammatory vascular injury. METHODS AND RESULTS: Using genetic and pharmacological approaches, we demonstrated that endothelial regeneration selectively requires activation of p110γPI3K signaling, which thereby mediates the expression of the endothelial reparative transcription factor Forkhead box M1 (FoxM1). We observed that FoxM1 induction in the pulmonary vasculature was inhibited in mice treated with a p110γ-selective inhibitor and in Pik3cg(-/-) mice after lipopolysaccharide challenge. Pik3cg(-/-) mice exhibited persistent lung inflammation induced by sepsis and sustained increase in vascular permeability. Restoration of expression of either p110γ or FoxM1 in pulmonary endothelial cells of Pik3cg(-/-) mice restored endothelial regeneration and normalized the defective vascular repair program. We also observed diminished expression of p110γ in pulmonary vascular endothelial cells of patients with acute respiratory distress syndrome, suggesting that impaired p110γ-FoxM1 vascular repair signaling pathway is a critical factor in persistent leaky lung microvessels and edema formation in the disease. CONCLUSIONS: We identify p110γ as the critical mediator of endothelial regeneration and vascular repair after sepsis-induced inflammatory injury. Thus, activation of p110γ-FoxM1 endothelial regeneration may represent a novel strategy for the treatment of inflammatory vascular diseases.


Assuntos
Classe Ib de Fosfatidilinositol 3-Quinase/fisiologia , Endotélio Vascular/enzimologia , Regeneração/fisiologia , Síndrome do Desconforto Respiratório/enzimologia , Androstadienos/farmacologia , Animais , Síndrome de Vazamento Capilar/patologia , Síndrome de Vazamento Capilar/fisiopatologia , Permeabilidade Capilar/fisiologia , Células Cultivadas , Classe Ib de Fosfatidilinositol 3-Quinase/deficiência , Classe Ib de Fosfatidilinositol 3-Quinase/genética , Endotélio Vascular/lesões , Endotélio Vascular/fisiologia , Ativação Enzimática/efeitos dos fármacos , Indução Enzimática/efeitos dos fármacos , Proteína Forkhead Box M1 , Fatores de Transcrição Forkhead/biossíntese , Fatores de Transcrição Forkhead/deficiência , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/fisiologia , Furanos/farmacologia , Humanos , Pulmão/irrigação sanguínea , Camundongos , Camundongos Knockout , Microvasos/metabolismo , Microvasos/fisiopatologia , Neutrófilos/fisiologia , Inibidores de Fosfoinositídeo-3 Quinase , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/fisiologia , Edema Pulmonar/patologia , Edema Pulmonar/fisiopatologia , Piridinas/farmacologia , Pirimidinas/farmacologia , Quinoxalinas/farmacologia , Proteínas Recombinantes de Fusão/metabolismo , Síndrome do Desconforto Respiratório/patologia , Sepse/patologia , Sepse/fisiopatologia , Transdução de Sinais/efeitos dos fármacos , Tiazolidinedionas/farmacologia , Transfecção , Wortmanina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA