Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Pathol ; 259(2): 125-135, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36318158

RESUMO

Colorectal adenoma is a recognized precancerous lesion of colorectal cancer (CRC), and at least 80% of colorectal cancers are malignantly transformed from it. Therefore, it is essential to distinguish benign from malignant adenomas in the early screening of colorectal cancer. Many deep learning computational pathology studies based on whole slide images (WSIs) have been proposed. Most approaches require manual annotation of lesion regions on WSIs, which is time-consuming and labor-intensive. This study proposes a new approach, MIST - Multiple Instance learning network based on the Swin Transformer, which can accurately classify colorectal adenoma WSIs only with slide-level labels. MIST uses the Swin Transformer as the backbone to extract features of images through self-supervised contrastive learning and uses a dual-stream multiple instance learning network to predict the class of slides. We trained and validated MIST on 666 WSIs collected from 480 colorectal adenoma patients in the Department of Pathology, The Affiliated Drum Tower Hospital of Nanjing University Medical School. These slides contained six common types of colorectal adenomas. The accuracy of external validation on 273 newly collected WSIs from Nanjing First Hospital was 0.784, which was superior to the existing methods and reached a level comparable to that of the local pathologist's accuracy of 0.806. Finally, we analyzed the interpretability of MIST and observed that the lesion areas of interest in MIST were generally consistent with those of interest to local pathologists. In conclusion, MIST is a low-burden, interpretable, and effective approach that can be used in colorectal cancer screening and may lead to a potential reduction in the mortality of CRC patients by assisting clinicians in the decision-making process. © 2022 The Pathological Society of Great Britain and Ireland.


Assuntos
Adenocarcinoma , Adenoma , Neoplasias Colorretais , Humanos , Patologistas , Reino Unido
2.
Environ Res ; 243: 117851, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38065386

RESUMO

A simple, efficient and low energy-consuming process available to generate resultful radicals from PMS for organic pollutants removal had been employed in this study. Slag had been used as the activator for organic pollutants degradation under slag/PMS advanced oxidation process. In this work, effects of slag with or without pretreatment on pollutant removal were studied and radical species generated by slag were measured. Calcination pretreatment is one efficient method to enhance the degradation efficiency significantly. Due to Fe3O4 and Fe2O3 became the dominant phases after calcination, it was about 8.6-flods increasing after comparing the pollutant removal efficiency for different slag/PMS system with calcination pretreatment or not. Organic pollutant neither degraded in PMS system at 25 °C nor being absorbed by slag system for 60 min. On the contrary, up to 90% pollutant concentration reduction achieved in the slag/PMS process. During this process, both •OH and SO4•- had been detected once slag and PMS interaction in wastewater. Through the free radicals quenching tests,•OH should be the key free radical in this advanced oxidation process for the organic pollutant removal under this alkaline condition. In general, organic degradation rate was determined by the slag dosage, and the maximum degradation efficiency was mainly controlled by the PMS usage. This work is expected to broaden the high-value reutilization way for industrial solid waste.


Assuntos
Poluentes Ambientais , Resíduos Sólidos , Peróxidos , Oxirredução
3.
Environ Res ; 246: 118033, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38157957

RESUMO

The application of anaerobic digestion (AD) in the treatment of food waste (FW) has become widespread. However, the presence of inert substances, such as bones, ceramics, and shells, within FW introduces a degree of uncertainty into the AD process. To clarify this intricate issue, this study conducted an in-depth investigation into the influence of inert substances on AD. The results revealed that when inert substances were present at a concentration of 0.08 g/g VSS, methane productivity in the AD process was significantly augmented by 86%. Subsequent investigations suggested that this positive effect was primarily evident in various biochemical processes, including solubilization, hydrolysis acidification, methanogenesis, and the accumulation of extracellular polymeric substances. Metagenomic analysis showed that inert substances enhance the relative abundance of hydrolytic bacteria and have a pronounced impact on the relative abundance of hydrogenotrophic methanogens (Methanosarcina) and acetotrophic methanogens (Methanobacterium). Additionally, inert substances significantly increased the relative abundance of functional genes in oxidative phosphorylation, a pivotal pathway for ATP synthesis. Furthermore, inert substances had a substantial effect on the functional genes related to the metabolic pathways associated with methanogenesis (both hydrogenotrophic and acetotrophic). This comprehensive study shed light on the substantial impact of inert substances on the AD of food waste, contributing to an enhanced understanding of the underlying mechanisms of anaerobic fermentation.


Assuntos
Perda e Desperdício de Alimentos , Eliminação de Resíduos , Anaerobiose , Reatores Biológicos , Fosforilação Oxidativa , Alimentos , Metano , Esgotos/microbiologia
4.
J Environ Manage ; 356: 120666, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490005

RESUMO

The persistent combustion of fossil fuels has resulted in a widespread greenhouse effect attributable to the continual elevation of carbon dioxide (CO2) levels in the atmosphere. Recent research indicates that utilizing CO2 as a pyrolysis gasification medium diminishes CO2 emissions and concurrently augments the value of the resultant pyrolysis gasification products. This paper reviews recent advancements in the pyrolysis gasification of organic solid wastes under a CO2 atmosphere. Meanwhile, the mechanisms of CO2 influence in the pyrolysis and gasification processes were also discussed. In comparison to noble gases, CO2 exhibits reactivity with char at≥710 °C, resulting in additional mass loss of the sample. In addition, CO2 was able to increase the specific surface area and stability of biochar and reduce biooil toxicity by lowering the content of cyclic compounds in the biooil, while CO2 was able to react with GPRs with some volatile products (e.g., light hydrocarbons) to increase biogas yield. Finally, CO2 also prevents catalyst deactivation by reducing secondary coke formation. We also recommend directing future attention toward utilizing unpurified CO2 in pyrolysis and gasification. This review aims to expand the utilization of CO2 and advocate for applying pyrolysis gasification products.


Assuntos
Dióxido de Carbono , Pirólise , Fenômenos Químicos , Catálise , Resíduos Sólidos
5.
J Environ Manage ; 356: 120608, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508008

RESUMO

Red mud (RM) is a kind of strong alkaline solid waste produced from the aluminum industry, which contributes significantly to environmental pollution and can cause severe health issues.Currently, RM is widely recognized as a potential material for soil remediation because of its rich metal oxide content, such as Fe/Al oxides. However, there is no comprehensive description on the roles of RM in passivation remediation of contaminated soil in mining areas. This review summarizes the mechanisms of passivation of heavy metals (HMs) in contaminated soil by RM, including precipitation, adsorption and ion exchange. Besides the effects of adding RM on soil physicochemical properties, heavy metal forms and ecological environment are further elaborated. Moreover, using the co-hydrothermal carbonization of RM and biomass for enhancing the efficiency of contaminated soil remediation is proposed as the main prospective research. This paper provides technical references for the resource utilization of RM and the treatment of heavy metal-contaminated soil.


Assuntos
Recuperação e Remediação Ambiental , Metais Pesados , Poluentes do Solo , Estudos Prospectivos , Metais Pesados/química , Poluição Ambiental , Solo/química , Alumínio , Óxidos , Poluentes do Solo/análise
6.
Environ Res ; 217: 114815, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36400224

RESUMO

Molten salt has been increasingly acknowledged to be useful in the destruction of chlorine-containing organic wastes (COWs), e.g., organochlorine. However, the operational temperatures are usually high, and local structure and thermodynamic property of the molten salt remain largely unclear. In this study, novel molten NaOH-KOH is developed for organochlorine destruction, and its eutectic point can be lowered to 453 K with 1:1 mol ratio of NaOH to KOH. Further experiment shows that this molten NaOH-KOH is highly-efficient towards the destructions of both trichlorobenzene and dichlorophenol, acquiring the final dechlorination efficiencies as 88.2% and 94.1%, respectively. The organochlorine destruction and chloride salt enrichment are verified by fourier-transform infrared spectrometer. Molten NaOH-KOH not only eliminates the C-Cl and CC bonds, but also traps generated CO2, other acidic gases, and possibly particulate matters as a result of the high surface area and high viscosity. This makes it possibly advantageous over incineration for organic waste destruction for carbon neutrality. To sufficiently reveal the inherent mechanism for the temperature dependent performance, molecular dynamics simulation is further adopted. Results show that the radial distance between ions increases with temperature, causing larger molar volume and lower resistance to shear deformation. Moreover, thermal expansion coefficient, specific heat capacity, and ion self-diffusion coefficient of the molten NaOH-KOH are found to increase linearly with temperature. All these microscopic alterations contribute to the organochlorine destruction. This study benefits to develop highly-efficient molten system for COWs treatment via a low-carbon approach.


Assuntos
Cloro , Cloreto de Sódio , Hidróxido de Sódio , Cloro/química , Incineração , Carbono
7.
Ecotoxicol Environ Saf ; 263: 115249, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37441948

RESUMO

Precisely predicting the amount of household hazardous waste (HHW) and classifying it intelligently is crucial for effective city management. Although data-driven models have the potential to address these problems, there have been few studies utilizing this approach for HHW prediction and classification due to the scarcity of available data. To address this, the current study employed the prophet model to forecast HHW quantities based on the Integration of Two Networks systems in Shanghai. HHW classification was performed using HVGGNet structures, which were based on VGG and transfer learning. To expedite the process of finding the optimal global learning rate, the method of cyclical learning rate was adopted, thus avoiding the need for repeated testing. Results showed that the average rate of HHW generation was 0.1 g/person/day, with the most significant waste categories being fluorescent lamps (30.6 %), paint barrels (26.1 %), medicine (26.2 %), battery (15.8 %), thermometer (0.03 %), and others (1.22 %). Recovering rare earth element (18.85 kg), Cd (3064.10 kg), Hg (15643.43 kg), Zn (14239.07 kg), Ag (11805.81 kg), Ni (4956.64 kg) and Li (1081.45 kg) from HHW can help avoid groundwater pollution, soil contamination and air pollution. HVGGNet-11 demonstrated 90.5 % precision and was deemed most suitable for HHW sorting. Furthermore, the prophet model predicted that HHW in Shanghai would increase from 794.43 t in 2020 to 2049.67 t in 2025.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Humanos , Eliminação de Resíduos/métodos , Resíduos Perigosos/análise , Produtos Domésticos , China , Poluição Ambiental/análise , Gerenciamento de Resíduos/métodos
8.
J Environ Manage ; 328: 116962, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36470002

RESUMO

The present study experimentally quantified the pyrolysis behaviors of waste solvent-based automotive paint sludge (OAPS) and water-based automotive paint sludge (WAPS) at four different heating rates using thermogravimetric-Fourier transform infrared (TG-FTIR) spectrometry and pyrolysis-gas chromatography-mass (Py-GC/MS) spectrometry analyses. Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS) methods combined with the master-plots method were employed to investigate the pyrolysis kinetics and reaction mechanisms of waste automotive paint sludge. Three reaction stages and three reaction peaks in stage 2 were distinguished for both OAPS and WAPS degradation. The average activation energy (Ea) estimates for OAPS (FWO: 179.09 kJ/mol; KAS: 168.28 kJ/mol) were slightly higher than WAPS (FWO: 175.90 kJ/mol; KAS: 164.80 kJ/mol) according to FWO and KAS methods. The main pyrolysis reaction mechanisms of both OAPS and WAPS closely matched with the order-based model corresponding to 3rd and 2nd order random nucleation on an individual particle. The evolved gas species of CH4, CO2, phenols, NH3, H2O, and CO from OAPS and WAPS pyrolysis were identified by TG-FTIR. According to Py-GC/MS, hydrocarbons (47.2%) and O-components (42.7%) were relatively large after OAPS and WAPS pyrolysis, respectively. Melamine was the most abundant N-component product after pyrolysis of OAPS (5.8%) and WAPS (4.8%).


Assuntos
Pirólise , Esgotos , Cromatografia Gasosa-Espectrometria de Massas , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Gases , Pintura
9.
J Environ Manage ; 306: 114462, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35032937

RESUMO

The efficient classification and resource conversion of landfilled refuse can simultaneously realize the secondary pollution prevention and land replacement. This work aimed to investigate the waste plastic resource recovery from landfilled refuse via a novel waterless cleaning method. Composition analysis showed that the content of waste plastic from landfilled refuse had differences between different regions, and the specific weight content range was between 15-40%. Moreover, when the landfill time was less than 7 years, the high calorific value (>35 MJ/kg) and mechanical property (declining range <3%) of waste plastic were basically the same as those of the original waste plastic, indicating a high resource attribute. However, due to the high degree of pollution, it was difficult to directly make high-value utilization. Furthermore, a waterless device was designed for waste plastic cleaning, and 94% cleaning rate was obtained with the optimal conditions of the sand medium particle size of 4-14 mesh, stirring speed of 50 r/min, and the operation time of 45 min. The actual on-site pilot test was carried out under the best conditions, and the results showed that the cleaning rate of waste plastic could reach 90%. On the basis, cost-benefit analysis of different waste plastic recycling methods was carried out. Compared with the other four methods, direct extrusion molding after multi-effect cleaning had lower resource consumption (cost of 88.64 RMB), higher economic benefit (net income of 311.36 RMB), and was more in line with the characteristics of raw materials. This research can provide scientific basis and technical support for the cleaning and upgrading and resource utilization of plastic in refuse.


Assuntos
Resíduos de Alimentos , Eliminação de Resíduos , Gerenciamento de Resíduos , Análise Custo-Benefício , Plásticos , Reciclagem , Resíduos Sólidos , Instalações de Eliminação de Resíduos
10.
J Environ Manage ; 302(Pt A): 114054, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34872182

RESUMO

Volatile organic compounds (VOCs) emitting from solid building materials can cause adverse human health and environmental climate effects. It's more cost effective and powerful for mass-transfer emission models to describe the emission characteristic of VOCs than emission chamber studies. In this review, the existing main physical mechanism-based models for predicting VOCs emissions from dry solid building materials have been discussed, as well as their differences and similarities. Ignoring internal diffusion and porosity of solid materials, single-phase model is generally quite safe for use in actual condition. Conversely, porous media model is good for understanding VOC-transfer principles in porous materials. Additionally, the porous media model and the single-phase model can be transformed mutually because their model parameters are correlative. The availability of emission models is largely determined by the reliable and useful model parameters. Therefore, substantial technologies and novel methods have been developed for parameter estimation, which have also been reviewed in this paper. How to readily and rapidly obtain model parameters is a future development direction. In addition, applying emission models to predict and control VOCs emission from other solid waste materials is another future research prospect.


Assuntos
Poluição do Ar em Ambientes Fechados , Compostos Orgânicos Voláteis , Poluição do Ar em Ambientes Fechados/análise , Materiais de Construção , Difusão , Humanos , Porosidade , Compostos Orgânicos Voláteis/análise
11.
J Environ Manage ; 318: 115501, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35717691

RESUMO

The sorting of Construction and Demolition (C&D) waste is a critical step to linking the recycling system and to the macro prediction, which helps to promote the development of the circular economy. Moreover, the effective classification and automated separation process will also help to stop the spreading of pathogenic organisms, such as virus and bacteria, by minimizing human intervention in the sorting process, while also helping to prevent further contamination by COVID-19 virus. This study aims to develop an efficient method to sort C&D waste through deep learning combined with knowledge transfer approach. In this paper, CVGGNet models, that is four VGG structures (VGGNet-11, VGGNet-13, VGGNet-16, and VGGNet-19), based on knowledge transfer combined with the technology of data augmentation and cyclical learning rate, are proposed to classify ten types of C&D waste images. Results show that 2.5 × 10-4, 1.8 × 10-4, 0.8 × 10-4, and 1.0 × 10-4 are the optimum learning rate for CVGGNet-11, CVGGNet-13, CVGGNet-16, and CVGGNet-19, respectively. Knowledge transfer helped shorten the training time from 1039.45 s to 991.05 s, and while it improved the performance of the CVGGNet-11 model in training, validation, and test datasets. The average training time increases as the number of the layers in the CVGGNet architecture rises: CVGGNet-11 (991.05 s) ˂ CVGGNet-13 (1025.76 s) ˂ CVGGNet-16 (1090.48 s) ˂ CVGGNet-19 (1337.81 s). Compared to other CVGGNet models, CVGGNet-16 showed an excellent performance in various C&D waste types, in terms of accuracy (76.6%), weighted average precision (76.8%), weighted average recall (76.6%), weighted average F1-score (76.6%) and micro average ROC (87.0%). In addition, the t-distributed Stochastic Neighbor Embedding (t-SNE) approach can reduce the dataset to a lower dimension and distinctly separate each type of C&D waste. This study demonstrates the good performance of CVGGNet models that can be used to automatically sort most of the C&D waste, paving the way for better C&D waste management.


Assuntos
COVID-19 , Gerenciamento de Resíduos , Humanos , Redes Neurais de Computação , Reciclagem
12.
J Environ Manage ; 317: 115369, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35623130

RESUMO

Volatile organic compounds (VOCs) diffused from paint sludge are potential hazard contributing significantly to environmental pollution and exposure to them can cause severe health issues. In this paper, a diffusion-controlled model was firstly developed for characterizing the emission behaviors of cumulative VOCs from automotive solvent-based paint sludge based on the worst field management scenario. The presented model is characterized by two key parameters: the diffusion coefficient (Dm) and the initial emittable concentration (Cm,0), which can be simultaneously obtained by our proposed ER-history method. Four major components were detected including 1-butanol, butyl acetate and 1,2,4-trimethylbenzene and 1-ethyl-4-methylbenzene. In addition, the model was validated by using environmental data in a ventilated test chamber, proving that the model is reliable and convincing. However, relative deviations of 1-butanol and butyl acetate are larger than those of 1,2,4-trimethylbenzene and 1-ethyl-4-methylbenzene, indicating that the model is more accurate for predicting hydrophobic VOCs release than those of hydrophilic VOCs. Besides, an increase in Cm,0 and Dm tends to enhance VOCs cumulation release. Our studies provide new insight into experimental designs for rapid model parameters measurement and a sound basis for estimating VOCs cumulative release from paint sludge as well as for hazardous waste.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , 1-Butanol , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Pintura , Esgotos , Solventes , Compostos Orgânicos Voláteis/análise
13.
J Environ Manage ; 297: 113414, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34351303

RESUMO

Great deal pathogenic bacteria and malodorous gases are hidden in municipal solid waste (MSW), which poses excellent environmental sanitation risks for sanitation workers and residents, and preventive measures should be implemented. In this study, the simultaneous annihilation of microorganisms and volatile organic compounds (VOCs) with slightly acidic electrolyzed water (SAEW) was investigated in an MSW storage room of a residential community in Shanghai, China. The microbial population of airborne, surfaces and handles of waste bins, hands of sanitation workers and the main components of VOCs were measured. The results indicated that the bacterial reduction efficiencies of SAEW with an available chlorine concentration (ACC) of 50-100 mg/L on surfaces and handles of waste bins and sanitation workers' hands were 22.7%-84.1%. Also, SAEW effectively reduced the average population of airborne bacteria and fungi by 358 and 378 colony-forming units (CFU)/m3 and decreased the detection rates of coliforms by 14.2%-51.9%. The concentrations of most VOCs were reduced by 21.4%-88.3% after spraying SAEW. And the accumulated values of carcinogenic and noncarcinogenic risks also tended to decrease with spraying SAEW. These findings imply that SAEW has significant application potential to control environmental sanitation risks in MSW storage rooms.


Assuntos
Desinfetantes , Compostos Orgânicos Voláteis , China , Desinfecção , Humanos , Resíduos Sólidos , Água
14.
J Environ Manage ; 298: 113429, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34358941

RESUMO

Sludge management represents a critical challenge because of complex compositions and poor dewaterability. Fe2+-activated persulfate oxidation (Fe2+/S2O82-) is an effective, and widely investigated method for enhancing sludge dewatering. However, the potential effects of Fe2+/S2O82- on sludge drying efficiency, anaerobic biodegradation behaviors and potential recycling of sludge residua are not yet well-known. In this study, a new sludge disposal route (step i: enhanced dewatering via Fe2+/S2O82-, and step ii: drying-incineration or anaerobic digestion) was proposed and appraised comprehensively. Results showed that Fe2+/S2O82- oxidation destroyed extracellular polymeric substances, lysed sludge cells and enhanced the dewaterability greatly. Capillary suction time and mechanical filtration time at 2.0/1.6 mmol-Fe2+/S2O82-/g-VS decreased by 88.0% and 79.6%, respectively. Moreover, 89.8% of micro-pollutants (e.g., methylbenzene, ethylbenzene, p-m-xylene and o-xylene) in sludge were removed. Besides, the pretreatment was able to alter sludge drying behaviors and methane-producing potential. Pretreated sludge exhibited faster drying rate and shorter lag-time for methane production. Incineration residua of dewatered sludge could be re-coupled with S2O82- as the conditioner to enhance sludge dewaterability, thereby reducing the chemical input and disposal cost. This study provides a novel, self-sustainable strategy for sludge management, reutilization and final safe disposal.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Metano , Oxirredução , Água
15.
Med Sci Monit ; 25: 6916-6921, 2019 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-31519868

RESUMO

BACKGROUND Targeting of PD-1/PD-L1 immune checkpoints exhibits excellent clinical outcomes in numerous types of solid tumors, including gastric cancer. However, the tumor microenvironment of gastric cancer is very complex and the association of PD-L1 with the tumor microenvironment in gastric cancer is still not clear. MATERIAL AND METHODS This study analyzed the characteristics of PD-L1 expression and used immunohistochemistry to assess CD8 and CD4 tumor-infiltrating leucocytes (TILs) in 478 cases of gastric cancer compared with the expression patterns in 70 matched adjacent tissues, and 32 cases of benign gastric tissues. Standardized methods for TILs assessment in gastric cancer were used. RESULTS The results indicated that PD-L1 expression was increased in gastric cancer tissues (193 out of 478, 40.37%) compared with matched adjacent tissues (14 out of 70, 20.00%) and benign gastric tissues (10 out of 32, 31.25%). It was observed that in gastric cancer patients, positive PD-L1 status in tumor cells (tPD-L1) was associated with distant metastasis (χ²=3.344, P=0.044). The positive expression pattern of tPD-L1 was associated with higher density of TILs, and this pattern was most significant in the non-metastasis group, compared to the metastasis group. We also found that tPD-L1 was not prognostic for overall survival in gastric cancer patients, but tPD-L1 and tCD8 combined positive status in gastric cancer patients was strongly associated with better overall survival rates both in the univariate analysis [hazard ratio (HR)=2.341, 95% confidence interval (CI)=1.147-3.556, P<0.001 and in the multivariate analysis (HR=1.844, 95% CI=1.136-2.592, P=0.031). CONCLUSIONS These data suggested an interaction between tPD-L1 expression and TILs in gastric cancer, and tPD-L1 expression positively correlated with high densities of tCD8 and indicated a better overall survival and decreased metastasis in gastric cancer patients.


Assuntos
Antígeno B7-H1/metabolismo , Neoplasias Gástricas/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Humanos , Estimativa de Kaplan-Meier , Linfócitos do Interstício Tumoral/imunologia , Neoplasias Gástricas/patologia , Resultado do Tratamento
16.
J Environ Sci (China) ; 77: 104-114, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30573074

RESUMO

Stereoscopic porous carbons have shown good potential in humic acid (HA) removal. In this work, a novel stereoscopic porous activated carbon (SPAC) was designed and synthesized via the self-assembly of a hydrogel based on food waste during in-situ polymerization, vacuum drying, carbonization, and activation. Then, the SPAC was functionalized with 3-aminopropyltriethoxysilane (APTES) and the adsorption behavior of the modified SPAC (SPAC-NH2) was studied systematically. The effects of pH, contact time, initial concentration of HA, and adsorbent dose were investigated, showing that optimal HA removal efficiency (>98.0%) could be achieved at an initial HA concentration of 100 mg/L. The experimental adsorption isotherm data was fitted to the Langmuir model with a maximum adsorption capacity of 156.0 mg HA/g SPAC-NH2. Analysis of the mechanism indicated that the removal of HA was mainly realized through the amidization reaction between the COOH groups of HA and the NH2 groups of APTES. All of the above results showed that SPAC-NH2 powder is an efficient, eco-friendly, and reusable adsorbent which is suitable for the removal of HA from wastewater.


Assuntos
Resinas Acrílicas/química , Carvão Vegetal/química , Alimentos , Substâncias Húmicas , Hidrogéis/química , Resíduos , Água/química , Adsorção , Concentração de Íons de Hidrogênio , Porosidade , Fatores de Tempo
17.
J Environ Sci (China) ; 82: 192-202, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31133264

RESUMO

Hazardous waste dechlorination reduces the potential of creating dioxins during the incineration process. To investigate the salt effect on waste dechlorination, molten hydroxides with a low melting temperature were utilized for the pre-dechlorination and decomposition of chlorine-containing organic wastes (COWs) including trichlorobenzene (TCB), perchloroethylene, hexachlorobenzene and chlordane. The results showed that a eutectic mixture of caustic sodium and potassium hydroxides (41 wt.% NaOH and 59 wt.% KOH) led to a low melting point below 300°C and a relatively high chlorine retention efficiency (CRE) with TCB as a representative COWs. The amounts of hydroxides, reaction time, and temperature all had notable influence on CRE. When the mass ratio of hydroxides to TCB reached 30:1, approximately 98.1% of the TCB was destroyed within 2.5 hr at 300°C with CRE of 71.6%. According to the residue analysis, the shapes of reaction residues were irregular with particles becoming swollen and porous. The benzene ring and C-Cl bonds disappeared, while carboxyl groups formed in the residues. The stripped chlorine was retained and condensed to form chloride salts, and the relative abundance of the chloride ions associated with the mass of TCB in residues increased from 0 to 75.0% within the 2.5 hr reaction time. The observed concentration of dioxins in residues was 5.6 ngTEQ/kg. A reaction pathway and possible additional reactions that occur in this dechlorination system were proposed. Oxidizing agents may attack TCB and facilitate hydrogenation/dechlorination reactions, making this process a promising and environmentally friendly approach for chlorine-containing organic waste treatment.


Assuntos
Cloro/química , Hidróxidos/química , Incineração/métodos , Cloretos , Clorobenzenos , Dioxinas/química , Halogenação , Hexaclorobenzeno , Compostos de Potássio , Cloreto de Sódio , Temperatura
18.
J Environ Sci (China) ; 67: 368-377, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29778170

RESUMO

Waste textiles (WTs) are the inevitable outcome of human activity and should be separated and recycled in view of sustainable development. In this work, WT was modified through grafting with acrylic acid (AA) via radical polymerization process using ceric ammonium nitrate (CAN) as an initiator and microwave and/or UV irradiation as energy supply. The acrylic acid-grafted waste textiles (WT-g-AA) thus obtained was then used as an adsorbent to remove Pb(II) from Pb(II)-containing wastewater. The effects of pH, initial concentrations of Pb(II) and adsorbent dose were investigated, and around 95% Pb(II) can be removed from the aqueous solution containing 10mg/L at pH6.0-8.0. The experimental adsorption isotherm data was fitted to the Langmuir model with maximum adsorption capacity of 35.7mg Pb/g WT-g-AA. The Pb-absorbed WT-g-AA was stripped using dilute nitric acid solution and the adsorption capacity of Pb-free material decreased from 95.4% (cycle 1) to 91.1% (cycle 3). It was considered that the WT-g-AA adsorption for Pb(II) may be realized through the ion-exchange mechanism between COOH and Pb(II). The promising results manifested that WT-g-AA powder was an efficient, eco-friendly and reusable adsorbent for the removal of Pb(II) from wastewater.


Assuntos
Resinas Acrílicas/química , Chumbo/química , Têxteis/análise , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Acrilatos/química , Resinas Acrílicas/análise , Adsorção , Concentração de Íons de Hidrogênio , Troca Iônica , Cinética , Chumbo/análise , Temperatura , Águas Residuárias , Poluentes Químicos da Água/análise
19.
Cell Physiol Biochem ; 44(3): 1213-1223, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29179219

RESUMO

BACKGROUND/AIMS: Acute rejection (AR) is a major complication post renal transplantation, with no widely-accepted non-invasive biomarker. This study aimed to explore the expression profiles of long non-coding RNAs (lncRNAs) in the peripheral blood (PB) of renal transplant recipients and their potential diagnostic values. METHODS: The genome-wide lncRNA expression profiles were analyzed in 150 PB samples from pediatric and adult renal transplant (PRTx and ARTx) cohorts. The diagnostic performance of differentially expressed lncRNA was determined using receiver operator characteristic curve, with area under the curve (AUC) and 95% confidential interval (CI). Finally, a risk score was constructed with logistical regression model. RESULTS: A total of 162 lncRNAs were found differentially expressed in PRTx cohort, while 163 in ARTx cohort. Among these identified lncRNAs, 23 deregulated accordingly in both cohorts, and could distinguish AR recipients from those without AR. Finally, a risk score with two most significant lncRNAs (AF264622 and AB209021) was generated and exhibited excellent diagnostic performance in both PRTx (AUC:0.829, 95% CI:0.735-0.922) and ARTx cohorts (AUC: 0.889, 95% CI: 0.817-0.960). CONCLUSION: A molecular signature of two lncRNAs in PB could serve as a novel non-invasive biomarker for the diagnosis of AR in both pediatric and adult renal transplant recipients.


Assuntos
Rejeição de Enxerto/patologia , Transplante de Rim , RNA Longo não Codificante/sangue , Doença Aguda , Área Sob a Curva , Biomarcadores/sangue , Estudos de Coortes , Rejeição de Enxerto/genética , Rejeição de Enxerto/metabolismo , Humanos , Curva ROC , Transcriptoma , Transplante Homólogo
20.
Waste Manag Res ; 35(11): 1168-1174, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28956498

RESUMO

This is the first attempt to explore the sustainability of aged refuse as ammonium-removal media. Batch experiments combined with the aged-refuse-based reactor were performed to examine how the adsorption and desorption processes are involved in the ammonia removal via aged refuse media in this research. The results showed that the adsorption of ammonium by aged refuse occurred instantly and the adsorbed ammonium was stable and less exchangeable. The adsorption data fit the Freundlich isotherms well and the n value of 0.1-0.5 indicated that the adsorption of ammonium occurred easily. The maximum adsorbed ammonium occupied less than 10% of the cation exchange capacity in aged-refuse-based reactors owing to the high solid/liquid ratios (50:1-120:1). The synergistic transformations of ammonium within the aged-refuse-based reactor indicated that the cation exchange sites only provide temporary storage of ammonium, and the subsequent nitrification process can be considered the predominant restoration pathway of ammonium adsorption capacity of the reactor. It seems reasonable to assume that there is no expiry for the aged-refuse-based reactor in terms of ammonium removal owing to its bioregeneration via nitrification.


Assuntos
Compostos de Amônio/análise , Eliminação de Resíduos/métodos , Resíduos , Poluentes Químicos da Água/análise , Adsorção , Compostos de Amônio/química , Nitrificação , Poluentes Químicos da Água/química , Zeolitas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA